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Summary

Stein’s positive part estimator for » normal means is known to
dominate the M.L.E. if p=3. In this article by introducing some priors
we show that Stein’s positive part estimator is posterior mode. We
also consider the Bayes estimators (posterior mean) with respect to the
same priors and show that some of them dominate M.L.E. and are ad-
missible.

1. Introduction

Let X have the p-variate normal distribution with unknown mean
vector ¢ and covariance matrix I, and let the loss be quadratic, given
by

(1.1) L, d=lla—-0|*,

where 6 is the vector of estimate. Stein [5] showed that the estimator
d(X)=2X is inadmissible when p=3. James and Stein [2] showed that
the estimator

(1.2) 6(X)=<1— ““p);”f) >X, 0<t<2

dominates X and the uniformly best value of ¢ is the James-Stein choice
t=1. But Stein [6] showed that the estimator

(1.3) 6(X)=<1—min <1, t(ﬁ;?)))X 0<t<2

dominates the above estimator. This estimator is called Stein’s positive
part estimator. Efron and Morris [1] gave its justification by Empirical
Bayes approach. In this article we show that Stein’s positive part
estimators are posterior mode with respect to properly selected priors
on . We also consider Bayes estimates (posterior mean) with respect
to the priors and show the condition under which they dominate X and
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are admissible.

2. Posterior mode and mean

A generalized prior distribution =,(d) of 6, conditional on 2, is given
by the density

2.1) m(a):[m]mexp{— 2(1’1_ 5 o}, o<a<t,

and 2 has the density
(2.2) h(Q)oc(L =2yt | a=1-tp—2)/p.

Then it follows that the posterior density of (4, 2) with respect to the
generalized prior with the density

2.3) (8, D= (Oh() ,
is
(2.4) ps(6, 1)=const. X 172" exp {—%<Ti_21;e—(1—1)Xu2+an[|2)} .

We have the following result.

THEOREM 1. Stein’s positive part estimator is a posterior mode of
6 with respect to the above prior.

PrROOF. From (2.4) we have

2.5) 2 log px(6, )=const.+H(p—2) log z-l*jua—a—x)xnz—z 1XE.
If we denote the posterior mode of (4, 2) by (6%, i*), then from (2.5) it
follows that

(2.6) g% =(1— %)X

and 1* is the value which maximizes the following funection

2.7 g()=t(p—2) log 2—2|| X" .

It is easily shown that 1* is given by

2.8) 2*=min (1, t(”pX‘”f) ) :

Then from (2.6) and (2.8) we have the conclusion.

From (2.4) Bayes estimator with respect to the above prior is
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(2.9) X, )=[1-EQ@[X, )]X,

where

Sl A=D1 )P exp (— 2| X |}/2)d
(2.10) E QX t)y== :
So A=D1 )2 exp (— || X|}/2)dA

Let M(a, b, 2) denote the confluent hypergeometric function defined by

=110 Ly @
Ma, b, 2)=1+ 5 +eeet D)) e,

where (a),=a(a+1)---(a+n—1), (a)y=1. Using the relation (see equa-
tion 13.2.1 and 13.1.27 in [4], p. 505)

L osa-ig1 _ pw-a—tgq . L (0—a)(a)
2.11) Soe -2y oda= L0 M, b,
and
(2.12) M(a, b, z)=eM(b—a, b, —2),

we obtain that

(2.13) g: a1 _ )9 exp (— 2| X|/2)da

_ T2+ VI Hp—2)/2+2] M<t(p—-2) +2 H(p—2)
Ii(p—2)/2+3+p/2] 2 T2

p _ X
Tt TS >

—ixie L 02+ DI [H(p—2)/242] M(——p—-'l-l t(p—2)
TI't(p—2)/2+3+p/2] 2 72

2
3.2, 1X1)
+ +2 5

=€

and similary

(2.14) S: 20-(1 - 2y7% exp (— || X [}/2)dA

e L2+ DI TH(p—2)/2+1] M< P q Hp—2)
I't(p—2)/2+2+ p/2] 2 72

2
2.2, IXIE)
++2 )

