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Summary 

The bivariate distribution of (X, Y), where X and Y are non-neg- 
ative integer-valued random variables, is characterized by the condi- 
tional distribution of Y given X =  x and a consistent regression function 
of X on Y. This is achieved when the  conditional distribution is one 
of the  distr ibutions:  a) binomial, Poisson, Pascal or b) a r ight  transla- 
tion of these. In a) the conditional distribution of Y is an x-fold con- 
volution of another  random variable independent of X so tha t  Y is a 
generalized distribution. A main feature of these characterizations is 
tha t  their  proof does not depend on the  specific form of the  regression 
function. I t  is also indicated how these results can be used for good- 
ness-of-fit purposes. 

1. Introduction 

Here we are concerned with characterizing the  distribution of non- 
negative integer-valued random variables (r.v.) X and Y in te rms  of 
the  conditional distribution of Y given X and the  regression function 
E (XJY) of X on Y. Several papers have appeared in this direction. 
Korwar [7] considered a conditional binomial or Pascal distribution com- 
bined with linear regression and characterized the  Poisson, binomial 
and negative binomial distributions in the  former case and the  geo- 
metr ic  in the  la t ter  case. Dahiya and Korwar [4] extended these char- 
acterizations to bivariate X and Y under  conditional distributions which 
are independent  binomials or Pascal and linear regression. Khatr i  [5], 
[6], using a slightly more general approach gave similar results for the  
mult ivariate  case. A case of non-linear regression was t rea ted  by 
Xekalaki [11] in characterizing the  bivariate Poisson distribution. 

In this paper more general and unifying results are obtained by 
by-passing the  unnecessary details involved in obtaining a specific char- 
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acterization under a specific regression function. This is achieved by 
appealing to the unicity of a solution of a first-order difference equation. 
Specifically, it is shown that  certain conditional distributions along with 
the regression functions determine uniquely the distributions of X and Y, 
hence also of (X, Y). This fact can be used to generate a wide spec- 
t rum of distributions characterized under these conditions. For example 
(Theorem 3.1), given a conditional binomial distribution (of Y on X), we 
may choose an arbitrary given distribution for X, which in turn gives 
a specific regression function; thus (see Section 3), in addition to the 
distributions mentioned earlier, characterizations were obtained for the 
logarithmic distribution and several generalized (compound) distribu- 
tions, e.g., Neyman, Poisson binomial, binomial Poisson, logarithmic bi- 
nomial etc. Multivariate analogues are given in Papageorgiou [8]. 

2. Some preliminary results 

It  will be shown that  certain conditional probability functions (p.f.) 
p(y[x) of Y given X = x  together with the regression function 

m(y)=E [ X I Y = y ]  y=0 ,  1, 2 , . . .  

determine the bivariate distribution of (X, Y). We consider two cate- 
gories of conditional distributions P(Y[ x). 

In the first category of conditional distributions, p(y[x) defines an 
x-fold convolution of a non-negative integer-valued r.v. Z~, say, with 
probability generating function h0. Thus Y admits the representation 

(2.1) Y = Z I +  Z2+. . " + Zx , 

where the Z, are i . i . d . r .v . ' s  independent of.X, so that  the p.g.f, hx(.) 
of p(y[x), g(.) of X, h(.) of Y and G(-, .) of (X, Y) satisfy 

(2.2) hx(v)=[ho(v)] ~ , h(v)=g(ho(v)) , V(u, v)=g(uho(v)) 

(c.f. Cacoullos and Papageorgiou, [2]). Specifically, we examine the fol- 
lowing cases : 
1. Binomial .  For a p = l - q ,  0 < p < l ,  and an integer n > 0  

(2.3) p(ylx)=(nxlpYq'=-" y=O, 1 , . . . ,  nx,  x=O, 1 , . . . ,  ( q = l - - p )  . 
\ y /  

2. Pascal. 

(i)  
(2.4) 

(ii) 

y=x, X-}-l,- �9 �9 , 

y=O, 1 , . . . ,  x = 1 , 2 , . . . .  
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3. Poisson. For a ~>0 

(2.5) p(ylx)=e_~(~x)~ y = 0 , 1 , . . . ,  x = 0 , 1 , . . . .  
y! 

