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1. Introduction and summary 

In the  previous paper [8], we gave the  solution to the  functional 
equation 

where  G(x) is a function of bounded variation wi th  the  total variat ion 
less than or equal to 1. The solution was applied to some character-  
ization problems of the  stable and the  exponential distributions. In 
the  present  paper we shall consider the  extended equation 

. ( 2 ) H(x)=  f :  H(x +y)dG(y)+ S(x) 

where  S(x) is an " e r r o r  t e r m "  and is supposed to be small in some 
sense. In Section 2 we shall derive the  boundedness of H(x) assuming 
some additional conditions on H(x) and G(x). In Section 3 we give a 
necessary and sufficient condition tha t  a bounded function H(x) satisfies 
the  equation (2). Explicit formulae for H(x) will be given in Section 
4. As an application of these results we shall show in Section 5 the  
stability of some characterizations of the  exponential distribution as 
given by Ferguson [1], Rossberg [7], Ramachandran [6], and others  [3], 
[4], [5], and [8]. 

2. Boundedness of H(x) 

Throughout  this section we assume tha t  G(x)is a distribution func- 
tion on the  interval  [0, oo) wi th  

l<f:r for some 8>0  (3) 
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and tha t  H(x) is a positive, r ight  continuous function defined for X~Xo 
> -  co and such tha t  for some positive constant  

( 4 ) H(xq-y)<e~YH(x) , x>xo, y>__O. 

Under  these assumptions it was proved in the  previous paper [8] tha t  
the  following theorem holds. 

THEOREM A. I f  H(x) satisfies the inequality 

( 5 )  H(x)>= H(x +y)dG(y) , X~Xo , 
0 

then it is bounded. 

In this section we shall ex tend Theorem A and prove 

THEOREM 1. I f  H and G satisfy the assumptions stated above, then 
the inequality 

6 ) H(x)>= I: H(x +y)dG(y)-C,e- '~g(x),  X~Xo ( 

implies the boundedness of H(x), where C~ and ~ are positive constants. 

Theorem 1 is easily obtained from Theorem A if G(X) is concentra ted 
on the  interval  In, co), where  a > 0 .  In fact  by le t t ing x~>0 sufficiently 
large we can make  

A = Q(1 -- r . . . .  Qe-,~l+~)-1 > 0 .  

Pu t  

Ho(x) = H(x) + Ae-'XH(x) . 

Then for x>=max {x0, xl} 

~ H(x) { 1+ Qe- "~+ Ae -'(~+''(1 + Qe-'X)} 

_ H0(x) 

and the  desired result  follows f rom Theorem A. We now proceed to 
the  general  case. Let  G*~(x) be the  n-fold convolution of G(x) and let 
R~(x) be the  real function defined by 

( 8 ) g(x)= I[ g(x + y)dG*~(y) + R~(x)H(x) . 

Then R~(x) satisfies, by (6) 

( 9 ) RI(x)>= - Q e  -'~ , x>=x*=max {0, x0} �9 



(10) 

and the inequality 

(11) R ~ ( x ) > - C 1  E (1+C~)% -~  , 
k = 0  

hold. I f  the condition (9) is replaced by 

(12) IR~(x)l~C~e -'~ , 

then we have 

(13) 

PROOF. 

FUNCTIONAL EQUATION WITH AN ERROR TERM 

LEMMA 1. For any positive integer ~n and n, the relation 

f ~ R~(x+y)H(x+y)dG*~(y), x>=xo R~+~(x)H(x)= R~(x)H(x)+ 
J o  

x~x* 

n - - 1  

IR~(x)I<=C~ 71, ( l+Q)~e - "  , x>=x*. 
k = 0  

We shall prove Lemma 1 by mathematical  induction on ~n. 
Subst i tut ing x+y' for x in (8) and in tegra t ing  with respect  to dG(y') 
we obtain 

(14) f:  H(x + y)dG(y)= f:  H(x + y)dG*~+l(y) 

+ f: +y)dG(y) . 

But by (8) the  lef t-hand side and the first t e rm of the r ight  are equal to 
H(x)-Rl(x)H(x) and H(x)-R~+l(x)H(x), respectively, so tha t  (14) becomes 

(15) R~+L(xlH(x)=R,(xlH(x)+I: Rn(x+y)H(x+y)dG(y) . 

