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Summary

Wilks’ L,,,. is the likelihood ratio criterion for testing the hypoth-
esis that the mean values are equal, the variances are equal and the
covariances are equal, in a p-variate normal population. In this article
the exact null distribution as well as the exact percentage points are
given for the first time. The distribution is obtained for the most
general cases and the inverse tables, namely, the values of u for given
values of F(u) are computed for the values of F(u)=0.01, 0.02, 0.05
and for the various values of n and p where F(u) is the exact distri-
bution function of the test statistic, n=N—1 and N is the sample size.
The exact tables are given for p=2,3,4,5,6,7,8,9.

1. Introduction

Consider a p-variate normal population N (g, 2) where X=(o,;) is
positive definite. Consider the hypothesis p=p=---=p,=p, p'=(u,
ceey o)y 05=0, 1=1,---, p and o;;=0%, 1%£j=1,. .., p, where p, s, * are
some unknown scalars and g/ denotes the transpose of the mean vector
y. Wilks [5] derived the likelihood ratio test statistic 2 for this hypoth-
esis which is,

(1.1)  U=2~"=8| / {[s«l—(p—l)sl] [S—sl-f—(N/(p_l)) i (o‘cj—a-c)z}"“}
where

N N
Sz(sij) ) Sijzkgl (xik——ﬁi)(xjk-ij) , Eizkgl xik/N ’

r=

s

_ r P
z.p , s=i§su/p, sl=i§=18u/[p(p—1)],
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N being the sample size and (x;;) denotes the observation matrix. This
test statistic 1 is known as Wilks’ L,,. criterion. Wilks [5] also ob-
tained the h-th null moment of U, that is, the A-th moment of U when
the null hypothesis is assumed to be true. Mathai [2] has obtained the
exact non-null moments, and thereby the exact null moments by using
an alternate simpler approach. The non-null moments are represented
in terms of a hypergeometric function of several variables in the cate-
gory of Lauricella’s functions.

In this article we discuss the exact null distribution in the most
general case and then compute the exact percentage points by using
this distribution. The A-th null moment is the following.

(1.2) E(U")=]jji {I(n—1)2+h—3/2) ((n+1)/2+5/(p—1))/
((n—D)f2— 32 (n+1)/2+h+5/(p—1)]} .

2. The exact null distribution

The exact null distribution, in the general case, is not known to
have been worked out so far. It can be worked out by inverting the
moment expression in (1.2) with the help of inverse Mellin transform
and then using the techniques discussed in Mathai and Saxena [3]. In
this article we will outline the main steps of the derivations and give
the final results, deleting all the details of the derivations. The com-
putations are carried out by using the general expressions given in this
article. Denoting the gammas containing h by @(k) and the remaining
part by C the moments given in (1.2) becomes,

(2.1) E (U*)=Co(h)

and the density of U, denoted by f(u), can be written as

(2.2) Flw)=uw"'2xi)™ \L O(hyudh

where 1=(—1)"* and L is a suitable contour. It can be seen from
Mathai and Saxena [3] that f(u) can be represented as a series with
the help of calculus of residues. Since the expressions are different,
the cases when p is odd and when p is even are considered separately.
Since the technique is the same as the one used in Mathai and Saxena
[3] only the final results are given here.

Case I. p-odd

2.3) f(u):u"/z-w—wz-*[ R+ Rg], 0<usl
i=1

]

is

J
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where
(4 =1, (P12
05 a"—{ (p=3)2, Jz(E+1)2;
7, J=1,---,(p—3)/2
b;=4 (p—=1)/2, J=(p—1)/2, (p+1)/2
(»=3)2, jz=(p+3)2
and

2

(p—3)/!
2.6) B,= { il

"rwroyt T ree-i-1)

1

{ (—3+k* (=7 +1/2+(—-1)/2)(—i+(p—1)/2)

=1

>

(—-124G-1P)|[n for jS-5)2,

={rie>s " ree—i-12)/[(-i+12+@-1p)
(=i +B=DR)(—i—12+(p=D)2)
J+1-(p—-1)/2 (p—1)/2-2 .
1T (_k)(p—l)/?—'l I:EI; (—_J +k)k:|}71
for j2(p—1)/2-1
where
n=TAR+pRTA+pR) T 1T Q2+p2+k(p—1)—m)

ke (p—1)/2

[(2r)*=>H(p—1)~ @022 ((p—1)(1/2+p[2))] -

The following conditions are used in writing the above expressions as
well as the expressions to follow. If p—2 is less than unity then =1

b
and ] ( )=1 if b<a, that is, an empty product is interpreted as unity
k=a

and correspondingly an empty sum is interpreted as zero. The A,’s
appearing in (2.4) are the following.

