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1. Introduction 

This paper is devoted to simultaneously est imating the  parameters  
of several independent Poisson random variables. We suppose tha t  X~, 
i = 1 , . . . ,  p, are independent Poisson random variables with parameters  
2~,...,  2p. We shall assume tha t  only one observation is taken from 
each population. Although the  maximum likelihood est imator (MLE), 
X=(X~,. . . ,  Xp), has several nice properties, Peng [2] shows tha t  the  
MLE is inadmissible under squared error loss by proposing estimators 
which are bet ter  than the MLE uniformly in 2=(2~, . . . ,  2p), as long as 
p_>3. 

Basically, Peng's estimators (cf. his Theorems 3.1 and 5.1) pull 
each component of the MLE towards zero whenever  the  number  of 
non-zero observations exceeds two. The performance of his estimators 
is expected to be good when the underlying parameters  2~ are relatively 
small. When some of the parameters  are large, however, very little 
improvement  over the MLE is anticipated. In this situation, some very 
large observations are likely to occur, and both Peng 's  est imator (The- 
orem 3.1) and the MLE give virtually the same estimate. In order 
to remedy this situation, Peng uses Stein's method [3] to modify his 
estimator.  

If all the  parameters ~ are relatively large, none of the estimators 
proposed by Peng will give noticeable improvement  over the MLE. 
This is essentially due to the fact tha t  those estimators are biased to- 
wards the origin, a point far away from the t rue 2. Est imators tha t  
shift  the  observations towards a point in a neighborhood of the  t rue  
underlying parameter  would be expected to give bet ter  estimates in 
this case. This conjecture is shown to be t rue  in Section 3: for each 

nonnegative integer k, there  is a family of estimators ]c~ of 2 such 

tha t  ~c~) dominates the MLE uniformly in ~ under the squared error 

* This  paper  is based on part  of the  au thor ' s  Ph.D. thesis at  the Univers i ty  of British 
Columbia, supervised by S. J. Press and J. V. Zidek. 
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loss function. The estimator )c~) pulls the MLE towards the integer  
k whenever  the  number  of observations grea ter  than k is at least three, 
but  otherwise gives the same est imate as the  MLE. Peng's  est imator 
is a special case (k=O). 

Section 2 consists of notation and fundamental  results which we 
shall employ in subsequent sections. In Section 4, we propose estima- 
tors tha t  shift  the  MLE towards a point determined by the data itself. 
Finally, Section 5 reports the results of a computer  simulation designed 
to quanti tat ively compare the performance of the  MLE with an adap- 
tive est imator and one of Peng's  estimators.  

2. Notation and fundamentals 

Let x = ( x l , . . . ,  x~) be a vector of observations of the random vector 
X-- - (X , . . . ,  Xp), where the X~'s are mutual ly  independent  Poisson ran- 
dom variables with parameters ~ , . . . ,  ~p, respectively. The notation 
we introduce below is essentially tha t  used by Peng [2]. 

DEFINITIONS. 

( 1 )  N~=~{x~: x~=j}, i.e., the number  of x~'s tha t  are equal to j .  
P 

( 2 ) l =  Max {x~} ; N =  (No,-.., N~). 

( 3 ) J =  the  set of all integers ; J+= the set of all non-negative integers. 
p t 

( 4 ) S= ~, h2(x~) = ~ N y ( j ) .  Here h : J--*R is a real-valued function 
~=i j=O 

such tha t  h (y)=0  if y ~ 0 .  
(5)  JP=p-fold cartesian product of J with  itself. 
( 6 )  f~: JP--~R, i = l , . . . , p ,  are real-valued functions such that  

( i )  fi(x)=O if x has a negative coordinate. 
(ii) E~lf~(X+je~)I<c~ for j=O, 1, where  e~=a p-vector whose i th  

coordinate is one and whose other  coordinates are zero. 
( 7 ) f(x)-=-(A(x), f2(x) , '" ,  fp(x)). 
(8)  r if x~=j. 
( 9 )  r J~---~R is a real-valued function satisfying the  following prop- 

erties : 
( i )  ~ is nondecreasing in each a rgument  x~ whenever  x~>k. 
(ii) r is nonincreasing in each a rgument  x~ whenever  x~<=k. 
(iii) There is a real number B > 0  such tha t  0=<r and 

r 
(10) ] = ( ] ~ , . . . ,  ]~) is an estimator of ~. 

