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Abstract 

The purpose of the present paper is to propose a simple but  prac- 
tically useful procedure for the analysis of multidimensional contingency 
tables of survey data. By the procedure we can determine the predic- 
tor on which a specific variable has the strongest dependence and also 
the optimal combination of predictors. The procedure is very simply 
realized by the search for the minimum of the statistic AIC within a 
set of models proposed in this paper. The practical utility of the pro- 
cedure is demonstrated by the results of some successful applications 
to the analysis of the survey data of the Japanese national character. 
The difference between the present procedure and the conventional test  
procedure is briefly discussed. 

1. introduction 

Tables 1.1, 1.2 and 1.3 are a part of the survey results obtained 
by the 1973 nation wide survey of the Japanese national character [6], 
[7]. The question asked was:  "On the whole in Japan, which sex do 
you think has the more difficult life, men or women? " These tables 
evidently show that  the answer to this question depends most signifi- 
cantly on sex, among the three demographic factors. 

How can we form such a judgement? How can we evaluate the 
strength of the dependence of the answer on those three factors? 

Table  1.1 

Sex 
Total 

Male ($1) Female ($2) 

Which  sex Men (W1) 904 790 1694 
has  more 

difficult Women (W2) 491 870 1361 
life ? 

Total 1395 1660 3055 

185 
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Table 1.2 

Age 

20-29 30-39 40-49 50 yrs & 
(AI) (A~) (A3) over ( A 0  

Total  

Men 454 408 363 469 1694 

Women  324 319 303 415 1361 

Total  778 727 666 884 3055 

Table 1.3 

Rural vs. urban  breakdown 

Other  cities Total 6 Metropoli tan 
cities (R1) Pop.: 200,000 Pop.:  Under  

& over (Rz) 200,000 (Rs) 

Rural  (RO 

Men 322 388 525 459 1694 

Women 217 304 445 395 1361 

Total  539 692 970 854 3055 

Perhaps we are tacitly assuming that  the dependences can be evaluated 
by some standard which is common to all these situations. 

In this paper we first propose a search procedure for the predictor 
on which a specific variable has the strongest dependence and then 
propose a procedure to search for the optimal combination of predictors. 
Here 'opt imal '  means that  the combination demonstrates the most sig- 
nificant dependence between the variable predicted and the predictors. 
To solve these problems we propose the use of some models which de- 
scribe the dependence relations among the variables. The discrepancy 
of a model fitted to a set of observed data by the method of maximum 
likelihood is evaluated by the statistic AIC defined by the following [1], 
[2]: 

(1.1) AIC = ( - 2) log (maximized likelihood) + 2k,  

where log denotes the natural logarithm and k is the number of param- 
eters within the model which are adjusted to attain the maximum of 
the likelihood. 

The introduction of AIC is based on the entropy maximization prin- 
ciple: formulate the object of statistical inference as the estimation of 
the true distribution from the data and t ry  to find the estimate which 
will maximize the expected entropy. The entropy is a natural measure 
of discrimination between the true and the estimated probability dis- 
tribution, f(x) and g(x:O), and is defined by 

B(f  : g(. ; 0 ) ) = -  f f(x) log {f(x)/g(x; O)}dx (1.2) 
J 
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--- E log g(x; 0)-- E log f ( x ) .  

A large value of the  entropy B(f:g(.;O)) means that  the distribution 
g(x;O) is a good approximation to the  t rue  distribution f(x).  

