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Summary 

The formulation of the concept of non-informative prior distribution 
over a finite number  of possibilities is considered and the  minimum 
information prior distribution is defined as the prior distribution tha t  
adds minimum expected amount  of information to the  posterior distri- 
bution. Numerical examples show tha t  the definition leads to non- 
trivial results. An information inequality is established to assure the  
validity of numerical results. The relation of the  present  work to other 
works on the  same subject is briefly reviewed and finally a minimax 
type prior distribution is introduced tha t  exhibits the  impartial prop- 
er ty  which is lacking in the minimum information prior distribution. 

1. Introduction 

In a practical application of the Bayes procedure the  available prior 
information is not usually sufficient to completely specify the  prior 
distribution. This often leads to the consideration of another prior 
distribution, the  hyperprior distribution, over a set of possible prior 
distributions. The process may then be repeated indefinitely by con- 
sidering a prior distribution over a set of possible prior distributions, 
until  we come to the  point where no more information is available to 
continue the  process. The concept of non-informative or ignorance 
prior distribution has been developed to serve in this type of situation. 

The ignorance prior distribution developed by Jeffreys [5] is well- 
known. However, its definition is based on the  concept of invariance 
of the  distribution by the transformation of the parameter  and is limited 
to the  case where the  family of possible data distributions is continu- 
ously parametrized.  Lindley [7] applied the  Shannon entropy to develop 
an information theoretic analysis of the  s t ructure  of Bayesian modeling. 
This work prompted the  works by Zellner [8] and Bernardo [3] on the  

* This work was partly supported by the United States Army Contract No. DAAG 29 
-80-C-0041 in Mathematics Research Center, University of Wisconsin-Madison. 

139 



140 HIROTUGU AKAIKE 

definition of the  least informative prior distribution based on some def- 
initions of the  amount  of information. For an extensive reference on 
the  l i terature on non-informative prior distributions readers are re- 
ferred to Bernardo [3]. 

In the  present  paper we consider the basic problem of specifying 
a prior distribution over a finite number of data distributions when no 
fu r the r  prior information is available. Conventionally the  uniform dis- 
tr ibution which allocates equal probability to each data distribution is 
considered to be a reasonable choice in such a si tuation; see, for ex- 
ample, Cox and Hinkley ([4], p. 376). The analysis of Bernardo [3] 
also leads to this prior distribution. Here we define the  minimum in- 
formation prior distribution as the prior distribution which " l e t  the  
data speak mos t "  in predicting the  behavior of a fu ture  observation 
which is independent  of, but  identically distributed as, the  present  data. 
This seems to provide a description of the  common objective of statis- 
tical data analysis, the  identification of the probability distribution tha t  
generated the present data. 

A natural  characterization of such a prior distribution is obtained 
by keeping the  corresponding simultaneous distribution of the  present  
and fu ture  observations as far away as possible from the state of in- 
dependence. The deviation from the independence is measured by the  
Kullback-Leibler information number.  By this definition the  uniform 
prior distribution is a reasonable choice only when the  possible data 
distributions do not show significant overlap. This is the situation 
where the  likelihoods can clearly discriminate the  hypotheses, a situa- 
tion where the  Bayesian modeling is practically unnecessary. 

Numerical  results show tha t  when the overlap of the  data distri- 
butions becomes significant the optimal choice of the prior distribution 
depends critically on the mutual  relation of the  data distributions. In 
particular, it  is observed tha t  some of the prior probabilities go down 
to zero when the  overlap becomes extremely significant. These nu- 
merical examples constitute the first example of determination of non- 
trivial non-informative prior distributions over finite possibilities. A 
newly obtained information inequality assures the  validity of numerically 
obtained minimum information prior distributions. 

Comparison of the  present definition with other  similar definitions 
is briefly discussed in the  final section. The appearance of zero prior 
probabilities by these definitions is baffling and the  minimax informa- 
tion prior distribution is defined tha t  minimizes the  maximum expected 
deviation of the  t rue  distribution from the posterior distribution. Nu- 
merical results are included to show the potential of this definition 
for practical applications. 
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2. Definition of the minimum information prior distribution 