(11) R(~, ]) is the  risk function of ~. 

We are interested in functions h which satisfy the  properties listed 
in Lemma 2.1 below. Before s ta t ing the  lemma, we provide a repreo 
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sentative example of the functions h desired. We shall adopt the con- 

vention tha t  ~, W(n)=_O if v<u, for any real-valued function W(-). 
n = u  

Example 2.1. For any fixed non-negative integer  k, 

h(y)-- 

y ~ k  

I + E  t / (k+n) ,  
n = 2  

, 

k - - y  

- b E  1/(k+l--n) , 
n = l  

if y>=k+l  

if y=k  or y < 0  

if y=O, . . . ,  k--1 and k>=l 

where b is a positive number to be determined such tha t  (8) of Lemma 

2.1 below holds. One such b is b=3  in 52, if k>2 .  When 
~=~ k + l - n  

k = l ,  b can be any positive number.  The following lemma gives the 
properties of h. For simplicity, we denote hj=h(j). 

LEMMA 2.1. Let h be as defined in Example 2.1. Then h satisfies 
the following properties : 

(1) h~-h~_1 is nonincreasing in j for j ~ k + l .  (2) j[hj-hj_l] is 
nondeereasing in j for j > k  and lira j[hi-h~_l]=B for some B>O. (3) 

j ~ c o  

h~>h~_,, j = 1 , 2 , . . . .  (4) h~=0. (5) h~>0 i f  j>=k+l. (6) ~f k>0, 
then hj<O for j ( k .  (7) h,+~>=B. (8) 3B~>hlho provided k>O. (9) 
h,+~>-j[hj--h~_l] for j > k + 2 .  (10) ~'~ ~ < ~  ~ for l<=j<k i f  
k>O. 

The proof of the lemma is s t ra ightforward and is omitted. The 

estimators ] of ~ we consider will be of the  form X + f ( X ) ,  where f 
is as defined before. 

In the  proofs of our theorems, we employ the important  basic 
identi ty which was used by Hudson [1] and Peng [2]. We state the 
result as Lemma 2.2 below. 

LEMMA 2.2 (Hudson [1]; Peng [2]). Suppose X is a random vector 
with independent Poisson random variables as coordinates, and ~ is the 
corresponding Poisson parameter vector. Then under squared error loss 

L(2, ~)=~,  (~,_],)2, the deterioration in risk D of ~ = X + f ( X )  as com- 
~=1 

pared to the MLE, X, is 

D=R(~, ~)-R(~, X ) = E M ,  

where 
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P P 

(2.1) ,/----E f~(X)+2 E X , [ A ( X ) - A ( X - e J ] .  
~;=1 i = 1  

In terms of N and Cj(N), (2.1) can be rewrit ten as 

t l 

~/= E Njr  2 E A~, 
j=O j = l  

where Aj=yN;[r162 aj is an ( l+ l )  vector with the 
j t h  coordinate equal to one and the other coordinates zero. To show 

that  an estimator ~ of ~ of the form X + f ( X )  dominates X under 
squared loss, it suffices to show that  d(x)~_O for all x e J+P with strict 
inequality for some x ~ J+P. 

3. Shifting the MLE towards /c 

We use the notation defined in Section 2 and define 

(3.1) f ~(x) = -- [r~r , i= 1, . . . ,  p ,  

where r~= p-->~=oN~-2 and (y)+ =Max {y, 0}. We shall show that  
= + 

the estimator ~(~)=X+f(X) of I dominates X uniformly in I under 

the squared error loss function when p>_-3. The estimator ]c~) shifts 
the coordinates of the MLE towards the integer k provided the num- 
ber of observations greater  than /c is at least three. 