Thus (10) is t rue  for m = l  and arb i t ra ry  n. Suppose it holds t rue  for 
some m>=l and a rb i t ra ry  n, then  it also holds for m + l  and n. In 
fact  we have f rom (10) 

f:  R~+~(x +y)H(x +y)dG(y) 

= f: R~(x +y)H(x +y)dG(y)+ f: R,(x +y)H(x +y)dG*~+1(y) . 

Using (10) again we obtain the  desired resul t :  

R~+~+~(x)H(x)=R~+,(x)H(x)+ f: R~(x +y)H(x +y)dG*~+'(y) . 

The inequali ty (11) is clear if n = l .  If it is t rue  for some positive n, 
then  f rom (10) wi th  re=l, we have for x>=x* 
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R~+~(x)=R~(x)+ H(x) -~ I:  R~(x § § 

>=-C~e-'~-C~ E ( l+C,  Ye-'~-r-/(x) -~ t t (x+y)da(y)  
k = 0  

I )1 ~_-  + Q  E ( I + Q y ( 1 - R ~ ( x  e -'~ 
k = 0  

> - c l  ~, ( l + C ,  ye -'~ . 
k = 0  

The inequality (13) can be obtained similarly. Q.E.D. 

Now let E = m i n  {2, ~} and let $ be a positive number such that  2>__ 
e~'~>3/2. Then by the law of large numbers we can find a positive 
integer p for which d~G*P($)<I/2. Then there is a positive number A 
such tha t  

p--1 

(16) C2-C~ ~ (I + CI)~e-"A < e"~- I-e~G*P(~) <-_I . 
k = 0  

This means tha t  

(17) 

and that  

c--  e (~-''~G*~($) + ( 1 +  C,)e- ''~< 1 

p--1 

(18) A1-C1 E (1+C~)~- ~e''A �9 
k = O  

LEMMA 2. The condition (9) implies 

(19) R~(x)>=-Coe -= , x>=x**-max {0, x0, A}, n = l ,  2 , . - .  , 

where Co is a positive constant which may depend on C~, ~, ~ and G(x), 
but not on n. Also (12) implies 

(20) [R~(x)[~_Coe -= , x>=x**, n = l ,  2 , . . . .  

PROOF. 

(21) 

where 

We shall first prove by mathematical induction that  

R~p(x)>=-A~e -'~ x>=x**, m - - l ,  2 , . . .  , 

m--1 

A , = A I  ~, c*~_e"A(1--c) -~ . 
k=O 

For m = l ,  (21) follows from (11) and the definition (18) of AI. 
(21) holds for m>=l. Then from (10) 

R~,+,~(x)H(x) = Rp(x)H(x) + f ~ Rmp(x + y)H(x + y)dG* P(y) 

Suppose 
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we have 
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2o 

f: e-'~H(x+y)dG*P(y) 

~H(x)  f: e('-"~dG*2'(y)+ f ;  e-"YH(x +y)dG*'(y) 

<= H(x) {e c~-'')'G* P(~) + e-'"(1-- R,(x)) } ~_ cH(x) , 

Rc,~+,p(x) >= - (A~ + cA,,)e -'x = - A~+~e -= . 

Thus we have proved (21). Let n be a positive integer which is not a 
multiple of p. If n<p ,  then (11) and (18) yield 

(22) R,,(x)~ --A~e -= , x ~ x * *  . 

If n > p ,  then there exist positive integers k and I such tha t  

n = k p + l  , l < l < p .  

It  follows from (10) 

R,,(x +y)da* R~(x)= R~p+t(x)= R~(x) + 

> = - e - ' q A , +  &(1-R~(x ) ) }  > -  {&  + A~(l + &)}e  -'~ . 

Thus for all cases (19) holds with 

Co=e"A{l + l---~e (l  +e"~) } . 

The implication (12)~(20) is obtained similarly. Q.E.D. 

PROOF OF THEOREM 1. Let C3 be any positive number greater  than 
Co and let ~" and r~ be positive numbers such tha t  

> ~vt C3 =Co+ 6'3 and e-"~(l + C0) <e"/2 

We can find a positive integer n such that 

For x>=x**, put 

Then, 

er < ~"/2 . 

