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1. Introduction and Notations

Recently the asymptotic distribution of the statistics based on the
multivariate normal samples were derived by the use of the funda-
mental formulas of the series of the zonal polynomials [1], {2], [7]. The
purpose of this paper is to give the asymptotic distributions of the
statistics based on the complex multivariate Gaussian distribution which
was developed by Goodman, N. R. [3], James, A. T. [4] and Khatri,
C. G. [5], [6]. To obtain these distributions, we need also the funda-
mental formulas of the series of the zonal polynomials of the positive
definite hermitian matrix. If we do not notice in this paper, we as-
sume that all the matrices are m X m positive definite hermitian matrices.

Let S be a positive definite hermitian matrix whose characteristic
roots are A, -+, A, such that 4,>-..->2,>0 and A=diag (4, ---, 4,) be
a diagonal matrix whose diagonal elements are 2, ---, 1, in a descend-

ing order. Let C.S) be a zonal polynomial of S, which corresponds to
the partition « of k¥ into not more than m parts. It can be represent-
ed by

C.(8)= Xa(DXa(S) ,

where X;,;(1) is the dimension of the representation [«] of the symmetric
group and X,,(S) is the character of the representation {sx} of the gen-
eral linear group [4].

Let

Py, <y @y, by -y by S, Ty=31 53 10k [85le CAS)CAT)
Ay @ S DRI BB e

’

where
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lel=1]@-a+Ds,, (@=ala+D)--@+s-1),

k=kl+"'+km7 klZ"'kaZO-

We denote as Fy(---, -+ +; S)=,F™(-++, --; 8, I) if T=I,.
Let S and R be positive definite hermitian matrices and T be also
an hermitian matrix, then

@ | etr(~RS)(det RF-"CRTMR=F e, )(det S)C.TS™),
where I'x(a, &) =z™"V2[[" I'(a+k,—(a—1)), and
2 | . (@t Ry det(I-Ry-~CiRS)R="2000 ¢ (s)

I'u(a+b, x)

where f’,.(a) =g FNa—(a—1)) =I.(a, c)/la)..
Let X be an mXxn arbitrary complex matrix and U be a unitary
matrix on the unitary group U(n) of order =, then

(1.3) Sm etr (XU + 0" XNU) =F(n, XX,

where d(U) is the unitary invariant measure of the unitary group with
total volume unity.

We use the following notations. Let X be an mXxXn (m<n) com-
plex matrix which has a complex Gaussian distribution with mean
M,«. and covariance matrix 2, then we denote as X~ CN,(M, 2).
Let S be an hermitian matrix which has a complex Wishart distribu-
tion of » degrees of freedom with a non-central matrix 2, then we
denote as S~CW,(Z, n, 2).

2. The fundamental formulas of the sum of the zonal polynomials

In this section, we consider only m Xm positive definite hermitian
matrices. Let X be hermitian matrix and

S=3B4437, IR=(e¢}), Z'=(¢%), a p=1,2,---,m,

where 3% =37 and 3"=—-37, We here define the hermitian differen-
tial operator matrix 9 as follows.

(2.1) 0=0dp+10;, a=(aap)y aR=(afp ’ 31=(a£p ’
and

B=1+6,p d 3 aI=1—"3aﬁ a
T on NG CwT T g
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From the symmetry of * and the skew symmetry of 27, we can see
% =05 and 9j,=—3d},. Hence dr and 9, are a symmetric and a skew
symmetric differential operator matrices, respectively.

Let f(2) be a real valued function of an hermitian matrix 3, and
it belongs to C~, then we have a Taylor series expansion of f(Z) in
the neighborhood at ¥=23, as follows.

(2.2) f(2)=etr (2 —20)9)f(2)| 2=z, -

We can show easily that (2.2) is same as (2.3) if S is an hermitian
matrix.

(2.3) f(S)=etr (S—20)9) f(2)|s-5, -
The following lemmas are fundamental.

LEMMA 1. Let & be a partition of k into not more than m parts,
1.€.,

"':(kl’ Tt km) ’ k=k1+' ‘ +km ’ klZ' 2]6,,,20

and let
Gu(r) =2k (k. —22) and  Gy(r)=257ik, (ki —3ak,+34%) ,
then |
(2.4) @) +RCLZ)=tr (43)CAZ)| -4
(2.5) (8G3(k) — 28,(x) + 6k, (r) — 6d,(x) + 3kt — 2k} C.(Z)

=[8(tr (49)*)+3(tr (4D))CAZ) | z-a
where A=diag (1, - - -, A») 18 a diagonal matriz of latent roots of 2.