Consider a set of data distributions {f~(.)} ( k = l ,  2 , . . - ,  K). The 
simultaneous distribution of the present and future  observations x and 
y is defined by 

p(y, x)= ~ f~(y)f~(x)w~ , 

where w~ denotes the prior probability of the kth  distribution f~(.). 
The deviation of this simultaneous distribution from the state of inde- 
pendence is measured by the Kullback-Leibler information (Kullback 
and Leibler [6]) 

i(w)= I f p(y, x) log (p(y,x)  )dydx p(y)p(x) 

where p(. ) = ~ f~(.)w~. 
The quant i ty  I(w)is non-negative and becomes zero when p(y, x) 

=p(y)p(x). In this case we have p(ylx)---P(Y), where p(ylx) denotes 
the  probability density of y conditional on x, and the  s t ructure  defined 
by {f~(y)fk(x)w~} does not allow any transmission of information from 
the present  observation x to the expected behavior of the fu ture  ob- 
servation y. This represents the situation where all the relevant in- 
formation about y is represented by {f~(y)} and {w~}. Since the speci- 
fication of the prior distribution w= {w~} has to be done before the 
observation of x the above specification of w is acceptable only when 
we have complete information on the behavior of y. 

When we are not confident in uniquely specifying a prior distribu- 
tion we may consider a set of possible w's. However, this necessitates 
the  introduction of a prior distribution over the possible prior distribu- 
tions and eventually leads to the infinite digression of searching for 
prior distributions of prior distributions. One s t ra tegy to stop this 
digression is to introduce a prior distribution which is least prejudiced 
against  every possibility. The prior distribution discussed in the  pre- 
ceding paragraph for which p(y, x)=p(y)p(x) holds can be considered as 
maximally prejudiced, or informative, in the  sense tha t  no fu r ther  ob- 
servation of x can influence on the inference of y. If  this interpretat ion 
is accepted then it is natural  to consider the prior distribution with 
the  corresponding probability distribution p(y, x) fur thes t  away from 
p(y)p(x) as the least informative. This observation leads to the defini- 
tion of the  minimum information prior distribution: we call a prior 
distribution {w~} the  minimum information prior distribution, with 
respect to {fk(')}, when it gives the maximum of I(w). In the  rest  
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of the  paper, unless stated otherwise, it is tacitly assumed tha t  the  
data distributions fk(x) are mutually absolutely continuous. 

3. Some analysis of I(w) 

The basic criterion I(w) can be represented as 

I (w)=Shannon entropy of p~(y)p~(x) 
- S h a n n o n  entropy of p~(y, x ) ,  

where pw(x) and pw(y, x) respectively denote p(x) and p(y, x) defined by 
the  prior distribution w and the Shannon entropy of a probability dis- 

tr ibution p(z) is defined by - f  p(z)log p(z)dz. For the  purpose of c o m -  

p a r i s o n  of distributions the Shannon entropy may be considered as a 
measure of deviation from the uniform distribution. Thus the  above 
representat ion of I(w) shows tha t  the minimum information prior dis- 
tr ibution tha t  maximizes I(w) will maximize the  dependence between 
x and y, keeping the  marginal distribution p~,(x) as close to the  uniform 
distribution as possible. 

In the  exceptional situation where the  data distributions are com- 
pletely separated, i.e., fk(x)fj(x)=O for k:#j ,  I(w) reduces to - ~  w~log 
w~, the  Shannon entropy of the prior distribution w. This is maximized 
at  w~=l]K. This shows tha t  when the data distributions are well 
separated the  uniform prior distribution will provide a good approxi- 
mation to the  minimum information prior distribution. 

When some of the  data distributions show significant overlap we 
can expect tha t  the solution will no longer be close to the  uniform 
distribution. Since no single wk can come close to 1, as this will min- 
imize I(w), we can fur ther  expect tha t  some w~'s will be forced to go 
down to zero and a distribution in a lower dimensional space of w will 
appear as the  solution. The numerical examples of the  next  section 
show the validity of these expectations. 