Ho(x)= H(x) + C3H(x)e -~= . 
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e-'~H(x+y)dG*'~(y) . 

O~ f :  H(x +y)dG*n(Y)=H(x){1-R~(x)} < H(x){l +C~ 

: e-~ + y)dG*'~(y) 

< f: e-~'YH(x + y)dG*"(y)+ f:  e-"YH(x +y)dG*n(Y) 

<= e (a-~ x) + e- ''~ { 1 -- R,~( x) } H( x) < ~"H(x) , 

it follows tha t  

(23) f :  H~ +y)dG*"(Y)< H(x)+C~162 H~ ' 

and the  desired result  follows f rom Theorem A. Q.E.D. 

3. Solution of the equation with an error term 

In this section we assume tha t  H(x) is a real, bounded and r igh t  
continuous function defined for x>'Xo. For k = l  and 2, let G~(x) be 
monotone non-decreasing functions with the  set tg~ of points of increase, 
i.e., u e ~gk means Gk(u+d)>Gk(u-d) for any d > 0 .  We assume tha t  
G(x)-Gl(x)+G2(x) is a distribution function on [0, ~ )  not degenera te  
at  x = 0 .  Let  So(z) be a real function such t h a t  

(24) [So(x)[~_ Ce -'~ , 

where  ~ and C are  positive constants. 

(25) c= I: e-~dG(x ) 

We shall prove 

THEOREM 2. 

(26) 

where 1>= q > O, then for all x >= xo and u > 0 

(27) I H(x + u) -- H(x)[_~ Coe-'~ , 

and 

X~_~Xo , 

Put 

( O < c < D .  

I f  H(x) satisfies the functional equation 

H(x)=q f :  H(x+yld(G,(y)-G2(y)l+So(x) 



(28) 

where 
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I H ( x + u ) + H ( x ) i < C o e  -'x , i f  u ~ ~ 

Co=2C](1-cq) . 

Let r be an arbitrary positive number  and let f ( x )  be the  continu- 
ously differentiable density function of a distribution concentrated on 
the  closed interval [0, r]. Pu t  

- f ~ H(x) - -  H(x  + y ) f ( y ) d y  , X~Xo . 
0 

Let u ~ $21 and put  

K ( x ) -  fI(x + u)-Yt (x)  

and 

S(x)--  f l  [So(x + u + y ) - S o ( x - l - y ) }  f ( y ) d y  . 

(29) 

and 

(30) 

Also we have 

(31) 

I ~ ( x ) -  Yt(x')l<= Cl lx -x ' l  , 

IK(x)l~_Q, lH(x)l<C~, x>x0. 

IS(x)l~2Ce -~ , X~Xo . 

Moreover K(x)  satisfies the  equation 

f: K(x  + y )d (G , ( y ) -  G2(y)) + S(x) . (32) K(x)  q 

In particular we have 

(33) IK(x)l<q f:  JK(x + y )  IdG(y)+ 2Ce -'~ . 

It  then follows by mathematical  induction tha t  the inequalities 

(34) IK(x)l--<qn Io IK(x + y )  ldG*"(y)+ 2C(l + c q +  . . . + (cq)~-l)e -= , 

n = l ,  2 , . . . ,  hold. 

LEMMA 3. 

X, Xt~_XO 

Then there  exists a positive constant C~ which m a y  depend on r and 
f ( . )  and such tha t  
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(35) lim G*"(~r~') = 0. 

PROOF. Let a be a positive number such that G(a)>O. Let X,, 
X2,... be independent and identically distributed random variables with 
the common distribution G and let X~' be defined by 

X~ if X,~_a 
Z / - - ,  

a if X,~>a.  

Then X[,  X L . . .  are also independent and identically distributed and 
they have a positive mean and a finite variance. As O<=X~<=X,~, n =  
1, 2 , . . .  with probability one, we have by the law of large numbers 

0 =<G*~(~/~') = P r  {X~+X2+... +X~<= ~/W} 

=<Pr {X'+X'+. �9 �9 +X'__< J~-}-~O. Q.E.D. 

LEMMA 4. I f  a=lim]K(x)[ then 

(36) [K(x)[~_a+Coe -'~ , x>=Xo . 