Proor. From (1.1), we have

(2.6) n™ etr (—n3-'R)(det Ry""C(R)dR

m S R'=R>0
=l =) C5) .

We can see easily that the L.H.S. of (2.6) is invariant under the trans-

formation R=UWTU’ such that S=UAU’ where A=diag (i, -+ -, .) is
a diagonal latent roots matrix and U e U(m). Hence we can rewrite
L.H.S. of (2.6) as (2.7),

@n n= etr (—nd-W)(det WG (W)W .

F(n) (det Ay g We=w>0

Here we expand C’,(W) into a Taylor series expansion in the neighbor-



234 TAKESI HAYAKAWA

hood at W =4 by the use of (2.83). Then we have a following asymp-
totic expansion

,nmn
28) [ o(n)(det A)» S 7 =W>0
X etr (W —N))dWCE)| 24

=etr (—49) det (I-—%A&) TG £ma

etr (—nA*W)(det W)™

— 1 2 1 3 2
= {1 + 5 08 (40)' - [8 tr (40)'+3(tr (40)Y]

+0@MCD s

On the other hand, R.H.S. of (2.6) also have an asymptotic expansion
such that

2.9) {1+-——(a,(x)+k)+ (362(x) — 2a(x) + 6K, (<) — 63, (x)

Y
+3k—2k) +0(1/’n‘)} C2).

Hence by comparing with the both side of order 1/n and 1/#}, we have
Lemma 1.

LEMMA 2.

@210 33 Zﬁ(‘?—x (tr 3 etr (z3).

(2.10) holds for all integers r.

@11) I3 M‘)_C_(E.l =(2* tr S'—g tr 3) etr (23) .

k=0 =«

212 Izl ‘(‘;c("_)c)fz) = {27+ tr ¥(tr Iy —2"+Y(tr Syt

+2rxm*! tr 2¥(tr 2) " —ra7(tr 2)”
+r(r—1)z" tr Z%(tr )"} etr (23) .

213) I3 1"‘%’3,&@= {2 (tr 3440 tr 50 —20% tr 5 tr 3t

k=0 «

+32%(tr 2)*—4da® tr 34z tr T} etr (22) .

214 33 x_“z(flg_@l (22 tr 3+ 3a¥(tr 5)—3a tr 5

k=0 «

+2ztr 2} etr (x2) .
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PrROOF. Since etr (x2)=k2_}of_‘. (x*C(2)/k!), we have (2.10) by differ-

entiation or integration on both sides, succesively. From Lemma 1,
we know

a,()CZ)=tr (40YC.(Z)|s-a—KkCL(3) .

Multiply z*/k! on both sides and sum form k=0 to infinite, we have

f_,‘ > ﬂ‘-(%c-’—‘(—z)—=tr (40) etr (22)| zs—2 tr 3 etr (x3) .

k=0 ¢

From the definition of 4, the first term of R.H.S. becomes

tr (40)* etr (22)| s4= f} 2,240.40.5 €XD (a: i‘l a,,)
a,i=1 a=

= {i ]_’i.+_1_‘. > A4,
a=] “ aa‘za 2 alB

=% tr A etr (x4) .

Z=A

( 7 +i>} etr (22)|5-4

2 2
9% 0ol

Hence we obtain (2.11). (2.12) can be obtained by applying the Leib-
nitz formula of differentiation to (2.11). As we can show (2.13) and
(2.14) by the same way as one of [7], we will omit.

3. The asymptotic distribution of the statistics based on the non-
central complex Wishart matrix
Recently Fujikoshi [1], [2] has obtained the asymptotic distributions
of a generalized variance and a trace of non-central Wishart Matrix.
In this section, we give the asymptotic distribution of these statistics
based on a complex non-central Wishart matrix by the completely same
way as [1] and [2].

THEOREM 1. Let nS be distributed with CW,(Z, n, 2) and let’s as-
sume that 2 1is a constant matrixz with respect to m. Put

3.1) A=+ n/m log {det S/det 3} .
Then we have

Pr(1<a} =0@)+— 2 +-2 4 — G 10 1),
Yymn mm mnvmn n?

where

G1=—;— (m*—2tr 9)¢<"(x)+%¢"’(w) .