L 
Consider the  situation where the  family of models U {g(x; ~0)} is 

k=l  

given, where  g(x;,O) is specified by the vector of parameters  ~0=(0~, 
02,-. . ,  0,, 0,+~,-. ., 0L) ( k = l , . . . , L )  and it is assumed tha t  f (x)=g(x;  
pO)=g(x; 0o) for some p ( l_~p~L).  Here 0, denotes a prescribed value 

of 0~. Denote by ,0 the maximum likelihood estimate of the parameter  
,0, then the  familiar log likelihood ratio statistic is given by ,7]L=(--2) 

{log g(x ; gT)--log g(x ; L0)} and the  statistic (#p. + 2 k - L ) / n  is an asymp- 

totically unbiased estimate of - -EB(g( . ;  00), g(.; ~t))) [1]. For the pur- 

pose of comparison of g(x; ~0), the  common constant 21ogg(x; L0)--L 
is ignored and we get  an information criterion (AIC) of (1.1). We re- 
gard a model with a smaller AIC as a bet ter  one, as it is expected to 
have a larger entropy. The model with the  minimum AIC will be called 
the  minimum AIC estimate or MAICE. Detailed discussions of these 
concepts are found in [1], [2]. 

To il lustrate the use of AIC we consider the  classical tes t  of in- 
dependence. From the point of view of the statistic AIC the conven- 
tional test  of independence of a two-way contingency table {n(i, j ) :  
i = 1 , - . . ,  r ,  j = l , - . - ,  c} is regarded as a comparison of the unrestr icted 
model and the  independence model defined by p(i, j)=p(i,  .)p(., j), where 
p(i, j) denotes the  probability of observing a combination (i, j), p(i, .) 
=~, p(i, j) and p(.,  j ) = Z  p(i, j). The corresponding maximum likeli- 

j 

hood estimates of p(i , j )  are given by n(i, j)/n and [n(i, .)n(., j)}/n 2, 
respectively. Due to the constraint ~, Z p(i, j ) = l ,  the number  of free 

j 

parameters  in the first model is ( re-- l )  and, due to the constraints 
Z P(' ,  j ) = l  and Z p(i, . )=1,  tha t  in the second is ( r - 1 ) + ( c - 1 ) .  The 

j 

AIC's for these models are respectively given by 

(1.3) AIC1=( -2 )  ~, E n(i, j) log {n(i, j)ln} + 2 ( r c - 1 )  
j 

(1.4) AIC0 = ( - 2) Z Z n(i, j) log {n(i, �9 )n(., j)/n ~} + 2(r + c -  2) .  
j 

The definition of AIC suggests tha t  the  independence model should be 
adopted if AICo is smaller than AIC~, otherwise the dependence model 
should be adopted. If we follow this suggestion we take the MAICE 
as our choice. This defines the  MAICE procedure. 

In the  case of the analysis of the  Tables 1.1, 1.2 and 1.3, it would 
be reasonable to assume tha t  in evaluating the dependence between the  
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opinion and a factor we are neglecting the effects of the  remaining 
two factors. This idea leads us to a set of models to be defined in the  
next  section. 

2. The simplest models and their AIC's 

Assume tha t  a k-way contingency table consists of a variable to be 
predicted (denoted by i~) and the  k - 1  predictors (denoted by i2, i3 , . . - ,  
ix). We denote the  joint probability by p(i~, i~ , . . . ,  i,) and the cell fre- 
quency by n(i~, i s , . . . ,  ik) ( Z n(i~, i2 , . . . ,  ix)=n), where ij is used to 

i 1, . . . , i  x 

represent  one of the  values 1, 2 , . . . ,  C~j which are taken by the variable 
ij ( j = l ,  2 , . . . ,  k). In these representations we will simply discard a 
variable when a sum is taken with respct to its values. For example, 
we put  

(2.1) and 

p(i~, i~ , . . . ,  ix_~)= ~, p(il, i~ , . . . ,  ik) 
ik 

n(i~, i2, . . . , /x_s) = E n(i~, i2 , . . . ,  ix_~) �9 
iX-- 1 

First  consider the  search for a single predictor on which the vari- 
able to be predicted has the strongest  dependence. The simplest model 
which is in accordance with the obsercation at the  end of the  preced- 
ing section can be obtained by assuming the  simplest possible s t ructure  
which completely ignores the dependence between the variables left out 
of our consideration. This is given by 