PROOF. For any ~1>0, we can find an xl>Xo such that  IK(x)[~ 
a+~1, for all x>  x,. Now let x >  x0 and take n sufficiently large so that  
x +  ~/W~_x~. Then 

fo 
~-- fo [K(x+y)]dG*"(y)+ I~lK(x+y)ldG*"(y)--}-Coe-'~ 

QG* ~(~/W) + (a + r (1 - G* ~(~/W)) + (Joe-"~. 

Letting n-~oo 

[K(x)[~a+~1+Coe -~ . 

As z, is arbitrary Lemma 4 follows. Q.E.D. 

LEMMA 5. a = 0 .  

PROOF. We assume without loss of generality that  

a = lim K(x) >= - lim K(x) . 

If a>0 ,  then we could find positive numbers ~1 and 8, and a positive 
integer L such that  

a > 3 ~ > 0 ,  ~>C~>O, u>~>O and L(a-3%)>=3C,. 

Let A be the closed interval [u -~ ,  u+~] and A its complement. Put  
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C 7 = q ) dG~(x) 

Then for x>=xo, 

( >  0, as u E ~2~ and q > 0).  

K(x)=q 1o g(x  +y)d(GI(y)-G2(y)) + S(x) 

~ q f.~ K(x +y)dG,(yl+q fz IK(x +y)[dG~(y) 

+q f:  ]K(x+y)[des(y)+S(x) 

~ 7  sup K(x +y )+(1 -7 ) (a+  Coe-=)+ 2Ce -~: 
y E A  

o r  

(37) K(x)~7K(x-Pu,)+a(1-  7)+Be-~ 

where  u~ E A, and B=(1-7)Co+2C. In the  same way  we obtain 

(38) K(x + ul) ~_ 7K(x + u~-P us) + a(1 - 7) + Be-'(x+~'P 

where  us E A. Subst i tut ing (38) into (37) we ge t  

K(x) ~_ 7~K(x + u~ + us) + a(1 - 7 ~) + B(1 + 7)e-'~. 

We may  repeat  this process to obtain 

(39) K(x)~7~K(x+u~+ . . .  +u~)+a(1--TS)+B(l+7+ . . .  +Ts-~)e -= 

for x>=xo and k = l ,  2 , . . . ,  where  u 's  lie in the  closed interval  A = [ u - ~ ,  
u+$] .  N o w  take  x* (>x0) large enough so tha t  

L 

(40) Be .... E (v-~-t-~-2+ "'" +7-s)~C~ �9 
k = l  

By the  definition of a we can find an x~ (~x*)  which satisfies 

(41) a--~TL ~ K(x~) . 

Inequalities (39) and (41) yield 

(42) a - - ~ L - ~ K ( x ~ + u ~ + . . .  +us)-t-Be-'~(7-1+... +7 -s) . 

Adding both sides of (42) for k = l ,  2 , . . . ,  L, we arrive at a contradict ion:  

L L 

L(a-- ~1) ~-- ~, (a-- ~7 L-s) ~_ E K(xl + ul + " "  + us) + C1 
k = l  k = l  

L 

= ~ ,  { / t ( x l + u ~ + . . .  +u~_~+u)-H(x~+u~+.. .  +us)} 
k = 2  

+ fI(x,+ u~+ . . . + u~ + u ) -  fI(x~+u~)+Q 

( L -  1)~C~ + 3C1 _-__ L ( a -  2~) .  

We conclude tha t  a = 0 .  Q.E.D. 



10 RYOICHI SHIMIZU 

PROOF OF THEOREM 2. Lemmas 4 and 5 yield 

]K(x)[=lf :  [H(x+u+y)--H(x+y)}f(y)dy <=Coe -=, x>=x,. (43) 

As r is arbi t rary and as H(x) is r ight  continuous (27) follows from 
(43). In order to derive (28) define the bounded function K(x) by K(x) 

-H(x+u)+H(x) .  We can use the  similar a rgument  as above. Q.E.D. 

. E x p l i c i t  formulae for H(x) 

Results of the  preceding section make it possible to obtain the  ex- 
plicit formulae for H(x). 

LEMMA 6. Let u ~ /2~ U [22, 
function ~1~(x) such that 

and u > 0 ,  then there exists a periodic 

for all real x and that 

(45) I H ( x ) -  ~(x) [ ~_ C~e - ~  , x >= Xo , 

where C~=Co(1-e-'~) -1. 