(3.2)
G,=%- {(mA(m?+2)—4m? tr Q+4(tr Q)1 O (x)
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1,, 1
—2tr OOW® o®
+—-—12 (m*+1-21tr Q) (a:)+-——72 (x),

G,=_112_{m*(2m2-1)+6m tr 2% 0(z)

+—41§{m”(m2+2) (m?+4)—6m*(m’+2) tr 2+12mi(tr Q)
—8(tr 2)}0°(z)
+~—210 {5m'+20m*+12—20(m*+1) tr 2+ 20(tr 2)*} 6% (x)

L mt+2-2tr 9)o(z)+ 22
+gg (22 D0+ g

O®(x) denotes the k-th derivative of the stamdard mormal distribution
Junction O(x).

ProOF. We can easily obtain the characteristic function ¢(t) of 1 as
follows :

w/mn [ (n+itvn/m)
La(m)

8.3) etr (-9)(%) Fm+itvmim, n; Q).

Hence by expanding (3.3) as the series of order 1/¥n and by applying
Lemma 2, we have the asymptotic expansion of ¢(f). Therefore, by
inverting this series, we obtain the result (3.2).

THEOREM 2. Let nS be distributed with CW.(Z, n, Q).

Case 1. 2 is a constant matrixz with respect to n. Put i:J’?T-
(tr S—tr 3)/r, where *=tr 3*, then

(3.4) Pr{i<z} =¢(w)—%+%_ nz/'% +0( % )

where

T,=00(z) E22 L BT gy,
T 3r

— 9% (x) 1 2
7= (tr T+ (tr m)

O (x) DO ()
+ o B tr I atr 0F tr 3+ S22

T,-:—(-pf;)f—@- {tr ZQ+trZQtr Z"Q+-(1T(tr EQ)’}
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(5) 4 2 3
+(D Sx) {trZ"_l_trZQtrZ’ +(trZ'.Q) trZ"_,_trZ trZ'zQ}
T 5 4 6 3
o (w){ 3t i SOt 2 ¢ (x) ot
0.7 12t tr 3+ 8tr (rZ")} oo (tr %)

Case 2. Q=mnb, where 8 is a constant matriz. Put

i= *’ " (trS—tr (I+6)3), o=tr (I+20)5".

Then we have

ol o) M M My o1
(3.5) Pr (i<} =0(@)—Jo+ 2 nﬁ+o<n2>’
where

M:%fjfl tr (1+36)3°
Mz=?—%f’—) tr (I+4e)z*+9i;f;%”}{tr (I+36)5)?,

M,,:E‘fi(w_) tr (I+50)25+9;i(—°fl tr (I+36)3° tr (I +46)5"

P (x) 3
+—— T62,° (tr (I +36)3%)*.

PROOF. Case 1. As the characteristic function o(f) of 1is given
by

(3.6) ot)=etr (~@)etr —it L2 3) dot (1-— L _5)”

-etr (9(1- «/mz)-l)'

we expand this as the series of order 1/¥n% by using the formulae
such that

det (I —7%—1_— Z') T =etr ( ‘/ZT

where the above formulas are only valid for |t|<+ n7/|4|, where 2, is
the maximum latent root of 3. Hence

. 2
’LtZ') {l—é;?tr?-l-"'} y
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e(t), for |t|> ﬁr )
s (- T B s
for |t|< XD ‘/':l? ,

where
Tl* -___‘E’l llp('l:t)”-l , Tz* ..__=“V3_\,l”(it)2li , Ts* =ﬁéz l”(it)iﬁ—l R

and l,’s, j=1,2,3 are the corresponding coefficients of &*-Y(z) or
() in T)’s.
Since, for arbitrary positive integer k,

=
27z Jii<smesy)

— ( 1)k¢(k)(x)

exp (—1itx) exp ( - %) (it)dt
exp (—1itx) exp (— %) (tt)y+dt ,

S“|> v"t/l‘ll

the second term is estimated by

oy —_ 2\,
£ (___> x
I 2r Sltl> e/l exp( v x) exp 2 ("/t) dt

S..l. S exp ( —-t—z)t"dt
T Je> eyl 2

o -2 () (L)

{4 {44
+(k—1)(k—-3)-- -3-1(—’/]—%—%>_l] for k=even,

ool 5[ (T -

+(k—1)(k—3)- - .2] for k=odd.

|

This implies that the second terms is O(1/n') for arbitrary positive in-
teger .