X 

(2.2) p(i~, . . . , ix)=p(i~, i t )  ]-[ p(ij) /=2 ,  3 , . . . ,  k .  
j=2, j ~ t  

The log likelihood of a model belonging to (2.2) for a sample with 
cell frequencies n( i~ , . . . ,  ik) is given by 

L =  ~, n(il, .  . . ,  ix) log p(i~, i3 7[ p(ij) . 
i l ,  . - . .  i/g j = 2 , j c t  

By maximizing L with respect to p(i~, i~)'s and p(ij)'s the  maximum 
likelihood est imate of the joint probability is obtained by {n(il, it)/n x-~} 

X 

T[ n(ij). Since there are constraints 
j = 2 , j . t  

p(i~, i3 = 1 and Z p(ij) = 1 ,  
il, i~ i j  

k 

the model has {(C~1C~-I)+ Z (C~j-1)} parameters  to be 
j=2, j r  

Thus the  statistic AIC for the model is given by 

specified. 
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. . .  -[-[ n(i~)ln ~-1 (2.3) A I C = ( - 2 )  W, n(i~, , i~) log n(i, ,  iz) J=~,J,z 
51' " " , t k  

f( )t +2 N (%-1 
j=2 , . ]* t  

= ( - 2 )  3-I, n(i~, i~) log {n(il, i3/n} + N  N n(i~) log {n(i~-)/n} 
hil ,~ l j=2  i s 

- - N  n( i31og {n(i,)/n + 2  C, ) + ~ ,  - 1 ) - ( C ,  . 
t l  1 j=2  

For the purpose of comparison of models within the above set the  
k 

common constant (--2) ~, Z n(i;) log {n(ij)/n} +2  Z (Gj--1) is ignored 
j=2  i j  j=2  

and the statistic AIC is given by 

(2.4) AIC=(-2) [E n(i,, i,)log {n(il, i,)/n} n(i,) log {n(i,)/n} 1 
LzI,: / i l 

+2{(C~,Cq-1) - (Cq-1)} .  

Tables 1.1, 1.2 and 1.3 of Section 1 clearly show tha t  the response 
to the  q u e s t i o n ' w h i c h  sex has more difficult l ife '  depends most sig- 
nificantly on sex. I t  will be interest ing to see if the MAICE procedure 
with the present  model confirms this observation. The number  of vari- 
ables in our example is 4 and the necessary AIC's are obtained by put- 
t ing /c=4 in (2.3) or (2.4), where i~ denotes a category of the opinion, i2 

Table 2 

No. of Degrees 
No. Model Model AIC Param- X~--value 1-F(X 0 of 

No. eters Freedom 

(0,1) 

(1,1) 

(1, 2) 

(1, 3) 

(2, 1) 

(2, 2) 
(2, 3) 

(3, 1) 