If the  concavity of I(w) is shown tha t  will assure the  validity of 
the  minimum information prior distribution obtained by a numerical 
procedure based on a local search for the maximum of I(w). Consider 
a prior distribution w=au+(1-a)v defined by a pair of prior distribu- 
tions u and v and a ( 0 ~ 1 ) .  Denote I(w) by I(a). The concavity 
of I(w) for general w holds if it holds tha t  

for any pair of u and v. This inequality reduces to 
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f lP~(Y'x)l~ p~(y,x) .]dydx~iIp~(y,x)log [ p,(y,x) ldydx p~(y) p~(x) p,(y) p,(x) 

which is equivalent to 

I(p~, p,) ~ I(p~p~, p,p,) , 

where I(q, P ) = I  I q(y' x)log(q(y, x)]p(y, x))dydx and p~p~(y, x) denotes 

p~(y)p~(x). 
This last inequality is an information inequality tha t  shows tha t  

p,(y)p,(x) is more sensitive to the variation of v than  p,(y, x), i.e., an 
observation from po(y)p,(x) is more informative about v than tha t  from 
p,(y, x). To prove the inequality we consider the minimum of 

I(qq, pp)= f f q(y' x)log (q(y)q(x)](p(y)p(x))}dydx 

for a given p(y, x), under the condition I(q, p)=8, a positive constant.  
Here q(y, x) and p(y, x) denote arbitrary symmetric probability density 
functions with respect to the measure dydx and q(.) and p(.) denote 
corresponding marginal distributions. The minimization leads to the  
variational analysis of 

R(q)=I(qq Sq(  ) 
where ~ and ~ are Lagrange multipliers. By considering a small per- 
turbation r(y, x) (=r(x, y)) of q(y, x) it can be seen tha t  the  stationary 
solution must  satisfy the relation 

I f  r(y, x) [log [q(y)q(x)/(p(y)p(x))} + ~ log (q(y, x)/p(y, x))]dydx-: 0.  

This shows tha t  we have an equality 

log (q(y, x)/p(y, x))= c log {q(y)q(x)](p(y)p(x))} 

and accordingly 

I(q, p)= cI(qq, pp) , 

where c=-~-1~0.  Due to the convexity of I(qq, pp) with respect to 
q the  stat ionary solution gives the minimum of I(qq, pp) under  the  
given constraints. 

Since we have 

\ p(y)p(x) 
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c must be equal to or less than 1, if q(y)/p(y) and q(x)/p(x) are posi- 
tively correlated under p(y, x). In this case I(q, p)~_I(qq, pp) holds for 
any q. For the particular choice p(y, x)=p~(y, x) it can easily be seen 
that  the positivity of the correlation holds for any symmetric q(y, x). 
This completes the proof of the information inequality. 

4. Numerical investigation 

For the simplicity of numerical analysis we consider the case where 
the variables x and y take only integral values 0, 1, 2 , . . . ,  L The quan- 
tities useful for the numerical maximization of I(w) are 

I(w) = ~ ~. Pw(Y, x)s(y, x) 
y 

8I(w) _ ~  ~, Off(k,  y, x)s(y, x) 

8~I(w) - -  ~ 5-I. Off( j ,  y, x)Dff(k, y, x) 2 ~, Of(j ,  x)Df(k, x) 
8w~ 8wk ~ x p~(y, x) ~ pw(x) ' 

where 

s(y, x)----log {p~(y, x)/(pw(y)p~(x))} , 

Off(k,  y, x ) - - f (y ) f (x ) - fK(y) fx (x )  and 
Ic k 

Of(k, x)=fk(x)--fK(x) (=  ~. Off(k,  y, x)) �9 
Y 

To apply the ordinary optimization procedure I(w) is maximized with 
respect to w~, w2,. �9 wK_l; whereas wK is given by w K = l - w l  . . . . .  w~:_~. 

As a typical set of data distributions {fk(')} we adopted a set of 
binomial distributions 

A(x)--~(3, p~(1-p~) ~-~ , 

where N and p~ (k= l ,  2,- . . ,  K)  were properly chosen for each particu- 
lar example. The uniform distribution w~=l/K was used as the ini- 
tial guess to start  the numerical optimization. An ordinary unconstrained 
numerical optimization procedure was applied with a minor modification 
to satisfy the non-negativity constraint w~>_0. For the examples to be 
discussed in the following the absolute values of the gradients at the 
solutions were at most of the order 10 -e, except for those w~'s which 
were zero where the gradients took significant negative values. 

The first example was designed to see the effect of relative loca- 
tion of the data distributions on the determination of the minimum 
information prior distribution. Three sets of data distributions were 
considered, each composed of three data distributions, i.e., K=3. These 
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were defined respectively by (pl-0 .1 ,  p~=0.5, p3=0.9), (pl--0.2, p2=0.5, 
p3=0.8) and (p1=0.3, p2=0.5, p~=0.7). The parameter  N of the bi- 
nomial distribution was put  equal to 20. The minimum information 
prior distributions obtained numerically are given in Table 1 along with 
the  corresponding p~'s. The numbers were rounded at  the  fourth  dec- 
imal point. 

