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Summary 

Stein's positive part  est imator for p normal means is known to 
dominate the  M.L.E. if p>3 .  In this article by introducing some priors 
we show tha t  Stein's positive par t  est imator is posterior mode. We 
also consider the Bayes estimators (posterior mean) with respect to the  
same priors and show that  some of them dominate M.L.E. and are ad- 
missible. 

1. Introduction 

Let X have the p-variate normal distribution with unknown mean 
vector t~ and covariance matrix L and let the loss be quadratic, given 
by 

(1.1) L(O, a)= Ila--~ll ~ , 

where ~ is the vector of estimate. Stein [5] showed tha t  the estimator 
a ( X ) = X  is inadmissible when p>=3. James and Stein [2] showed that  
the est imator  

(1.2) ~(X)=(1 t ( p - 2 ) ) X  0 < t < 2  
i i x ] l ~  , 

dominates X and the uniformly best value of t is the James-Stein choice 
t = l .  But Stein [6] showed tha t  the  est imator 

i i x i i 2  , 

dominates the  above estimator. This est imator is called Stein's positive 
par t  estimator.  Efron and Norris [1] gave its justification by Empirical 
Bayes approach. In this article we show that  Stein's positive par t  
est imators are posterior mode with respect to properly selected priors 
on 8. We also consider Bayes est imates (posterior mean) with respect 
to the  priors and show the condition under  which they dominate X and 
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are admissible. 
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2. Posterior mode and mean 

A generalized prior distribution ~(0) of 0, conditional on 2, is given 
by the density 

(2.1) ~(0)= [ ~ I p/2 2~(1--~) exp { 

and ,t has the density 

(2.2) h(~)r162 i)'/~2 -~/2 , 

} 2(1--2)  11~ ' 0 < 2 < 1 ,  

a----1--t(p--2)]p . 

Then it follows that  the posterior density of (8, 2) with respect to the 
generalized prior with the density 

(2.3) ~(0, 2)--~(0)h(2), 

is 

1 (2.4) px(0,~)=const.• {-y(-i-L-]-HO-(1-~)XH~+] . 

We have the following result. 

THEOREM 1. Stein's positive part estimator is a posterior mode of  
0 with respect to the above prior. 

PROOF. From (2.4) we have 

(2.5) 2 log px(0, 2) = const. + t(p-- 2) log 1-- 
1--t  

If we denote the posterior mode of (8, 2) by (8*, 2*), then from (2.5) it 
follows that  

(2.6) O*=(I--~*)X 

and 2* is the value which maximizes the following function 

(2.7) g(2) =t(p-2) log I -2  lIXII 2 . 

It is easily shown that 2* is given by 

(2.8) ~*=min (1, t(p--2)) . 
IIXtl 2 

Then from (2.6) and (2.8) we have the conclusion. 

From (2.4) Bayes estimator with respect to the above prior is 



(2.9) 

where 
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$(X, t )= [1--E (~IX, t)]X, 
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f 
l 

(2.10) E (2IX, t )= o 2'(P-w2+I(1--2)P/2 exp (--2 [IX[12/2)d2 

f: ~(P-w2(1--~)P/~ exp (--2[[X][2/2)d2 

Let M(a, b, z) denote the confluent hypergeometric function defined by 

M(a, b, z) = 1 +-~-  + . . .  & (a),z" + . . .  
- -  ( b ) . n !  - ' 

where ( a ) , = a ( a + l ) . . . ( a + n - 1 ) ,  (a)0=l. Using the relation (see equa- 
tion 13.2.1 and 13.1.27 in [4], p. 505) 

f', r(b-a)r(a) M(a, b, z) , 
r(b) 

(2.11) 

and 

(2.12) 

we obtain that  

(2.13) 

M ( a ,  b ,  z )  = e Z M ( b -  a ,  b ,  - z )  , 

f :  2'<~-2>n+~(I--2) pn exp (--2 IIXl12/2)d2 

_ F(p/2 + 1)F[t(p-- 2)/2 + 2] M ( t(P 2 2)+ 2, t ( p -  2) 
T'[t(p-- 2)/2 + 3 -F p/2] 2 

= e_ttx,(~/2 F(p/2 + 1)F[t(p-- 2)/2 + 2] M ( ~  + 1, t ( p -  2) 
F[t (p-  2)/2 + 3 + p/2] 2 

and similary 

(2.14) l )YP-~'n(1--2)Pn exp (--~. IIXHV2)d2 

=e_~,~,~,/2 r(p/2 + 1)r[t(p-2)/2 + 1] M ( p  + 1, t ( p -  2) 
F[t(p-- 2)/2 + 2 + p/2] 2 