p(il, iz, iz, iO 25132.68 63 

p(il, i2, i3)p(i2, is, i,)/p(is, i8) 25100.08 39 

p(il, i2, lOp(J2, i3, iO/p(iz, i4) 25102.18 39 

p(ih iz, i,)p(is, i3, i,)/p(i3, i 0 25203.70 47 

p(i~, i2)p(iz, is, iO/p(is) 25097.44* 33 

p(i~, i3)p(i~, ia, iO/p(i3) 25187.96 35 

p(i~, iOp(i2, i3, iO/p(iO 25187.20 35 

p(i~)p(i2, i8, iO 25187.05 32 

15.329 0.911 24 

17.461 0.828 24 

,101.937 0.000 16 

24.686 0.740 30 

110.096 0.000 28 

109.520 0.000 28 

115.272 0.000 31 

Model 1 ~ p(i~, is)p(i3)p(iO 25102.34 9 78.504 O. 016 54 

Model 2 ~ p(i~, is)p(i2)p(iO 25192.86 11 166.561 O. 000 52 

Model 3 ~ p(i~, iOp(i~)p(ia) 25192.10 11 166.463 0.000 52 

i1: The question 'which  sex has more difficult l i f e? '  
i2: Sex 
i3: Age 
i4: Rural vs. urban breakdown 
* :  MAICE among all the models 
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of sex, i~ of age and i4 of urban vs. rural breakdown. To search for 
the predictor on which the opinion has the s trongest  dependence we 
have only to calculate AIC's for the  two-way contingency tables shown 
in Tables 1.1, 1.2 and 1.3 and pick the  one with the  minimum AIC. 
From (2.3) we get  25102.34, 25192.86 and 25192.10, which are shown 
at the  bot tom of Table 2, as the  AIC's of the models. Apparent ly the  
MAICE procedure suggests that  we should adopt sex as the  most effec- 
tive predictor, which is identical to our empirical judgement .  The de- 
tail of the  dependence depends on how we categorize each predictor. 
This aspect will be discussed elsewhere [8]. 

3. More general models and their AIC's 

A useful model for the search of an optimal combination of pre- 
dictors can be obtained by using the  multiplicative models of contin- 
gency tables which have previously been discussed by many authors  
such as Darroch [4], Bishop [3], Goodman [5], and Wermuth  [9], [10]. 
A multiplicative model is a model such tha t  the joint distribution of 
several variables is factored into the product of marginal distributions 
of subgroups of variables. One example of multiplicative model with  
k = 5  is given by 

(3.1) p( i~ , . . . ,  is)=p(i~, i4, is)p(i~, i4, i5)p(is, i4, is)/{p(i,, is)p(i,, i5)] �9 

This model can be wri t ten  as 

(3.2) p ( i l , . . . ,  is)=p(il l i,, is)p(i2 [i4, i5)p(is [i,, is)p(i4, i5), 

where p(i~ [i,, i5) denotes the conditional probability of il given (i4, i5). 
This shows tha t  in the model each of the  variable pairs (i~, i2), (i~, i~) and 
(i2, i3) has zero partial association, tha t  is, the variables in a pair is condi- 
tionally mutual ly  independent,  given the  remaining three  variables. Each 
multiplicative model is characterized by the  variable groups in the  paren- 
theses of the  numera tor  and denominator of the representat ion of its 
probability as in (3.1) and can be derived by successively assuming zero 
partial associations among various variable pairs. Following Wermuth  
[10], a multiplicative model is constructed as follows: Given a multipli- 
cative model, choose a variable pair (i j, it), which is to have zero partial 
association, from a variable group in the  numerator .  Here (i~, it) is a 
variable pair tha t  is not contained in any one of the  variable groups 
in the denominator.  Denote by (i j, is, ix) the variable group in the  
numerator  tha t  includes (i j, it), where iK denotes the  variables other  
than ij and it. To get  the desired model, we have only to replace 
p(i i , it, i~,.) in the  numerator  by p(i~, i~:)p(i~, iK) and multiply the de- 
nominator by p(i~:) and cancel the  common factors. For instance, if 
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we assume the  zero partial  association of pair (i~, i4) in the  above model, 
the  application of the  rule to (3.1) leads to the  following model 

(3.3) p(il , . . . ,  is)=p(i~,  i~)p(i,, i~)p(i~, i , ,  i~)p(i3, i , ,  i~) 

/{p(i~)p(i, ,  i~)p(i4, i~)} 

=p(i~,  i3)p(i~, i , ,  i~)p(i~, i~, i~)/{p(i~)p(i,,i~)} . 

To search for an optimal combinat ion of predictors  of a variable 
i~, we w a n t  to eliminate those variables which will show zero part ial  
association wi th  the  variable i~. For  this purpose we define a par t icular  
sequence of models as follows: 

MODEL (0, 1) : p ( i ~ , . . . ,  i ~ )=p( i~ , . .  

MODEL (1, 1) : p ( i ~ , . . . ,  i ~ )=p( i~ , . .  