Under (2.3)-(2.5), the bivariate distribution of (X, Y) is determined 
by the distribution of Y. This follows from (2.2) directly by taking 
into account the relations between h0 and g for each of (2.3)-(2.5), re- 
spectively : 

(2.3a) ho(v)=(pv+q) ~ g(v)-_h( V~/'-q ) , 
P 

(2.4a) 

( i )  h0(v)= pv g(v)=h( p ~ q v  ) , 
1 - q v  ' 

(ii) h0(v)-- p g(v)=h(  V - P  l , 
1--qv ' \ qv / 

(2.5a) ho(v) =d  (~-" 

Equivalently, the mixtures defined by p(ylx) are identifiable, in the 
sense tha t  for given p(y[x) there is a one-to-one correspondence between 
the p.f. of X, as shown by Teicher [10] (see also Seshadri and Patil [9]) 
in view of the closure under convolution of the families (2.3)-(2.5) with 
parameter the mixing variable x. 

The second category of p(yLx) defines a shift to the r ight  by x of 
a non-negative integer-valued r.v. with p.g.f, h*(v), so that  now the 
corresponding p.g.f. 's are given by 

(2.6) hx(v)=v~h*(v) , h(v)=g(v)h*@) . 

Thus, given h*(v), h clearly determines g and vice-versa. 
Summarizing the preceding discussion, we have 

PROPOSITION 2.1. For each of the conditional distributions (mix- 
tures) defined by (2.3)-(2.6), there is a one-to-one correspondence be- 
tween g(.) and h(.) (the mixtures are identifiable). 

COROLLARY 2.1. Under (2.3)-(2.6), the p . f .  p(y) determines uniquely 
the distribution of  X. 

There remains, therefore, the problem of finding p(y). As already 
stated, this is achieved by specifying the regression function re(y), as 
shown in Section 3. 
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3. The main results 

In determining p(y), we first show 

LEMMA 3.1. Let p(y[x) satisfy 

(3.1) xp(y I x) = c_1(y)p(y-- 11 x) + co(y)P(y ] x) + c~(y)p(y + 11 x) 

with one of  the c_~(y), e~(y) equal to zero, i.e., 

(3.2) 

Then re(y) determines p(y). 

PROOF. W e  h a v e  

c , ( y ) c _ , ( y ) - O  . 

m(y)--~,  x P  [ X - - x I Y = y ] = ~ ,  x p(y[x) p IX--x] 
~:o ~=o p(y) 

which by (3.1) can be writ ten as 

m(y)p(y)-- co(y)p(y) + c~(y)p(y-~ 1)-t- c_l(y)p(y- 1) . 

This, in virtue of (3.2), reduces to a first-order linear difference equa- 
tion, which is well known to have a unique solution with a given ar- 
bitrary p(y) for one y-value. This combined with the (initial) condition 

p(y)=l  determines p(y) uniquely for all y. 
y=0 

THEOREM 3.1. Let the conditional distribution p(ylx) be one o f  the 
distributions (2.3)-(2.5). Let m(y ) - -E[XIY=y]  be an arbitrary func- 
tion of  y consistent with p(ylx). Then p(ylx) and re(y) together charac- 
terize the distributions of  X, Y and (X, Y). 