Table 1. Effect of relative location (N=20) 

k w~ p~ w, p ,  w,  pe 

1 .347 .1 .409 .2 .500 .3 

2 .307 .5 .182 .5 .000 .5 

3 .347 .9 .409 .8 .500 .7 

The result of Table I shows tha t  as the  three  data distributions 
come closer to each other the distribution at the center loses its prior 
probability. One might  expect that  if the  data distributions are brought  
fu r ther  closer then eventually the prior probability will concentrate on 
the  distribution at the center. This does not  happen for this example 
with K=3. However that  type of behavior is observed locally in the  
example to be discussed after  the next  where K--5. 

The second example was designed to check the effect of increased 
dispersions of the  data distributions. With K = 3  the  p~'s used to de- 
fine the  binomial distributions were p1=0.25, p2=0.5 and p~=0.75. To 
get  distributions with successively increasing dispersions N was put  equal 
to 80, 40, 30 and 20. The corresponding minimum information prior 
distributions are given in Table 2 along with the  p~'s. I t  can be seen 
tha t  as N is decreased, i.e., as the overlap of the data distributions is 
increased, the minimum information prior distribution deviates from 
the  uniform distribution over the  three  data distributions to the  one 
over the two end distributions, just  as in the  case of the first example. 

Table 2. Effect of increased dispersions (K=3) 

N 

80 40 30 20 p~ 

wl .340 .373 .410 .500 0.25 

w2 .321 .255 .179 .000 0.5 

w3 .340 .373 .410 .500 0.75 

The third example was chosen to illustrate fu r ther  the  complexity 
of the possible shape of the minimum information prior distribution for 
an increased K, the  number of possible data distributions. In this ex- 
ample K was put  equal to 5 and the p~'s were pl=0.1,  p~=0.325, p3= 
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0.5, p4=0.675, p5=0.9. The value of N was successively put  equal to 
70, 60, 50, 40, 30, 25, 20, 10 and 5. The corresponding minimum in- 
formation prior distributions are given in Table 3 along with the  p~'s. 
The result  of Table 3 clearly suggests tha t  some clustering of data 
distributions is required when there  is significant overlap among the  
distributions. 

Table 3. Effect of increased dispersions (K=5) 

N 

70 60 50 40 30 25 20 15 10 5 p~ 

w, .245 .253 .256 .262 .276 .289 .347 .361 .402 .500 .1 

w2 .196 .200 .244 .238 .224 .211 .000 .000 .000 .000 .325 

w3 .117 .094 .000 .000 .000 .000 .307 .278 .195 .000 .5 

w4 .196 .200 .244 .238 .224 .211 .000 .000 .000 .000 .675 

ws .245 .253 .256 .262 .276 .289 .347 .361 .402 .500 .9 

The four th  and the  last example was designed to see the  effect of 
the  difference of dispersions among the  data distributions. Only two 
data distributions were considered. The result is given in Table 4. I t  
can be seen tha t  the  data distributions defined with pk=.5 which have 
larger variances than  those defined with p~=.9 are receiving lower prior 
probabilities. Due to the relatively good separations of the  data dis- 
tr ibutions the  differences of the prior probabilities are ra ther  small. 

Table 4. Effect of the difference of dispersions 

N 

20 15 I0 5 2 p~ 

wt .497 .494 .488 .471 .439 .5 

w2 .503 .506 .512 .529 .561 .9 

5. Discussion 

The definition of the minimum information prior distribution is based 
on two principles. The first is to specify the  purpose of the  inference 
based on the  present  data as the prediction of another similar fu ture  
observation. The second is to evaluate the  deviation of p(y, x) f rom 
p(y)p(x) by the  Kullback-Leibler information I(w). For the  discussion 
of the  adequacy of the Kullback-Leibler information as such criterion, 
see, for example, Akaike [2]. Contrary to the  usual conception of the  
uniform distribution as the non-informative prior distribution for a finite 
set of possible data distributions, the numerical result has shown the  
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necessity of careful analysis of the mutual relation among the data 
distributions. 