(1, 2) : p ( i , , . . . ,  i~ )=p( i~ , . .  

�9 , 

�9 , 

�9 , ik_~, i~ )p ( i2 , . . . ,  i~) 

(3.4) 

/ p ( i 2 , . . . ,  i~_2, i~) 
. . , . . ~  . . . . .  

(1, ~_1C~) : p ( i ~ , . . . ,  i~)=p(i~,  i 3 , . . . ,  ik)p(i2,. . ., i~) 

/ p ( i 3 , . . . ,  i~) 

MODEL (2, 1) : p(i~,. . ., i~)=p( i~ , .  . ., i~_2)p(i2,. . ., i~)/p(i2,. . ., i~_2) 

(2, 2): p(i~,. . ., i~)=p( i~ , .  . ., ik_3, i~_~)p(i2,. . ., ik) 

/ p ( i ; , . . . ,  i~_~, i~_1) 
. , .  . . . . . . . .  o ~  

(2, ~_~C2) : p( i l , .  . ., i~)=p(i~,  i 4 , . . . ,  i~ )p ( i2 , . . . ,  ik) 

/ p ( i 4 , . . . ,  i~) 

MODEL ( k - 2 ,  1) : p ( i ~ , . . . ,  i~)=p(i~,  i2 )p( i~ , . . . ,  i~)/p(i2) 

( k - 2 ,  2): p( i l , .  . ., i~)=p(i~,  i3)p(i2,. . ., i~)/p(i3) 
. o o  . . . . .  ~ 1 7 6 1 7 6  

(k--2, ~_~C~_2) : p( i~ , . .  ., i~)=p(i~,  i~)p(i2, . .  ., i~)/p(i~) 

MODEL ( k - 1 ,  ~_~Ck_l) : p ( i , , . . . ,  i ~ ) = p ( i l ) p ( i 2 , . . . ,  i~) .  

These model  are genera ted  by successively assuming zero part ial  asso- 
ciations and applying the  above rule. MODEL (0, 1) means  unconstrain-  
ed model. MODEL (1, 1) represents  the  zero part ial  association be tween  
the  variable i~ and i~ in the  sense t h a t  t h e y  are independent  given 
the  r emain ing  k - 2  variables. Similarly, MODEL (2, 1) represents  the  
zero part ial  association be tween  the  variable i~ and the  set  of variables 
{i~_~, i~}. Other  models can be in te rp re ted  analogously. The variables 
appear ing  in the  denominators  of these  equat ions define the  candidates  
of the  opt imal  combination of predictors  of the  variable il. The num-  
ber  ' l '  of MODEL (l, m) denotes  the  n u m b e r  of zero part ial  associations 
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to be assumed and the number ' m '  denotes that  the model is the ruth 
with respect to some proper ordering of the models belonging to the 
class of models with one and the same ' l '. Therefore, m does not 
exceed ~_1C~. The total number of models belonging to the above se- 
quence of models is given by 

 _iCo + s_,c  + . . . + = 2 . 

For k=2 we get  the unrestricted and the independence model discussed 
in Introduction. 

Consider the set of variables defined by I=  {i~,..., is}. Denote by 
E a subset of L Taking into account that  MODEL (0, 1) can be wri t ten 
as p(i , , . . . ,  ik)=p(i , , . . . ,  is)p(i~,..., i~)/p(i2,..., is), or, using the above 
notations, p(i~, I)=p(i~, I)p(I)/p(I), a model in the above sequence (3.4) 
can be represented in the form 

(3.5) p(i~, I)=p(i~, E)p(I)/p(E) , 

where we assume that  p(E)---1 for E--C, an empty set. The AIC for 
the model (3.5) is given by 

(3.6) A I C = ( - 2 )  Z n(i,, I) log [n(i~, E)n(I)/{n.n(E)}] 
i l ,  I 

, 

where C~ and C~ denotes the number of categories of the corresponding 
sets of variables and we assume that  n(E)=n and CE=I for E=r In 
calculating AIC's it is assumed that  0 log 0=0. For the purpose of com- 
parison of models within the above sequence, the common constant 
( - 2 )  ~ n(I) log {n(I)/n} +2(C~-1) can be ignored and the AIC is given by 

1 

(3.7) AIC=(--2)  Z n(i,, E) log {n(i~, E)/n(E)} +2{(C~C~-I)-(CE-1)} . 