PROOF. Suppose u e/2~. Then it follows from Theorem 2 tha t  

t - -1  

(46) ]H(x+lu)-H(x)]~_Co ~ e-'~e -'~ x~xo, l=1 ,  2 , . . . .  
k = 0  

In particular lim H(x+lu) exists for all x:>Xo and the  inequality (45) is 

satisfied by the  periodic function defined by 

(47) ~(x) = lira H(x + lu). 
L~co 

When u e/22 the  inequality (46) holds t rue  for l=2 ,  4 , . . .  only, which 
easily follows from (28) of Theorem 2. The conditions (44) and (45) are 
satisfied in this case by 

(48) J~(x) = lim H(x ~- 2lu). Q.E.D. 

In what  follows we distinguish three cases. 
Case 1. /2~t)/22 is not contained in K(p)={lp[l=O, 1, . - .}  for any p>0 .  

In other cases there exists a unique p > 0  such tha t  /2~U/2~ is con- 
tained in K(p) but  not in K(p') for any p'>p. 
Case 2. Ei ther  /22 is empty,  or [2, is not disjoint from L(p)=[(2l+l)pl 
l=0 ,  1 , . . . } ,  or /22 is not disjoint from K(2p). 

(44) d~,(xq-u)=. 
~ ( x )  i f  u e/21 

- ~ ( x )  i f  u e/22 
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Case 3. Ei ther  /2~ is empty,  or /2~ is contained in K(2p) and /2~ is in 
L(p). 

Now we can s ta te  our main theorem. 

THEOREM 3. Suppose the assumptions stated at the beginning of  the 
preceding section are satisfied. I f  H(x) is a solution of  (26), then it  can 
be put in  the f o rm  

(49) H(x) = A(x) § A(x)e -'~ , x >= Xo , 

where A(x) is a bounded funct ion and A(x) is a periodic funct ion speci- 
fled as follows : 
Case 1. A(x) -  A is a constant. A= 0 if/2~--/=r 
Case 2. A(x) is a periodic function with period p. A(x)--O i f / 2 3 r 1 6 2  
Case 3. A(x) is a periodic funct ion with period 2p and A(x + p ) = -  A(x), 
for  all x. 
For all cases A(x)--O i f  q < l ,  and A(x) is bounded by 

(50) IA(x) I< C 
1--cq 

PROOF. We can reduce the problem to the  case G~(O)=G2(O)=O. 
In part icular  if G~(0)>0 we can rewri te  the  equation (26) to obtain a 
similar equation with G2(0)=0 and q < l .  We may assume therefore  
0 ~/2~Uf22 in the  cases 2 and 3. Apar t  f rom the  inequali ty (50) the  
assertions for these cases are direct consequences of Lemma 6. Con- 
sider the  case 1. There exist  as least two positive numbers  u and v, 
say, in /2~ U/22 such tha t  the  ratio u/v is an irrational number .  Then 
we have f rom Theorem 2 

where  A's are periodic functions. 

and [H(x)-A~(x)]<=C~e -~ , 

I t  follows tha t  

(51) ~(x)  = ~o(x) + C(x)e  -'~ 

where  C(x) is a bounded function. Let  m be a positive in teger  and 
subs t i tu te  x + 2 m u  in (51). Not ing tha t  A~(x) has period 2u we obtain 

A~(x) = A~(x + 2mu) + C(x + 2mu)e-2"~e -'~ . (52) 

I t  follows tha t  

d~(x) = lim d~(x + 2mu) , 

which implies tha t  A~(x) has period 2v. But  as ulv is irrational this is 
possible only if ~/~(x) is a constant.  If  w e/23, then we have ~/=con- 
stant=Aw(x)=A~(x+w)=--A,(x)=--~l ,  and we conclude tha t  ~ = 0 .  Sup- 
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pose q < l .  We have from (24) and (25) 

[H(x)l<=q f :  ]H(x--by)ldG(y)+Ce-':', 

or more generally 

(53) ]H(x)l<=q~ I: lH(x +y)IdV*~(y)+C(l +cq+ . . . +(cq)~-l)e -"~ , 

for n = l ,  2 , . . . .  As H is bounded the first term of the right-hand side 
of (53) goes to 0 as n tends to infinity while the second term is bounded 
by (C[(1-cq))e -=. The inequality (50) is easily obtained by substituting 
the expression (49) in (26). Q.E.D. 

