
THE ASYMPTOTIC DISTRIBUTIONS OF THE STATISTICS 

BASED ON THE COMPLEX GAUSSIAN DISTRIBUTION* 

TAKESI HAYAKAWA 

(Received April I, 1971; revised Nov. 8, 1971) 

1. Introduction and Notations 

Recently the asymptotic distribution of the statistics based on the 
multivariate normal samples were derived by the use of the funda- 
mental formulas of the series of the zonal polynomials [1], [2], [7]. The 
purpose of this paper is to give the asymptotic distributions of the 
statistics based on the complex multivariate Gaussian distribution which 
was developed by Goodman, N. R. [3], James, A. T. [4] and Khatri, 
C. G. [5], [6]. To obtain these distributions, we need also the funda- 
mental formulas of the series of the zonal polynomials of the positive 
definite hermitian matrix. If we do not notice in this paper, we as- 
sume that  all the matrices are m • m positive definite hermitian matrices. 

Let S be a positive definite hermitian matrix whose characteristic 
roots are 21, .- . ,  2= such that  ~1~>... ~>~=~>0 and A=diag(~l, . . . ,  ~ )  be 
a diagonal matrix whose diagonal elements are ~L," ", ~ in a descend- 

ing order. Let C,(S) be a zonal polynomial of S, which corresponds to 
the partition �9 of k into not more than m parts. I t  can be represent- 
ed by 

where Z[.:(1) is the dimension of the representation [~] of the symmetric 
group and Z{.j(S) is the character of the representation {z} of the gen- 
eral linear group [4]. 

Let 

p l ~ ' ( a l , - . . ,  a., b , , . - . ,  bq; S, T ) - - ~  ~ ~ [al]. '- .[a.].  C.(S)C,(T) 
= [b:].-  - -Ibm], k !~ , ( I ,~ )  ' 

where 
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~ t  

[a],=TT (a-a+l )~, ,  (a)=-a(a+l) . . . (a+x-1) ,  

k=kl+. . .  +k,,, k l ~ ' . .  ~k,,,>O. 

We denote as ~ '~ ( . . . ,  . . . ;  S ) - - ~ F ~ ) ( . . . ,  -. .; S, I)  if T=I, .  
Let S and R be positive definite hermitian matrices and T be also 

an hermitian matrix, then 

(1.1) I~,=R>o etr  ( - R S ) ( d e t  R)~-'~C,(RT)dR--F,~(a, z) (det , 

where /~,(a, z) = ~:~'("-')/~II~.=,F(a + k~-- (a-  1)), and 

(1.2) (det R) ~-~' det (I-R)b-'C_,,(RS)dR=/~,(a, z)f~,(b) C.(S), 
X>~,=R>O T',~(a +b, z) 

where /~,(a) = ( ~ -  1)) =[',,,(a, z)/[a],. 
Let X be an n x n arbitrary complex matrix and U be a unitary 

matrix on the unitary group U(n) of order n, then 

f~(,) etr  (XU+ U'X')d(U) = o.~t(n, X.~') ,  (1 o3~ 

where d(U) is the unitary invariant measure of the unitary group with 
total volume unity. 

We use the following notations. Let X be an m x n  (mKn) com- 
plex matrix which has a complex Gaussian distribution with mean 
M~.,  and covariance matrix ? ,  then we denote as X..~CN~,(M, Z). 
Let S be an hermitian matrix which has a complex Wishart distribu- 
tion of n degrees of freedom with a non-central matrix 9, then we 
denote as S~CW,~(.~, n, P.). 

(2.1) 

and 

2. The fundamental formulas of the sum of the zonal polynomials 

In this section, we consider only m x m  positive definite hermitian 
matrices. Let ~? be hermitian matrix and 

I = I R +  iz ' ,  ?=1,2, . . . ,m,  

where Zs'=Z R and 2" '=- .X z. We here define the hermitian differen- 
tial operator matrix a as follows. 

a=aR+ia,, a=(a.,), a,,=(as), a,=(ah), 

2 aa. 5 2 a~ 



ASYMPTOTIC DISTRIBUTIONS OF STATISTICS 233 

F r o m  the  symmet ry  of Z R and the  skew s y m m e t r y  of Z z, we can see 
R _ _  R a,~--0,p and a~ ,= -a~ , .  Hence 0R and 0z are a symmetr ic  and a skew 

symmet r ic  differential operator  matr ices ,  respectively.  
Le t  f (Z)  be a real valued funct ion  of an hermi t ian  mat r ix  Z, and 

i t  belongs to C ~, then  we have  a Taylor series expansion of f ( Z )  in 
the  neighborhood at  5 '=2 'o  as follows. 

(2.2) f (Z )  = e t r  ((Z--Z0)a)f(Z)[ z = ~o " 

We can show easily t ha t  (2.2) is same as (2.3) if S is an hermi t ian  
mat r ix .  

(2.a) f ( S )  = e t r  ( ( S -  Xo)a)f(Z)l x = z o �9 

The following lemmas are fundamenta l .  