The proof uses the following series of lemmas. Proofs of the lem- 
mas are straightforward and are omitted. 

(1) 
LEMMA 3.1. 

For k>=2, 

Aj <= -- j[hj--h~_l]r [ S-hj (hj  + hj-') + h}_~ l ~ j < k .  

(2)  A ~  r and A~+~= (k+l)N~§162 
2 S+h~_l S 

(3) A~_ 

< 

3[h - [ 1 

l[h~--h,_l]r~C(x)Nj [ S-2h]  ] 
S S - ~ + h L ,  J for k+2<=j<=l. 

LEMMA 3.2. 

2 2 2 2hk+l>=hL-h~_, where />__k+2. 
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LEMMA 3 .3 .  

tN~+~+ ~ S-2h~ ] ~r~ , i f  r~>O 
S-h~+h~_~ 

THEOREM 3.1. With fi(x)=--r~r i = l , . . . ,  p, p>=3, and h 
as described in Lemma 2.1, ~1 <= O. 

PROOF. Recall that  
l l 

z / = ~  Njr  ~ A~. 
j=O j = t  

Case 1. r~=0. Then ~/--0_~0. 

Case 2. r~>0. 
l 

( i ) :E N,r  r~r 
j=o 

l k--I l 

(ii) 2 ~ A j = 2 : ~  Aj+2A~+2A~+I+2 ~ Aj . 
j = l  j=~ j=k+2 

By (1) of Lemma 3.1, 

~-~ ~-' ~rh h 1N F S-hj(hj+hj-~) l 
J 

_ r ~-~ - he E j[h~--h~_l] 
- -  S j = l  - -  j ~  l-i 

since h~<0 for j < k  and hr so h~ho>=h~h~_~ for 1_~j~/~-1 .  Now 
r~>0 implies that  S~3h~+~>_3B ~. By (8) of Lemma 2.1, we have S -  

k--I  

h]-h~ho>=O for Nj r  and hence ~ Aj<0 .  By (2) and (3) of Lemma 
i=1 

3.1, 

2kN~r~r 2 ~ A,<= 
,=~ S+hLI  

_ 2r~r [(k+l)N~+~h~+~+l[h~-h~_,] 
S 

2kN~r~r 2r 
S+hL~ S 

S j=k-1"2 

S+hL1 S 
t 2r~r N, 

S L j= 2 

t S - 2 h )  ] Z N j  
J=~+-~ S-h~+hL1 

S-2h~ ] 
IV, ~ h~• ~ 

~-- tT t--I 

7 
S ~ _ ~ J  
(since h~+~>=l[h~--h~_~]) 
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~ 2kN~rkr 2r 2r~r 
S+hL1 S S 

(by Lemma 3.3 and since l[ht-h~_,]>=B). Consequently, 

(3.2) d~_ 2kN~r~r 
h ~ S +  ~-i 

2kN,+~r,r r~r [2B-r <0  
S S 

since 0__<r h,_~<0, and h,+~>0. Q.E.D. 

Notice tha t  the  bound (3.2) for t he  unbiased estimate ~/ of the  

deterioration in risk of ](~) depends on k, N~ and Nk+,. Hence, an ap- 
propriate choice of k is likely to result in large savings in risk. One 
reasonable choice of k would be the  prior mean of the ~'s .  The de- 
pendency of the  bound for ~ on k, N~ and N~+~ fu r the r  implies tha t  

the  est imators ~(~) for various k e J+ are competi t ive;  one cannot domi- 
nate  the  other.  

Since our estimators depend on h, it  is interest ing to find more 
examples of functions h which have the  properties in Lemma 2.1. For 
k=O, one example is h(y)=ln(ay), if y>__l, and zero otherwise, where 

J 
a>_4. Another  example is h( j )=~ 1/g~ for 3"=1, 2 , - . - ,  zero otherwise, 

where  {g~} is a sequence of real numbers  satisfying (1) g~=l, (2) g~+l 
-g~>=l, for n=l ,  2 , . . . ,  (3) {nigh} is nonincreasing and lim (j/g~)=B>O. 