PROOF. By Corollary 2.1 and Lemma 3.1, it is enough to verify 
that  p(y[x) satisfies (3.1) and (3.2). Thus, using the conbinatorial 
identity 

;-- iX+y( x 

for (2.3), and the identities 

for (2.4), we obtain the respective first-order difference equations (re- 



CHARACTERIZATIONS OF DISCRETE DISTRIBUTIONS 99 

currences) : 

(3.3) m(y)= q (y-f-l) p (y+l )  ~__y y=0,  1 , . . . ,  
np p(y) n ' 

(3.4) 

( i ) m(y)=y- -q(y - -1 )  p(y--1) P(Y) , y = 1 , 2 , . . . ,  

(ii) m(y)=(y-t-1) p(y+l)  y ,  y = 0 , 1 , . . . ,  
qP(Y) 

(3.5) m(y)----Y+l p(y+l )  y = 0 , 1 , . . . .  
,~ p(y) ' 

Hence the proof of the theorem is complete. 

In point of fact, the explicit solutions of (3.3)-(3.5) are, respec- 
tively, 

(3.3a) p(y)=p(O)(P)~'~?_~_ok----~(nm(k)-k ) , y = l ,  2 , . . .  , 

(3.4a) 

Y 

( i ) p(y)=p(1)q~-,~, k - 1  
= k-re(k)  ' 

(ii) p(y) = p(O)q~ ~ (re(k) + k) , 

y=2,  3 , . . .  , 

y = l ,  2 , . . .  , 

(3.5a) p(y)__p(O)2 ~ ~ re(k) , y = l ,  2 , . . .  , 

with p(0) or p(1) determined from ~ p(y)=l .  
y=0 

Remark 3.1. In view of the representation (2.1), Theorem 3.1 can 
be used to characterize an infinite variety of discrete distributions: 
If X is an arbitrary non-negative integer-valued r.v., then Y has the 
generalized (compound) distribution of X by another r.v. Z (denoted 
by X V Z ) ,  the distribution of Z being determined by an h0 of (2.3a)- 
(2.5a). This can be formulated into the constructive result: 

COROLLARY 3.1. Take Y =  X V  Z, where Z is a Bernoulli, a geometric 
or a Poisson r.v. and X arbitrary (X=0, 1, 2,--.).  Find re(y) f rom 
m(y)=g~(1) where the conditional p.g.f ,  g~(.) of  X given Y = y  is given by 

g~(u)---G(J)(u, 0)/G?)(1, 0) , G~)(Uo, Vo)--- a~G(U,av ~ v) ~=~o.=oo 

(see related results in CacouUos and Papageorgiou [2]). Then, each such 
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re(y) characterizes the distribution of X and the corresponding compound 
distribution of Y = X v  Z. More easily given X we may determine p(y) 
from Y = X v Z  and then use (3.3)-(3.5). 

For illustration, suppose Z is a Bernoulli r.v. Then a linear re- 
gression function, 

m(y)=a+by,  y=0 ,  1 , . . . ,  

characterizes both X and Y as (i) binomials if 0 < b < l  (ii) Poissons if 
b = l  and (iii) negative binomials if b > l .  This is the  result of Korwar 
[7]. In view of his l imiting himself to linear re(y), he missed, among 
others, the  case of logarithmic X and Y, when 

m ( 0 ) = a ,  m(y)=by, y = l ,  2 , . . .  , b > l .  

As pointed out one may characterize a variety of interest ing gen- 
eralized distributions which have been given some at tent ion in several 
contexts in the  statistical l i terature.  For the  sake of brevity, we state 
only the  X-distribution. Such are the  Neyman (PoissonVPoisson), 
Poissonvbinomial ,  PoissonVnegative binomial, negative binomialVbi- 
nomial, logarithmicVPoisson, etc. A unified t rea tment  of generalized 
distributions is given in Charalambides [3]. 

Finally, let us consider the case of (2.6). More specifically, we 
consider shifts of a binomial, a Poisson and a negative binomial. We 
show 

THEOREM 3.2. Let p(y[x) be one of the distributions (3.6). Let re(y) 
be consistent with P(Yl x). Then P(Yl x) and re(y) together characterize 
the distributions of X, Y and (X, Y). 