This shows that  we can compare these models without using the full- 
dimensional table. Fur ther  we note that  from the point of view of 
AIC the comparison of models belonging to (2.2) reduces to that  of 

Table  3 Which sex 

S~ 

A1 A2 As A4 

R1 R2 Rs R~ R~ R2 Rs R~ R1 R2 R3 R4 R1 R2 R8 R~ 

W1 50 57 77 55 38 58 61 51 38 39 59 58 42 40 95 86 

W2 28 27 40 26 17 28 40 35 16 20 39 37 21 23 45 49 

Total 78 84 117 '81 55 86 101 86 54 59 98 95 63 63 140 135 i 

* See Tables  1.1, 1.2 and 1.3 about  notat ions.  
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the models, MODEL (k--2, m), r e = l , - . - ,  ~_1C~_~, of (3.4) since the sta- 
tistic (3.7) is identical to (2.4) when E =  {i~}, l = 2 , . . . ,  k. 

Table 3 is the four-way contingency table of the question ' which 
sex has more difficult l i fe '  and the three demographic factors. It will 
be interesting to see what combination of predictors the MAICE pro- 
cedure adopt as the optimal one. The necessary eight models and their  
AIC's are obtained by putting k = 4  in (3.4) and using (3.6). The results 
are given in Table 2. The MAICE is MODEL (2, 1) and shows tha t  still 
a single factor sex defines the best combination to define the predictor. 
The result of Table 2 gives a finer description of the interdependence 
relation between the opinion and other demographic predictors than 
the result of the simplified analysis of the preceding section. Never- 
theless, the result shows that  we have only to pay our attention to 
sex in the case of the analysis of the interaction between the opinion 
and other demographic predictors. 

The survey of Japanese national character has been conducted every 
five years since 1953. We used questionnaires which were common to 
all five surveys for the purpose of detection of changes in people's way 
of thinking. We applied the MAICE procedure proposed in this paper 
to the analysis of all questions of the 1973 survey. The results are 
quite assuring. In almost all the cases the MAICE lead to the same 
conclusion as that  obtained by a careful analysis of the data formerly 
reported in [6]. 

The analysis of a multidimensional contingency table has been a 
difficult and very much time-consuming task. This was mainly due to 
the inappropriate modeling and the lack of an objective criterion for 
the evaluation of the badness of a fitted model. By applying the pro- 
cedure of this paper we can easily find what combination of predictors 
is the most important as a factor and list up the predictors in order 
of the dependence of the variable on the predictors. The use of the 
statistic (3.7) also facilitate the search for the optimal combination of 
predictors for a high dimensional table. This last aspect will be dis- 
cussed in more detail in a future paper. 

has  more difficult life ? 

S~ 

AI A2 A3 A4 Total 

R1 Rz Ra R~ 

47 57 63 48 

32 56 63 52 

79 113 126 I00 

RI R2 R3 R4 

40 50 57 53 

29 57 67 46 

69 107 124 99 

R~ R~ R3 R~ 

32 45 47 45 

37 44 61 49 

69 89 108 94 

R1 R2 R~ R~ 

35 42 66 63 

37 49 90 101 

72 91 156 164 

1694 

1361 

3055 
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4. Discussion of statistical characteristics of the procedure 

Suppose that a four-dimensional probability distribution is defined by 

p(i l ,  i2, i3, i,)= p(i l ,  i2)p(i~, i3, i,)/p(i2) . 