Proper ty  (8) of h given in Lemma 2.1 guarantees  that ,  in the  proof 
of Theorem 3.1, S-hj(hj+hi_~)>=O for j<k,  which is a sufficient con- 

k--1 

dition tha t  ~ A j_<_0. However, it is not a necessary condition: The- 

orem 3.1 still holds, for example, if h is as given in Lemma 2.1 but  
(i) conditions (3) and (8) are replaced by (3)' hj>hj_~ for j > k + l  and 
(8)' hj=-b<O for j=O,. . . ,  k-- l ,  or (ii) condition (8) is replaced by 
(8)" 3h~+l>hlho. 

The est imators ]c~ derived thus far have the  property tha t  if the  

i th  observation is equal to k, then ]~)=k. That  is, there is no shift- 
ing of the  observations having the value k. The next  theorem provides 
an est imator  of 2 which improves on the  MLE but  whose estimate of 
~ is not  necessarily equal to k if the  i t h  observation is equal to k. 
The theorem unifies and generalizes Theorems 3.1 and 5.1 of Peng [2]. 
I ts  proof is similar to that  of Theorem 3.1. 

THEOREM 3.2. Let h be as given in Lemma 2.1 but with (3) and 
(8) replaced by (3)' and (8)' in (i) above, and with (4) and (7) replaced 
by (4)' h~=-b and (7)' h~+~>__Max [1, B}. Define 
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I -r~r i f  x~>k, 
f ~(x) 

�9 r Min {brk/S, 1-r~h~+#S} , i f  x~<=k for  i = 1 , . . . ,  p .  

Suppose 0~r  {1, 2B} i f  x~<k, i = 1 , . . - ,  p, and let ~(~)'=X+f(X).  
Then ~t(x)<=O fo r  all x ~ J+~. 

Remarks. 

( 1 ) The special case when k=0,  r ~- 1, b = 1, and h is as given 
in Example 2.1 is Peng's [2] Theorem 5.1, which shrinks all non-zero 
observations towards zero while a possible non-zero estimate of ~ is 
given for x~----0. 

( 2 )  The case when k=0,  r b=O, and h is as given in Ex- 
ample 2.1 is Theorem 3.1 of Peng [2]. 

( 3 )  If b--0 in Theorem 3.2, ~ will be estimated as zero if x~=O. 
However, if b>0, the estimate for ~ will be possibly non-zero if x~=0. 
The choice of a relatively large value of b can be interpreted as re- 
flecting the belief that the L's are non-zero. 

THEOREM 4.1. 

as follows : 

4. Adaptive estimators 

The estimators ~(k)of ~ suggested in Section 3 pull the MLE to- 
wards a prechosen non-negative integer k, and the choice of k is guided 
by the prior knowledge of the ~'s.  A natural question which arises 

is: Is there an estimator ] of ~ which shifts the observations towards 
a point determined by the data itself? Theorem 4.1 below indicates 
that  the answer is affirmative. The proof is similar to that  of Theorem 
3.1 and is therefore omitted. 

P 

Let m=Min  {x~}, and define H~: J~-oR,  i = 1 , . . . ,  p, 
i = 1  

(4.1) ~(x)=1+ E I/(m+n), 
n=2 

if x,>=m+l and m>=O, and 0 otherwise. Let ~E~=(~ ..., ~) be such 

that ~.~--X.--~ -- ~ p - N ~ - 2 ) + r  = H f ( X  , i = 1 , . . . ,  p, where N~ 

=~{i:  X~=m},  p>=4, r is non-negative and non-decreasing in  each x~, 

and r Then for  all 2, ~cm~ dominates X under squared error loss. 

Remarks ,  

( 1 )  Note that  N~>=I and hence the estimators ~c~ dominate the 
MLE only when p is at least four instead of three. While Peng's 
estimator dominates the MLE when p>__3, his estimator involves an 
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implicit choice of k=0 ,  towards which the  observations are shrunk. If 
this kind of subjectivity is to be avoided and the  shrinkage determined 
only by the data (the minimum, in this case), one degree of freedom is 
lost and improvement  over the MLE results only when p~_4. 