( i )  n 
\y--x/  

O ~ x ~ y ~ x + n ,  

(3.6) (ii) p(y[x)=e -~ ~-~ y ~ x ~ O ,  
(y -x) !  

(iii) p(y]x)=(r+Y-l-1)p~q"-X y>=x>=O, ( r > 0 ) .  

PROOF. 

( i)  
(3.7) 

(iii) 

Under  (3.6), h* of (2.6) is given, respectively, by 

h*(v)=(pv+q) ~, (ii) h*(v)-exp [~(v-1)] ,  

Using the identi ty 
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X 

we can wr i te  re(y) for (3.6)-(i) in the  form 

m ( y ) = y - ( n - v + l ) 2  p(y-1) p p(y-1)  r e ( y - l ) .  
q P(Y) q P(Y) 

For  (3.6)-(ii) we easily find 

re(y) = y -  ~ p ( y -  1) 
p(y)  ' 

whereas  for (3.6)-(iii) making  use of the  ident i ty  

x ( r + y - - x - - 1 1  ( r + y - - x - - 1  t \ y - - x  / - ~ Y ~  y - - x  / 

_ ( r + y _ l ) ( r - y - x - - 2 1 + x ( r + y - x - - 2 )  , 
\ y - - x  / \ y - - x  J 

we obtain 
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m ( y ) = y - - ( r + y - - 1 ) q  p(y--1) ~_q p (y - -1 )  m ( y _ l ) .  
p(y) p(v) 

Here,  as for  (2.3)-(2.5), p(y) is found as the  solution of the  corre- 
sponding difference equation.  Actually,  we have 

/ ~ \ y  y 

= k - - re (k )  ' 

(3.6a) p(y)=p(O)~ '~ ]-[ , 
~ k-re(k) 

p(y)=p(O)q~ (-[ m ( k - - 1 ) - - ( r + k - - 1 )  
~ m ( k ) - k  ' 

which  completes  the  proof of the  theorem.  

As a simple application of Theorem 3.2-(ii), consider the  case of a 
Poisson r .v.  X wi th  pa rame te r  t~ (cf. Remark  3.1), g iv ing  

(3.8) re(y)= 0 Y y=O,  1, 2,.  . . . 

Under  (3.6)-(ii), the  regression (3.8) character izes X as a Poisson (~) 
and Y as a Poisson (t~+~). 

In general ,  using Theorem 3.2, one may  obtain several  character-  
izations, of (X, Y) regard ing  Y as a convolution, 
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Y = X + Z ,  

where X is arbi t rary and Z is independently distr ibuted as a binomial, 
Poisson or negative binomial. 

4. Some statistical applications of the characterizations 

The preceding results, in addition to their  probabilistic interest ,  
can be used in goodness-of-fit tests in a variety of situations. 

For illustration, consider the case in which records (X) of acci- 
dents  and corresponding fatal accidents (Y) are available for a series 
of periods. Then we may be faced with identifying the  distribution 
of X and Y under  the  natural  assumption tha t  Y given X is binomial. 
This is the  situation described by (2.3). A possible test ,  within the 
f ramework of these characterizations, is to look at  the  regression func- 
tion m(y) of X on Y. Thus, if re(y) is linear (see discussion af ter  
Theorem 3.1) 

m(y)=a+by, y = 0 ,  1 , . - . ,  

then  a regression line with slope b = l ,  shows tha t  X (hence also Y) is 
a Poisson, a b < l  indicates tha t  X (hence also Y) is a binomial and a 
b > l  suggests a negative binomial for X and Y. On the  other  hand, 
a line m(y)=by with b > l  for y ~ l  and an isolated point at  y--0 indi- 
cates a logarithmic X. 

Similar remarks  can be made concerning the  cases of more com- 
plicated regression functions, which as a rule, take us away from the 
simple classical discrete distributions. This, however, is beyond the  
scope of the  present  investigation and we shall not pursue it  here any 
fur ther .  
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