Next we estimate o(t) for [¢|>vnz/|4|. Let w.’s a=1,2,---,m,
be the diagonal elements of H'QH such that ASH'=/, then

ot (= 2) s (S 14
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m tz -1/2
<exp {2 W.<l+—?l§> }
a=1 nr

<exp {il w, (1 +ZL 4 )_l } =Constant.
Hence

IE; S|t|> w4l exp (_"'tx)ﬁa(t)dtl

< Const.

i ey |08 (1= z) s

t> Vae/liy] Hx(l— Vnr >-n}dt

b
S
<Const. | T(1+-250)™
|
7
(

=Const.

dt

t> J-r/]11| =1

m.

e> YR/ ( ne

< Const. dt

< Const.

tz)—mn/
2 —-mn/2
I t<1+i"z_t=) dt
Vol desvmean nt

=Const.

nf |Zl ><1 _E’L)—(mnﬂ—l)
mn— 2)( + A

=0(3):
n
for arbitrary positive integer I.

Thus, summarizing the above consideration, we have (3.4), formally.

Case 2. This is obtained by the similar way as Case 1.

4. The likelihood ratio criterion in a linear model

In the linear hypothesis we have a following canonical model.
Let the each column vectors of Y=[y,,%: ", Yxlaxy b€ independent-
ly distributed with the complex normal distribution with the same co-
variance matrix 3. The hypothesis H and the alternative K are speci-
fied by

H: E¥)=0, a=1,2,---,q, and q+1,---,N. (q.<q)
(4.1) K: E(y)#0, for some a (1<a<gq) and
E(y.)=0, for some a=g¢+1,---,N.
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The likelihood ratio criterion for this test is expressed by
A=< det A )” ,
det (A+B)
7
where A= 3! 4.7, and B=314.7,. Under K, A~CW,(Z, N—g,) and

amgot

B~CW,(Z,q, Q), Q=IT"3", where '=E[y, ---,y,].
Put 2=—plog 4, where pN =2n—2¢,+q,—m. Then the character-
istic function ¢(t) of 4 is given by

4.3) Lo(n + (g + M2 w(n(1—2i8) = (@, = m)/2) o4, (_ g
La(n — (g — m)/2) " n(n(1—2it) + (g, + m)/2)

-;Fl(n+%(ql+m>, n(l—zit)+-;-(ql+m); 9)

=i(t)du(?) -
We expand (4.3) as before.

4.2)

piy=oror {1+ 28 (mi+ -2 @~ 1)+0( ) etr (—9),

hi(t)=etr (mg)[l-—_zl;b.{zs tr P-+a¥(gi+m) tr 2—tr ) —z(gi+m) tr 2)

+og BA+0(3)].
where

A;=—24B*tr 2+12B%(tr 2)*+12B tr £,

Ay=24B*tr 2—12(2B*+1)(tr 2)*—48B tr 2*+12B tr 2 tr 2*+8 tr 2°,
(4.4) A=12(B*+1)(tr 2)°+36B tr F—24 tr @ —24B tr 2 tr 2*+3(tr 2°)?,

A;=16 tr @+12B tr 2 tr 2*—6(tr 2%,

Ag=3(tr &%) .

e=(1-20)", B=L(qtm).

Therefore, we obtain the asymptotic expansion of ¢(f) with respect to
the order 1/n as follows.

(4.5)  H(t)=gu=etr ((1—x)9)[1 +?1n.{x' tr P+a¥(q+m) tr 2—tr 2)

1
—2(q1+m) tr 2} +—2—52-{—-Q;M(m’+qf-2) :
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8
+(gmlm*+qi—~2)+ 4w+ 3} A} +0( ) .

Since we know that exp {(1—=z)tr Q}xu™** is a characteristic function
of the y* variable with 2(qm+p8) degrees of freedom and with non-
central parameter o*=tr 2, by inverting (4.5) we have a following
theorem.

THEOREM 3. In the linear statistical testing hypothesis model (4.1), .
we have the asymptotic distribution of A under the alternative K as fol-
lows :

(4.6) Pr{—plog A<x}=Pr {)i,n(6") <}
e (£ 2 Pr iy me) <2}
+((q:+m) tr Q—tr &) Pr {1yn+4(8) <}
—(@i+m) tr 2Pr (g3 m+2 <7} }
+T1n? { —gm(m*+gi—2) Pr {5, <=}
+(gm(m*+qi—2)+ A,) Pr {16, < %}

+3 A, Pr (<2} +0( 3},

where pN =2n=2N —2¢q,+q,—m, and A, and B are given in (4.4).