(®»-3)/2—-] . (p=3)/2 .
@7 AP=4= 3 TE+GHDEO+ 3 TE-j-1/2)

+:§ (k/[(—=k+3))+1/(7—(p—1)/2—1]2)
+1/(G—(p-1)/2)+1/(7+12—(p—1)/2)
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PRt TA e+ S S /a2

= m
k#(p—1)/2

+k/(p—1)—m))+(p—1) log, (p—1)—(p—1)
' ((p——l)(1/2+p/2))} for j=(p—-1)/2—-2

=(p=D2—DFM+ 3] Blh—j~172)

J+1-(p-1)/2

2 (-n=Dm+ S kG-
+ /(G- 12— =12+ 1/~ (p—1)2) + /(G +1/2
—e-0R+[Pa+eR+ T S e

E#(p-1)/2

+k/(p—1)—m))+(p—1) log. (p—1)
—?F((:D—1)(1/2+p/2))+9’”(1/2+10/2)] ,
for j=(p—1)/2—1.
The quantity in [ ] is to be taken as zero if p—2<1.

(2.8) (AP, tz=1)=(—1)y*¢! (ﬁj LE+1, B)+(F+ 1)t +1, 1)

+75 €1, k=i =12+ 5T (kI +Ry
+1/(1/2— 5+ (= D/2F -+ (= G+ (= L))
+U(=i+(p-D/2-1/27"+ ]
for j=(p—1)/2—2
= (=1 {(r-D2= DU+, DS Ce+1,

J+1-(p-1)/2

k=i=12+ % (p—DR2-D/(—k)*

(p-1)/2

SV (k)= R+ 1 (— G412

+(p—1)f2) 14 1/(— f+(p—1)/2)
+1(=3+@=DR-1/2"+4)]
for j=z(p—-1)/2—1
where
Bi=C(t+1, 1/24+p/2)+L(t+1, 1+p/2)
- 5 S WaRtpREp-1)—my

=1 m
k=(p~-1)/2
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—(p—1)"""(p—1)(1/2+p/2))

with 8, being zero whenever p—2<1 and ¥(2) and {(r,2) are the psi
function and the generalized Riemann zeta function respectively which
are the successive logarithmic derivatives of the gamma function where

29 FE=—r+3E-DAG+n0m+D), 220, =1, =2
—0.5772156649015329 (Euler’s constant)

210) (s, 0)=3 (v+m)*,  R(s)>L, v#0, =1, —2,--+ .

It should be remarked that one can obtain A; and A’ from B; by us-
ing the following procedure. Introduce a dummy variable y in every
factor of B;. Take the logarithm to the base e and then take the first
derivative with respect to ¥ and evaluate it at y=0 to obtain 4,. Take
successive dex\"ivatives with respect to y and evaluate at y=0 to obtain
AP, tz1. Also Rj is available from E; by replacing w/~* by v~ a;
by b;, A; by A; and A’ by A}. We can obtain A) and A/ from
B by using the procedure discussed above. Hence we give only Bj
here.

(p—-3)/2~F (=32 . .
@iy B={"1" reror T ree—i+1y)||a+i+e-12)

(=G PD(=3+@=1/2) TT (—5+Br|]a
for j=(p—1)/2—-2
= {[F(l)]‘f’-“/z-l <n” Ik—j+1/2) / [(1— i+ (p—1)2)

f+1—-(p—1)/2

(=i pR)(—i =1 X (—kyeo

(-2~ )
T ar]fa for z-1)2-1
where

A=TA+pTGR+p2) 11 1T A+p2+kip—D—m)

kE(p—1)/2

[(271.)<p—2>/2(p_ 1)—(p—l)(1+p/2)+1/2]“’((p_ 1) (1 + plz))]

and 9, is to be interpreted as unity when p—2<1.