COROLLARY. Let H(x) be a non-negative and right continuous func- 
tion satisfying the condition (4) and let G(x) be a distribution function 
satisfying (3). Let c be given by (25). I f  H(x) is a solution to the 
functional equation 

f ~H( )dG( )+R( )H( (54) H(x)= x + y  y x x) , x ~ x 0 = 0 ,  
0 

where R(x) is a real function such that IR(x)]<-_Roe-'~((1--c)/4)e -=, then 
H(x) can be put in the form 

(55) H(x)=A+A(x)e -'~ , x~O , 

where A is a non-negative constant and A(x) is bounded by 

(56) ]A(x) l_~ 2 R0infIH(x) l ,  x>=O. 
1 - - c  

PROOF. If H(xl)=0 for some xl~0 then H(x)=0 for all x>_x~ by 
the condition (4) so that  H(x) is bounded.  If H(x) is positive then the 
boundedness follows from Theorem 1. We can then apply Theorem 3 
to conclude the H(x) can be put in the form (55). Substituting this 
expression in (55) we obtain 

I:  A(x+y)e-'~dG(y)+R(x)(~l+A(x)e-'~) ' x>=O. A(x)e-==e -= 

It follows that  

[A(x)[~csuplA(x)l+Ro~l+ 1 - c  suplA(x)[ , x>__0 

o r  

(57) sup ]A(x) l_< 4 R0~ �9 
x~o 3 ( 1 - c )  
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On the other hand we have 

iH(x)l>4_supln(x)l>=(1 4 Ro)~/>.2 t. 
~o 3(1--c) ---- 3 

The inequality (56) follows from this and (57). 

13 

Q.E.D. 

5. Stability of some characterizations of the exponential distribution 

Among the  continuous distributions on the  half interval (0, oo), 
the  exponential distribution F ( x ) = l - e  -~ (x>=O) has some interest ing 
characteristic properties. Following characterization theorems are 
known. In Theorems B and C, X~,~ denotes the  kth  smallest observa- 
tion in a sample X1, X~,- . . ,  X~ of size n from a distribution F such 
tha t  F (0 )=0 .  

THEOREM B (Ferguson [1]). Let F be a continuous distribution with 
a finite mean. I f  for  some k ( l~_k<n),  the conditional expectation of  
the variable X~+I,~--X~,~ given X~,~=x remains constant a.s., then the 
distribution F is exponential. 

THEOREM C (Rossberg [7]). I f  for  some k (l__<k<n) the variable 
X~+I.~-Xk.~ has the same distribution as the smallest of  Y1, Y ~ , " ' ,  Y~-~, 
a sample of  size n - k  f rom F, then F is exponential. 

THEOREM D (Ramachandran [6]-Huang [3]-Shimizu [8]. For related 
theorems see also [4], [5]). Let X and Y be independent non-negative 
random variables such that 

(58) Pr  [Y=0} < C - P r  { X > Y }  < 1 ,  

and that the distribution Go of Y is non-lattice. 
relation 

I f  for  all x>=O the 

(59) Pr {X> Y+ x f X >  Y} = Pr  {X> x} 

holds then the distribution F of  X is exponential. 

In this section we are concerned with generalizing these theorems 
to the  cases where the assumptions are not fully satisfied to obtain so- 
called stability theorems. We measure the distance between two dis- 
tributions F1 and F~ on the  half interval (0, co) by 

0(FI, F~: r)---sup IFl(x)-  F~(x)le ~ , 
x~_0 

where r is a positive constant. 
In what  follows we write E,(x) to mean the exponential distribu- 
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tion function : 
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/ 0 if x<O 
El(x) 

1--e -~ if x > 0  

and we assume tha t  the  real function R(x) is such tha t  

(60) lR(x)I~Roe -= , for x>=0, 

where  R0 and r are  positive constants. We shall prove the  following 
stabil i ty theorems corresponding to Theorems B, C and D. 

THEOREM 4. Let F be continuous and strictly monotone in  the in- 
terval (0, b), where 

a - i n f { x I F ( x ) > O } = O  and b = s u p { x I F ( x ) < l }  . 