We assume the values of these probabilities shown in Table 4. The 
question is whether we can detect the true structure by the MAICE 
procedure. To answer this question we generated 100 sets of data each 
composed of 3000 random samples from the above probability distribu- 
tion. The frequencies of the models chosen as the MAICE's are shown 

Table 4 

il,  i2 Probabili ty il, i2 Probability 

1, 1 0.2959 2, 1 0.1607 

1, 2 0.2586 2, 2 0.2848 

iz, is, i4 Probabili ty i2, is, i4 Probability 

1, 1, 1 

1 , 1 , 2  

1 , 1 , 3  

1, 1, 4 

1 , 2 , 1  

1 , 2 , 2  

1, 2, 3 

1 , 2 , 4  

1 , 3 , 1  

1 , 3 , 2  

1, 3, 3 

1, 3, 4 

1 , 4 , 1  

1, 4, 2 

1 , 4 , 3  

1 , 4 , 4  

0.0255 

0.0275 

0.0383 

0.0265 

0.0180 

0.0281 

0.0331 

0.0282 

0.0177 

0.0193 

0.0321 

0.0311 

0.0206 

0.0206 

0.0458 

0.0442 

2 . 1 , 1  

2 , 1 , 2  

2 , 1 , 3  

2 , 1 , 4  

2, 2, 1 

2 , 2 , 2  

2, 2, 3 

2, 2, 4 

2 , 3 , 1  

2 , 3 , 2  

2, 3, 3 

2 , 3 , 4  

2 , 4 , 1  

2, 4, 2 

2 , 4 , 3  

2, 4, 4 

0.0259 

0.0370 

0.0412 

0.0327 

0.0226 

0.0350 

0.0406 

0.0324 

0.0226 

0.0291 

O. 0353 

0.0308 

0.0236 

0.0298 

0.0511 

0.0537 

Table 5 

Number Frequency Degrees 
Estimated Distribution Frequency of Free Accepted of 

Parameters by Z2-test Freedom 

p(il, iz, is)p(i2, i3, i~)/p(iz, is) 6 39 95 24 

p( il, i:, lOp(J2, is, i4)/p(i2, i4) 9 39 97 24 

p(i,, i2)p(i2, is, iO/p(i2) 85 33 95 30 

Other distributions 0 - -  0 - -  

Total 100 - -  - -  - -  
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in Table 5. The result tells that  the MAICE procedure produced cor- 
rect answer 85 times out of 100. Needless to say the performance of 
the procedure depends on the sample size and the structure of, the true 
distribution. The present result is a typical example as is expected 
from the definition of AIC statistic. 

Consider that  the chi-square goodness of fit tests are applied to our 
example. We regard the situation as the fitting of each of the models 
described in Section 3 to the observations n(i~, i2, i~, i4). For example, 
for the above model we get the chi-square test statistic 

Z ~= E {n(i~, i~, i3, i , ) - n ( i ~ ,  i2)n(i~, i3, i4)/n(i2)} 2 
i l ,  � 9  i 4 

/{n(i~, i2)n(i2, is, i4)/n(i2)} . 

The figures in the right half of Table 5 give the frequency for each 
model accepted at the level of 5%. The results show that  three models 
including the true one were accepted about 95 times out of 100. This 
means that  the test procedure can not discriminate more complicated 
models from the true structure. 

The figures in the right half of Table 2 give X ~, 1 -F(Z)  ~ and the de- 
grees of freedom for each of the seven models of the data given by the 
four-way contingency table shown in Table 3. Here F denotes a cumula- 
tive distribution function of a chi-square variable. If the test  is applied 
only to those models within MODEL (2, m), the ;(2 for the MODEL (2, 1) 
is insignificant, with respect to the 5% level of significance. This result 
shows that  the model is acceptable, or at least not rejected, and coin- 
cides with the conclusion by MAICE for this case. However, if the 
test is applied to models defined by (2, 2), every model is rejected at 
the level of 5%, as is shown in the three lines from the bottom of 
Table 2. The MAICE is Model No. 1 ~ for this case too, but by the 
test procedure MODEL (0, 1) is the only choice. 