Case II. p-even

The expression for the density f(u) remains the same as in (2.3)
with R, defined as in (2.4) and Rj obtained in a similar way as in the
case of p-odd and
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{ j) j=1y""p/2—2
a_,= .
p/2-1 y .7=p/2—17 p/27"’ ’
(2.12) . . .
; {.7, j=1,---,p/2
T lpl-1,  j=p241,p2+2,---.

Here we will give the expressions for B; and Bj since A;, AP, A}, A/®
are all available from B, and B} by using the techniques discussed in
the case p-odd. After some simplifications it can be seen that B, and
Bj in the case p-even are given by the following expressions.

 =jep/2-2 p/2-1 i
B={tray "I re ) r—i-iz+h)
[(—i=12+p2) T (—3+kP]}m,  tor jzpi2—2

= {r@y= "I r(—i-12+k)|(~i-12+p2)

i-p/a+1 p/2=2 ; 3
7 ("I (=i +Rp |l for jzpj2-1

(2.13) e
B={r@y @I I—i+1z+k)]
[(—i+22) T (—i+ky T T+ p2+ki0—1)n.,
for j<p/2-2
={r@p"T r-i+k+12)][(=i+w/2)
. j.’ﬁﬂ (—k)y*? p)jil'—j (~j+k)"]}7;2 , for j=p/2—1,
where
n=1(1/2+7p/2) jjjj i[l (1/2+p/2+E/(p—1) —m)/[(2x)P~"
- (p—1)-F=DREDHAL (p—1)(1/2+p/2))]
and

n=1"(1+p/2) j:[j 711:[1 (1+p/2+k/(p—1)—m)/[(2r)>~2"
. (p__1)—(p—1)(1+p/2)+1/2[’((p_1)(1+p/2))] )

As before, 7, and », are to be interpreted as unities when p—2<1.
Both in the p-odd and p-even cases whenever a denominator factor in
B, or Bj becomes zero it is to be taken as unity. Such factors get
cancelled in the evaluations but in the simplified notations given above
such factors appear to be present.
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3. Computations

The computations of the exact percentage points are carried out by
using F(u):Su f()dt where f(t) is given in (2.3). In (2.3) the only
o

factors containing % are of the form «“(—logw)”. Hence F(u) is
available by term by term integration.

The computation is carried out by using the series representation
available from (2.3). First F(u) is computed for various values of u.
It is checked for monotonicity and for the conditions F(u)—0 as #—0
and F(u)—1 as u—1. Also particular cases are numerically checked.
Then u is computed for various values of p, n and F'(u). These are

given in the following tables. A seven place accuracy is kept through-

Table 1. (Values of # for F(u)=0.01)

P
n
2 3 4 5

2 0.0001000

3 0.0100000 0.01118572

4 0.0464159 0.001763885 0.0°2202921

5 0.1000000 0.01115978 0.0% 4415756 0.0%5358574
6 0.1584893 0.02995321 0.003385223 0.0°1266084
7 0.2154435 0.05584883 0.01055743 0.001120148
8 0.2682696 0.08598411 0.02215824 0.003933051
9 0.3162278 0.1181197 0.03751544 0.009099945
10 0.3593814 0.1507436 0.05570045 0.01670364