5. The likelihood ratio test for the independence

Let S be distributed with CW,(Z, N) and let’s partition S and ¥
into m, and m, rows and columns (m,<m,) as

Su Sn:l [211 Elz]
S:." — s E: —_ .
[Siz Sa 3 Ty
The likelihood ratio test for the independence H: ;=0 against all al-
ternatives K: ¥,#0 is given by
A= ( det S >” )
det S;; det Sy,
LEMMA 5. Under the alternative K, the moment of ‘A* is expressed as
I, (N), (N —m,+Nh)
L (N—mo)l,, (N +Nh)
- JF(N, N, N+ Nh; Z5'2,55'35) .

(5.1)

(5.2) det (I— 252,35 30)"
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Proor. The proof of this lemma is different from [7]. Let 3!
=D and let’s partition D as

Du sz
b ‘[1’7:, Dn]'

Then the expectation of A* is written as follows

- 1
)=
B I'y(N)(det 2)* 55’=S>°

_ 1
I (N)(det 2)* Sé};»su»

dSzg etr ("" DzzS) (det SH)N-M

. E . N
etr (—25) et Sy ~=( S%8__)"4s
11 22

dS, etr (—D,,Sy;)(det Sy )Y

S§§,=sn>o

. Ss etr {—(ﬁfzsn'i'Dugfz)} det (I—S;"S,,85" —fsz_xl/z)N+Nh—"dslz .
12

Let Slz = S;ll/z 'W}’»Szlz/z , then dSlg = (det Su)m’(det Sn)mld w. Hence
(5.3)

E()= 1

f,,(N)(det W Sgil"su”
ngg etr (—'DggSn) (det SZ!)N-M’

dSu etr ("‘Dnsll)(det Su)N—ml

S§;,=s,,>o
| etr (— (S DLSYW -+ SIPDSYT ) det (L~ W+ s-mdly
Since det (I—WW') is invariant under the transformation W to WU ,
U e U(m,), we first project etr {—(SY2D,LSY*W +S*D,S¥*W")} into the

space of ¢(WW') and we integrate #(WW’) on the whole space such
that WW’>0. Therefore, by using (1.3),

SW etr {—(SY DS W + S DS W)} det (I —Wil")y+on-mg 7
=, aw |, etr (—(SYDLSIWU+SDuSYT W)
.det (I~ W)Y +"-=d(7)
= SW det (I—W ") +¥=m Fi(my; SYDSuDiSLWFNIW .

Hence by applying the Hsu’s lemma in a complex case and (1.2), the
above integral can be written as

(5.4)
P s e}

ol )Ss ., (det Ry det (I— Ry™™~=,F(m,; Si{*DuSp DS} R)IR
my ms =
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[ (N —my+Nh)
I (N+Nh)

Thus inserting (5.4) into (5.3), we have the moments of 4 by integra-
tion with respect to S, and S, as follows

ny Lo (N, (N)F, (N—my+ NR)
Fo(N)T . (N + Nh)(det Z)*
-sF(N, N; N+Nh; Di'DyD5'Dls) .

= g™™

oﬁx(N +Nh; SuDuSzzﬁ;ﬂ) .

™y

(det Dy)~¥(det Dy)*

Since
det Z=(det D,)"'(det Dy)~! det I —2;'Z:55'3%) ,

f;m(N)=7rm1m2ﬁm1(N"_m2)ﬁm,(N) ’ m=m;+m,,
we have (5.2).

THEOREM 4. The asymptotic distribution of the likelihood ratio
criterion for the testing of independence between two sets of variates is

expresses as follows.
Let i=—(p/zvn){log 4—log {det T/(det Z,)(det Zy)} "}, where 4 1is

(6.1), 2n=pN=N—(m;+m,) and t=2/tr P, P=3:'3,35'5,. Then
mm,@°(x) _ 2(tr P’—tr P)0%(x) }
23

T T

Pr{2£2} =0(x)— Jl'ﬁ {

1 3 A,0%(x) 1
i +0<nm>'

where
A =8[mmy+ (mm,)+(tr P)¥—2m tr P]
A,=2[10 tr P*—3(5+2mm,) tr P*+6(m,m,+1) tr P]
A;=12[(tr P¥)*+(tr P)*—2tr P tr P?].

Proor. The proof is done completely the same way as the one of
Theorem 3.
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