I f  f or  some l ~ k < n  there exists a positive constant ~ such that 

(61) E (Xk+,,~--Xk,~[X~,~=x)=~-l(1-R(x)) , a.s. , 

where R(x) satisfies (60) with 

(62) Ro~_ n - k  
4 ( l + ( n - k ) ~ )  

then 

(63) 

THEOREM 5. 

Suppose for  some 1 < k < n the relation 

(64) 

holds. 

and put 

~ 0 ~ < 1  - -  9 9 

O(F, E,, : Z) ~_ ~ , Z = 2l(n--  k) . 

Let F be a non-lattice distribution such that F(0 )=0 .  

Pr  {X~+,,,- X~,,> x} = (l--F(x))~-~(1--R(x)), 

Let 2 be the unique solution of 

O(F, E,: 2)<~ 

Then for  any  0 ~_ ~ < 1, 

(65) 

provided that 

(66) IRo1~ ( n - k ) ( 1 - c ) ~  
- 4 ( l + ( n - k ) ~ )  

x>O 
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THEOREM 6. Suppose the assumptions of Theorem D are satisfied. 
I f  there exists a real function R(x) satisfying the condition (60) such 
that 

(67) P r { X > Y + x [ X > Y } = P r { X > x } ( 1 - R ( x ) ) ,  x>=O, 

then we have 

(68) O(F, E~: ~)~a , 0 ~ a < l  

whenever Ro~_((1--c)/4)3, where ~ and c are given by 

f :  e-~dG~ { X >  Y} and c=C-' f :  e-C~+"~dG~ " 

PROOF OF THEOREM 4. The continuous version of the  conditional 
expecta t ion E(X~+I,,[X~,~=x) is given by 

_ i . . y d v ( l _ F ( y  ) )~-k 
J~ \ 1 -  F(x) 

and we have f rom the  condition (61) 

1-- F(x) / 

In view of the  cont inui ty  and monotonici ty  of F we have for O~x<b 

f :  (1 - -F(x+y))~-~dy= (1 -F (x ) ) ' - k (1 - -R(x ) ) .  (69) 

But  if x~b  t hen  the  both  sides of (69) are equal to 0 and we conclude 
t h a t  i t  holds in fact  for all x ~ 0 .  On in t roducing the  non-negat ive  
funct ion  H(x)=(1-F(x))~-~d ~ and the  dis t r ibut ion dG(x)=~e-~dx, we 
obtain f rom (69) the  funct ional  equation (54). The assumptions  of the  
corollary to Theorem 3 are satisfied wi th  c=~/(~+~). Thus  we can wr i te  
F(x)=l-(`1+A(x)e-'X)t/(~-~)e -~'~, where  ~'=~/(n-k),  ,1 is a cons tant  and 
A(x) satisfies the  inequali ty (56). But  as infH(x)~_H(O)=l=,1+A(O), 
we have 

F(x)=E~,(x)+ B(x)e -~'~ , 

where  

and 

B(x) = 1 - ( ̀1+ A(x)e-=)i/(~-~) 

I B(x) I ~l  1 - (1 + A(x)e . . . .  A(0))'/c~-*' I 

< 2 sup A(x) ~ 4R0 ~ 3 .  
-- ( n - k ) ( 1 - 2  sup A(x)) - (n -k ) (1- -c -4R0)  - 

Q.E.D. 
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PROOF OF THEOREM 5. W e  have 

Pr {X~+l,.--Xk,.>x}= I: Pr [X~+,,.> x +YlX~,.=y}d Pr 

=I: (1--F(x+y) )'-~(~ )(l_F(y))._~dF~(y) 
1 - F ( y )  

Pu t  H(x)=(1--F(x))~-~e~-k~ and let G(x) be the distribution defined by 

dG(x)=(~)e-~-~'~dF~(x). Then the equation (64) becomes (54) and all 

the  conditions of the corollary to Theorem 3 are satisfied. The rest  of 
the  proof is the  same as the  preceding theorem. Q.E.D. 

PROOF OF THEOREM 6. The condition (66) of the  theorem is equiv- 
alent to 

I[ , 

Writ ing H(x)=(1--F(x))e ~ and gG(x)=C-~e-~dGo(x) this becomes (54). 
The rest  of the  proof is the  same as the proofs of the  preceding two 
theorems. We omit the detail. Q.E.D. 
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