11 0.3981072 0.1829078 0.07582779 0.02654009

12 0.4328761 0.2140516 0.09715967 0.03827068

13 0.4641589 0.2438674 0.1191214 0.05152025

14 0.4923883 0.2722082 0.1412833 0.06592995

15 0.5179475 0.2990271 0.1633328 0.08118129

n

6 7 8 9

6 0.081452619

7 0.043895182 0.074202690

8 0.033871240 0.041250161 0.071269454

9 0.001502049 0.0°1371644 0.0%4125409 0.083953076
10 0.003781937 0.025807160 0.044935747 0.0°1388016
11 0.007458511 0.001576760 0.02 2259046 0.041794217
12 0.01260072 0.003319102 0.0%6569022 0.048813789
13 0.01915808 0.005934021 0.001468426 0.0%2720742
14 0.02700670 0.009479613 0.002767693 0.0%6452932
15 0.03598557 0.01395776 0.004632544 0.001278165
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Table 2. (Values of # for F(ux)=0.02)
P
n
2 3 4 5
2 0.00040000
3 0.02000000 0.044504573
4 0.07368063 0.003616813 0.0°8903738
5 0.1414214 0.01829720 0.0%9195076 0.052171395
6 0.2091279 0.04382327 0.005669217 0.0° 2666515
7 0.2714418 0.07619017 0.01580695 0.001906283
8 0.3270243 0.1118416 0.03094026 0.005995122
9 0.3760603 0.1484000 0.04991765 0.01294247
10 0.4192288 0.1844399 0.07152412 0.02263478
i1 0.4573051 0.2191682 0.09473376 0.03469096
12 0.4910168 0.2521834 0.1187587 0.04864097
13 0.5210007 0.2833185 0.1430242 0.06402267
14 0.5477974 0.3125432 0.1671258 0.08042526
15 0.5718604 0.3399049 0.1907873 0.09750324
P
i T
6 7 8 9

6 0.0° 5898295
7 0.0* 8279095 0.051709419
8 0.0%6675150 0.042677844 | 0.075171193
9 0.002323793 0.0%2391721 0.0° 8896586 0.07 1612478
10 0.005462578 0.0°9099562 0.048691138 0.0°3011398
11 0.01026455 0.002308175 0.0° 3579858 0.0+3187090
12 0.01672347 0.004630121 0.039731165 0.0°1410842
13 0.02471361 0.007982048 0.002073363 0.0°4087261
14 0.03404687 0.01239079 0.003768095 0.0°9211545
15 0,04451207 0.01782389 0.006127669 0.001759358

out. For higher values of p it is seen that the accuracy is being lost.

Hence the tables are given only for values of p from 2 to 9.

experimenter desires to get the tables for higher values of p and =»
then a Box’s type approximation can be used for the computations.
This is available in any standard text book on multivariate analysis,
see for example Anderson [1]. In order to avoid overflow and under-
flow in the computer the psi, zeta and gamma functions appearing in
B;, B}, A, etc. are all simplified by using the properties of these func-
tions and then they are programmed for computations.
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Table 3. (Values of # for F(u)=0.05)
»

n

2 3 4 5
2 0.0025000
3 0.0500000 0.0%2873848
4 0.1357209 0.009527998 0.045742281
5 0.2236068 0.03581760 0.002498649 0.041410921
6 0.3017088 0.07362451 0.01153078 0.0%7409645
7 0.3684031 0.1164594 0.02763251 0.003989206
8 0.4248906 0.1602486 0.04917261 0.01080303
9 0.4728708 0.2028226 0.07424717 0.02120394
10 0.5139043 0.2431463 0.1012903 0.03468052
11 0.5492803 0.2808080 0.1291631 0.05055390
12 0.5800282 0.3157255 0.1570866 0.06816257
13 0.6069622 0.3479837 0.1845508 0.08693557
14 0.6307272 0.3777458 0.2112354 0.1064101
15 0.6518363 0.4052064 0.2369509 0.1262248

p

n

6 7 8 9
6 0.0°%3855067
7 0.022341692 0.0%1122720
8 0.001429330 0.047687131 0.083410719
9 0.004292873 0.0%5221565 0.042586781 0.081067517
10 0.009178630 0.001717085 0.0°%1929666 0.058855519
11 0.01612501 0.003963855 0.0%6881935 0.0t7182631
12 0.02497112 0.007433530 0.001703605 0.0%2757524
13 0.03545759 0.01217595 0.003393672 0.037279932
14 0.04729342 0.01815145 0.005858787 0.001534242
15 0.06019423 0.02526353 0.009146180 0.002783310

[4] on Wilks’ L, criterion.

that his method is also readily applicable here.

223

The statistics L,. and L,.,. arebstructurally
different and also it is easy to notice that the method of Nagarsenker
[4] is more involved. But from the moment structures it is evident

Since his computational

procedure involves Box’s type approximations if his procedure is used
to compute the percentage points for Wilks’ L,,. one can expect the
points to agree with those in our table for the first 4 or 5 decimal
places except for small values of p and n. For small values of p and
n his points are likely to be slightly away from the exact points given

in this table.
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