If we followed Lindley [7] we could have defined the minimum in- 
formation prior distribution as that  w which maximizes 

V pjx) ]dx f P ( )log L J 

Such a prior distribution may be characterized as the one tha t  keeps 
the probability distribution pjx)w~ over (x, k) as far away as possible 
from the state of independence defined by p(x)w~. Since we have the 
relation 

'W~ 

where p(klx)=fjx)wJp(x), the prior distribution that  maximizes Io(w) 
may also be characterized as the one that  produces maximum expected 
change in the transition from {w~} to {p(k[ x)}. 

This definition leads to a numerical optimization problem which is 
simpler than that  of our definition. The result corresponding to Table 
3 is given in Table 5 for this definition. The computations for the eases 
N=40 and 30 were omitted. By comparing Table 5 with Table 3 we 
can see that  the definition leads to a prior distribution which is closer 
to the uniform distribution than that  by our definition. 

Table 5. Prior distributions maximizing Io(w) 

N 

70 60 50 40 30 25 20 15 10 5 p~ 

wl .226 .232 .239 .270 .284 .310 .363 .424 .1 

w2 .194 .193 .192 .178 .162 .117 .000 .000 .325 

w8 .158 .149 .138 .103 .108 .147 .275 .151 .5 

w4 .194 .193 .192 .178 .162 .117 .000 .000 .675 

ws .226 .232 .239 .270 .284 .310 .363 .424 .9 

The maximal data information prior distribution introduced by 
Zellner [8] is based on a modification of Io(w) to avoid the analytical 
difficulty in handling Io(w). The criterion is based on a formal use of 
the Shannon entropy and its technical meaning is ra ther  unclear, unless 
we accept the Shannon entropy literally as a representation of the 
amount of information. The reference prior distribution introduced by 
Bernardo [3] is somewhat similar to our minimum information prior 
distribution. However, it is based on the concept of infinitely repeated 
observation of x, instead of the one single observation in our definition, 
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and inevitably leads to the  uniform prior distribution when the  num- 
ber of possible data distributions is finite. 

The appearance of zero prior probabilities in the foregoing numer-  
ical examples is baffling and suggests the necessity of considering other  
definitions of the  non-informative prior distribution. The minimum in- 
formation prior distribution was defined so as to minimize the  expected 
deviation of the  predictive distribution p(y[ x) from the original distri- 
bution p(y) as measured by the  Kullback-Leibler information. The 
concept of impartial i ty suggests the  minimization of 

[ 
p(ylx) 

We will call a posterior distribution tha t  minimizes the  above quant i ty  
the  minimax information prior distribution. 

Using the same notations as in preceeding sections, Table 6 shows 
a pair of numerically obtained minimax prior distributions. I t  can be 
seen tha t  in the  example on the  left-hand side the  distribution of the  
prior probabilities among the  data distributions within a cluster is nearly 

Table 6. Examples  of min imax  information 

prior distr ibutions 

N 

p~ 25 

.2 wl .086 

.225 w2 .085 

.25 w3 .085 

25 p~ 

wl .26 .225 

.45 w4 .098 

.475 w~ .097 

.5 we .097 

.525 wT .097 

.55 w8 .098 

w2 .48 .5 

.75 w9 .086 

.775 wlo .086 

.8 wll .087 

w3 .26 .775 

uniform. The sums of the  prior probabilities for the  three  clusters are 
almost equal to the  corresponding prior probabilities of the minimax in- 
formation prior distribution concentrated on the "cores" of the clusters. 
This seems to be in good conformity with what  we expect of an igno- 
rance prior as locally uniform distribution. 

I t  has been observed (Akaike [1], pp. 29-30) that  in the  inferential 
use of the negentropy,  or the  Kullback-Leibler information I(p, q)= 
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E~ log [p(y)/q(y)], where E~ denotes the expectation with respect to p(y), 
usually p(.) is factual and q(.) is hypothetical. I t  can be seen tha t  in 
the  definition of the minimum information prior distribution the  roles 
are interchanged, while in the minimax information prior distribution 
the normal ordering is restored. This suggests tha t  the  la t ter  is based 
on a more natural  use of the  Kullback-Leibler information. 

Much remains to be done to confirm the practical uti l i ty of the 
concept of the  ignorance prior distribution over finite alternatives. Nev- 
ertheless the  result presented in this paper suggests tha t  a proper 
combination of the predictive point of view and the  concept of negen- 
tropy or the  Kullback-Leibler information will lead to a useful definition. 
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