+2% 
Then from (2.10), 
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E(2IX, t ) = [  t(p--2)+2 ] (2.15) t(p-2 4J 
M(p/2+ l, t(p--2)/2+3+p/2, [[Xll~-/2) 
M(p/2+ 1, t (p-2) /2+2+p/2 ,  IIXH2/2) 

Using the relation (see equation 13.4.4 in [4], p.506) 

(2.16) zM(a, b+ l, z)=bM(a, b, z ) - b M ( a - 1 ,  b, z) , 

and (2.15), we have 

(2.17) 

where 

E (,~IX, t) =~-(llXll~)/llXll ~ 

in Lemma 1. 

(2.19) 

which is non-increasing in n. From Lemma 1 we have the conclusion, 

LEMMA 3. lim v(IIX][2)=t(p-2)+2. 

PROOF. As [z[-~co we have (see equation 13.1.4 in [4], p. 504) 

Then we get that  

dJc~=-p/(p+ 2n) , 

(2.18) r(NX[[2)=[t(p-2)+2][1 M(p/2, t(p-2)12+2+p/2,  HX]I~/2) ] . 
M(p/2+ l, t (p-2) /2+2+p/2,  HXH2/2) 

Lemma I is used to prove Lemma 2 which says that  r(l[XN 2) is non- 
decreasing in [IX{[ ~. 

LEMMA 1. Let h(y)= d,,y ~ c~y n where d~, c~ are nonnega- 
= 

C n tire, and ~ ,,y and ~ dny ~ converge for all y>0 .  I f  the sequence {dn/c~} 
n = O  7~=0 

is non-decreasing (non-increasing), then h(y) is non-decreasing (non- 
increasing) in y. 

PROOF. See the problem 4 (i) in Lehmann [3], p. 312. 

LEMMA 2. v(IIXII 2) is non-decreasing in IIX[I 2. 

PROOF. We show that  M(p/2, t(p--2)/2+2+p/2, NXI[2/2)/M(p/2+I, 
t(p--2)/2+2+p/2, IIX]]2/2) is non-increasing in tIXt! "~. Put 

d'~=(~)~/{n![ t(p-2)2 ~-2+~1~} and 
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(2.20) 

Then we have 

(2.21) 

M(a, b, z)= /'(b) e~z~_b[l +O([z[_~)] . 
F(a) 

 (llXll2)= [ t (p-2)+2]  [1--p O(llXll-=)], 

which shows the result. 

LEMMA 4. Let a(X) be the estimator of the form 

(2.22) 

where r is non-decreasing in llxII = and non-negative. Then a(X) 
is a min imax  estimator of ~ subject to the loss (1.1) i f  and only i f  
lim r([IXl12)<2(p-2). 

PROOF. See the lemma in Strawderman [8], p. 385 and the remark 
in Efron and Morris [1], p. 121. 

Then from Lemmas 2, 3 and 4 we have the following theorem. 

THEOREM 2. The estimator given by (2.9) is a minimax estimator 
of 0 subject to the loss (1.1) i f  and only i f  t<=2(1--1/(p--2)). 

The following lemma is used to show whether  the estimator given 
by (2.9) is admissible subject to the  loss (1.1). 

LEMMA 5. Let a(X) be a bounded risk generalized Bayes estimator 
of the form 3(X)=h([]XIJ2)X. The following results hold: 

(a) I f  there exists an M such that y > M  implies h(y)<_51-(p--2)/y, 
then a(X) is admissible, and 

(b) I f  there exists an M such that y > M  implies h(y)>=l--b/y for 
some b<p--2,  then a(X) is inadmissible. 

PROOF. See Theorem 6.1.1 in St rawderman and Cohen [7], p. 292. 

From Lemmas 2, 3 and 5 we have the following theorem. 

THEORE~ 3. The estimator given by (2.9) is admissible i f  t > 1 - 2 /  
(p--2) and inadmissible i f  t < l - 2 / ( p - 2 ) .  

Remark. If t = 1 -  2 / (p-  2), the  est imator satisfies conditions nei ther  
(a) nor (b) in Lemma 5, so we do not know whether  it is admissible. 

For t = l ,  from Theorems 2 and 3, Bayes estimator is  minimax and 
admissible if p>4 .  The risks of James-Stein 's  positive par t  est imator 
and Bayes estimator are graphed in Fig. 1, when p=4 .  This graph 
shows tha t  when t rue parameter  is near to zero, Stein's est imator is 
superior to Bayes estimator. 
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