The relation between the MAICE and classical test procedures can 
be understood by considering the fact that  the log likelihood ratio test 
statistic takes the form X 2 = A I C ( k ) - A I C ( K ) + 2 ( K - - k ) ,  where AIC(k) 
denotes the AIC of a model with k free parameters. K is usually the 
highest possible value of k and z 2 is tested as a chi-square with the 
degrees of freedom d . f . = K - k .  Taking into account that  the expecta- 
tion of z ~ is equal to its degrees of freedom, we can understand that  
the MAICE procedure applied to each pair of models in the above ex- 
ample means the comparison of the value of Z 2 with twice its expecta- 
tion. The values of 1--F(2 d.f.) for various values of d.f. are given 
in Table 6. The table clearly shows that  by AIC the " l e v e l  of signifi- 
cance" is adjusted in such a way that  the corresponding probability 
of rejection of the simpler model decreases as the degrees of freedom 
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Table 6 

d.f. 1 -F (2d . f . )  d.f. 1--F(2d.f .)  

1 0.1572989537 

2 0.1353352832 

3 0.1116101347 

4 0.0915781944 

5 0.0752352001 

6 0.0619688044 

7 0.0511816101 

8 0.0423801120 

9 0.0351737134 

I0 0.0292526881 

15 0 0119215009 

20 0.0049954123 

25 0.0021311519 

30 0.0009206824 

40 0.0001763029 

50 0.0000345493 

60 0.0000068763 

70 0.0000013839 

* Calculated by expansion formula for the Z~-distribution funct ion 

increase. The MAICE procedure, therefore, has a tendency to adopt 
simpler models compared with the chi-square test procedure as the de- 
grees of freedom increase. This characteristic of the MAICE seems to 
be in bet ter  agreement with our intuitive choice when a complex model 
is fitted than the one by the chi-square test. Now if a modification of 
a test procedure considered so that  the significance level is adjusted in 
accordance with the degrees of freedom, one has to provide a rule for 
the adjustment. Even if this adjustment is made possible, it is still 
impossible to compare a model with every possible choice of the alter- 
native. For example, it is impossible to compare MODEL (1, 1) with 
MODEL (1, 2) in Table 2 by the classical chi-square test. The salient 
feature of AIC is that  it is an estimate of a clearly defined universal 
measure of fit, the entropy defined in Section 1. This fact justifies the 
comparison of AIC's among every possible model which cannot neces- 
sarily be compared by the classical goodness of fit test. 

5. Concluding remarks 

Generally there are two different types of analysis of survey results. 
The one is the case where the purpose of the analysis is to evaluate 
the dependence between a specific variable to be predicted and a spe- 
cific predictor, such as the answer to the question " Which political party 
the youth has been supporting?" The other is the case where the 
object is to seek an explanation of phenomenon, exemplified by the 
question " W h a t  has caused the changes in political party support?"  
We are sure tha t  the procedure proposed in this paper will be of great  
help to solve the latter problem. By our procedure, as was shown in 
preceding sections, the .comparison of various models is very simple 
and under certain circumstances the search procedure for the optimal 
combination of predictors can be done without the use of the full- 



ANALYSIS OF CROSS CLASSIFIED DATA BY AIC 197 

dimensional contingency table. 
The definition of AIC will draw researcher's attention to the rela- 

tion between the number of free parameters within a model and the 
sample size of the survey data. This aspect of statistical analysis was 
not clearly recognized in the application of classical tests. We are 
tempted to think that  classical tests, such as the chi-square test of 
goodness of fit and that  of independence, are merely approximate re- 
alizations of our procedure. However, our procedure needs fur ther  
refinement of the basic model so as to take care of the situation where 
many cells are lacking observations. This will be the subject of fur- 
ther  study. 

A Fortran program for the entire procedure is available from the 
authors. 
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