( 2 )  I t  can be shown that  the  functions H~ satisfy similar proper- 
ties as those of h described in Lemma 2.1. Other choices of the H / s  
are possible. 

( 3 )  When all the observations are equal to the  same value, the  
est imator  yields the grand mean, an intuit ively appealing result. 

A fur ther  application of Stein's method [3] to ]c~] yields a more 
versatile est imator of ~ in that ,  unlike Peng 's  estimator,  it guards 
against  ex t reme observations and cases in which all the parameters  
are large or small. In addition, it can be shown tha t  there are esti- 
mators  which pull the observations toward the  j t h  smallest observation, 
x(j~ (j>=2) and still dominate the MLE under  squared error loss. An 
example of the  la t ter  result is s tated below. 

THEOREM 4.2. Let 

x~-z(j) 
1+ E [1/(n+x~j,)], 

n = 2  

H[J)(z)= O, 

- - b ,  

where b is a positive real number. Define 

i f  x ~ x c j ) + l ,  m>=O, 

i f  x, = xcj~, or m < 0 ,  

i f  m ~ O  and x,<xr 

( 1 )  N(~,--~{x~: x,=xcj)} and N(j)+~--~{x~: x,--x(j)+n},  n - - 1 , 2 , - . . .  

( 2 )  r~j,= p -  N ~ , - 2  ; S = E [ H ~ ' ( x ) I  ~. 
= + i = 1  

( 3 )  ft(x)=-r(t)H[~)(x)/S, i = 1 , . . . ,  p. 

Suppose p>=5. For each fixed ] = 2 , . . . ,  ( p -3 ) ,  let ]~J]=X+f(X).  

Then ~EJ] dominates X under squared error  loss and has improvement  
in risk which exceeds 

E~{r~j)/S+ 2X(j)N(j)+Ir(j~/S + 2X(~)Nwr(j)b/(S+b2)} �9 

The est imator  ]c~] can be fu r the r  modified by using Stein's method. 
The application is s traightforward and is therefore  not included here. 

5. Computer simulation 

In this section, we describe the  results of a computer  simulation 

used to quanti tat ively compare the  MLE with our estimator ]c~] in 

Theorem 4.1 (with r and with one of Peng 's  estimators, ](0,, 
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whose i th coordinate is X~--[(p--No-2)+h(X~)I h2(Xj), i=1, . . . ,1) ,  
. =  

with h as defined in Example 2.1. 
The p parameters ,~ were generated randomly within a certain 

range (c, d), and one observation of each of the p distributions with 
the parameters thus obtained was generated. Estimates of the param- 

eters were then calculated according to the estimators ~E~ and )J% 
Generation of the observations was repeated 2000 times and the risks 

for the estimators ,~c~ and ,~c,~, as well as the MLE were calculated. The 

percentage of savings in using an estimator ~ as compared to the MLE, 

[{(R(L X)--R(2, ,D)/R(2, X)} .1001%, was calculated, and the whole pro- 
cess was then repeated a number of times in order to obtain an aver- 

age percentage of savings of ~E~ and ~0~ over the MLE. The ranges 
of the parameters L were chosen to be small ((c, c+4), c=O, 4, 8, 12) 
to check the performance of the estimators when the parameters are 
relatively close to one another. 

In most of the eases, the improvement percentage is seen to be 
an increasing function of p, the number of independent Poisson distri- 
butions. Moreover, the improvement percentage generally decreases 
as the magnitude of the ~ 's  increases. When the Poisson parameters 
are in (0, 4), both estimators have similar percentage improvements in 
risk (4%, 6%, 8%, and 9% for p=4,  5, 8, and 10, respectively). The 

improvement percentage for ~0~ over the MLE decreases rapidly as the 
2~'s move away from zero. In contrast, the improvement percentages 

for ~E~l remain noticeable (5% for /)>__5) even when the ,~/s are in the 

interval (12, 16). This supports our conjecture that  the estimator ,~Eml 

is superior to ,~c0~ when p>4.  
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