=€

Then from (2.10),
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2.15) EQ@|X )= [ﬁ%}

. Mp/2+1, t(p—2)/2+3+p/2, | X|/2)
M(p[2+1, (p—-2)[2+2+p/2, || X]|'/2)

Using the relation (see equation 13.4.4 in [4], p.506)

(2.16) zM(a, b+1, 2)=bM(a, b, 2)—bM(a—1, b, 2) ,
and (2.15), we have

(2.17) ' EQIX, ty=<(| XN X!

where

I  M(p2, tp—2)2+2-+p/2, | X]2)
@18 X1 =tr—2+2) 1 B ey |

Lemma 1 is used to prove Lemma 2 which says that (]| X[ is non-

decreasing in |[ X

LevMma 1. Let h(y)=< f}dw") / < f}c,;y") where d;, ¢; are nonnega-
n=0 n=0

tive, and ﬁ cy" and i d.y" converge for all y>0. If the sequence {d,/c,}
n=0 n=0

is mnon-decreasing (non-increasing), then h(y) 1s mnon-decreasing (nonm-
inereasing) in Y.

PrOOF. See the problem 4 (i) in Lehmann {3], p. 312.
LEMMA 2. (|| X||*) is non-decreasing n || X|.

PrROOF. We show that M(p/2, t(p—2)/2+2+p/2, | X|*/2)/M(p/2+1,
t(p—2)/2+2+p/2, || X|*/2) is non-increasing in [[X|*’. Put

e(p) 252213

o) o[t 5]

in Lemma 1. Then we get that
(2.19) d.jc,=Dp/(p+2n) ,
which is non-increasing in #. From Lemma 1 we have the conclusion.

Lewya 3. lim «(|X[P)=tp~2)+2.

PROOF. As |z]->co we have (see equation 13.1.4 in [4], p. 504)
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I'(b)

(2.20) Ma, b, 2)= T(a)

ez [1+0(2|™)] .

Then we have
(2.21) (| X1 =[p—2)+2][1—-p O(I X7 ,
which shows the result.

LEMMA 4. Let 8(X) be the estimator of the form
(2.22) AX)=[—-(I XXX,

where (]| X|?) is non-decreasing in || X||* and mon-negative. Them 3(X)
s a minitmax estimator of 6 subject to the loss (1.1) +f and only if
Hlyim (| X)) =2(p—2).
X |0

ProOOF. See the lemma in Strawderman [8], p. 385 and the remark
in Efron and Morris [1], p. 121.

Then from Lemmas 2, 3 and 4 we have the following theorem.

THEOREM 2. The estimator given by (2.9) 1is a minimax estimator
of 6 subject to the loss (1.1) if and only if t=2(1—1/(p—2)).

The following lemma is used to show whether the estimator given
by (2.9) is admissible subject to the loss (1.1).

LEMMA 5. Let o(X) be a bounded risk generalized Bayes estimator
of the form 3(X)=h(|X|MX. The following results hold :

(a) If there exists an M such that y>M implies h(y)=1—(p—2)/y,
then 8(X) ts admissible, and

(b) If there exists an M such that y>M implies h(y)=1—bjy for
some b<p—2, then 3(X) s inadmissible.

Proor. See Theorem 6.1.1 in Strawderman and Cohen [7], p. 292.
From Lemmas 2, 3 and 5 we have the following theorem.

THEOREM 3. The estimator given by (2.9) is admaissible if t>1-—2/
(p—2) and inadmissible if t<1—2/(p—2).

Remark. If t=1—2/(p—2), the estimator satisfies conditions neither
(a) nor (b) in Lemma 5, so we do not know whether it is admissible.

For t=1, from Theorems 2 and 3, Bayes estimator is minimax and
admissible if p=4. The risks of James-Stein’s positive part estimator
and Bayes estimator are graphed in Fig. 1, when p=4. This graph
shows that when true parameter is near to zero, Stein’s estimator is
superior to Bayes estimator.
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