LEMMA 1. Let �9 be a part i t ion of k into not m o r e  than m parts, 

i.e., 

�9 = ( k l , " ' , k ~ ) ,  k = k l + ' " §  k l > _ ' " 2 k ~ 2 0  

and let 

then 

(2.4) 

(2.5) 

a n d  5h(~)= 2Z~=,k,(k~-3ak, + 3az) , 

(~,(~) + k)C,(Z) = t r  (Aa)~C,(Z) I ~ =~ 

{3~I(~)- 2~2(,) + 6k~t(~)-- 6~1(~) + 3k 2 -  2k} C,(Z) 

= [8(tr (AO) 8) + 3(tr  (AO)Z)2]C,(X)] ~ =~, 

where A - d i a g  ( ~ , . . . ,  ~ )  is a diagonal ma t r i x  of latent roots of  Z. 

PROOF. F rom (1.1), we have 

n~" e t r  (-- nZ-~R) (det R)"-~C,(R)dR 
(2.6) /~ (n )  (det Z)" ~'=R>o 

We can see easily tha t  the  L.H.8.  of (2.6) is invar iant  under  the  trans-  

format ion  R = U W U '  such t h a t  Z = U A g  r' where  A=diag(,l~, ..-,,~,,) is 
a diagonal la tent  roots ma t r ix  and U ~ U(m). Hence we can rewr i te  
L.H.S.  of (2.6) as (2.7), 

n~" f~,=w>0 e t r  ( - -nA-~W)(de t  W)"-~C~(W)dW. 
(2.7) /~ (n )  (det A)" . 

Here  we expand C,(W) into a Taylor  series expansion in the  neighbor-  
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hood at W - A  by the use of (2.3). Then we have a following asymp- 
totic expansion 

n m# f 

(2.8) ]~=(n)(det A)" lw,-w>o etr (--nA-*W)(det W) ~-~ 

x etr ( (W- A)~)d WC?(2) [ z.~ 

=et r  (--AO)det(I---~AO) C.(X)lr.~ 

= {I +__12n tr (Aa)~+ 2--~n, [8 tr  (Aa)'+3(tr (Aa)')'] 

On the other hand, R.H.S. of (2.6) also have an asymptotic expansion 
such that 

(2.9) Ii+_~_l (a,(~)+k)+ ~1.13al(~)-2~(~)+6ka,(~)-6a,(~) 
( 2n 24n- 

+ 3k z-  2k} + 0(1In')} C.(~.  

Hence by comparing with the both side of order 1In and 1In', we have 
Lemma 1. 

LmMMA 2. 

~'r 
(2.10) ~ ~ ~ =z ' . ( t r  Z) ~ etr (zZ). 

(2.10) holds for all integers r. 

(2.11) ~. ~. z~a'(z)C'(Y') =@ tr  2~-z  tr  2) etr (z2). 
~-o �9 k! 

(2.12) ~. Z ~k~(~)(~=(X) = Ix "§ tr  2 ( t r  Z) ' -x '+ ' ( t r  Z) "§ 
�9 = ,  �9 ( k - r ) [  

+2rz  "§ tr  2~(tr/9" -~- rz ' ( t r  ~ "  
+ r ( r -1 )z"  tr 2 ( t r  ~ ' - ' ]  etr (xX). 

(2.13) ~. ~ z~(,)C.(X) _ {z, (tr 2~)'+4~ tr  2 - 2 a ~  tr  Z tr 2 
,.=o �9 k[  

+3#( t r  2')=-4# tr  ~ + z  tr  2'} etr (z2). 

(2.14) ~. ~. z+~(~)0"(1) = {2~ tr  2 + 3 ~ ( t r  z ) , - sz ,  tr  2 
,*=o �9 k! 

+2z tr 2} etr (xZ). 
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PROOF. Since e t r (x ,?)=~,  ~, (x~C.(Y.)/k!), we have (2.10) by differ- 
t:=O a 

entiation or integration on both sides, succesively. From Lemma 1, 
we know 

~#)C.(Z) = tr  (AO)2C.(~I ~ =~- kC,(Z) . 

Multiply x~/k! on both sides and sum form k=O to infinite, we have 

~, ~. x~a'(~)C'(Y') = tr  (Aa) ~ etr  (xX) l z.a--x tr  2: etr  (xX). 
4=0 �9 k !  

From the definition of a, the first term of R.H.S. becomes 

(")1 tr (Aa) 2 etr (x,?)J ,=~= ~, 2.2,0.,~., exp x ~,  a.. 
a , ~ = l  2"=/1 

= x 2 t r  A ~ etr  (xA). 

Hence we obtain (2.11). (2.12) can be obtained by applying the Leib- 
nitz formula of differentiation to (2.11). As we can show (2.13) and 
(2.14) by the same way as one of [7], we will omit. 

3. The asymptotic distribution of the statistics based on the non- 
central complex Wishart matrix 

Recently Fujikoshi [1], [2] has obtained the asymptotic distributions 
of a generalized variance and a trace of non-central Wishart Matrix. 
In this section, we give the asymptotic distribution of these statistics 
based on a complex non-central Wishart matrix by the completely same 
way as [1] and [2]. 

THEOREM 1. Let n S  be dis tr ibuted w i th  CW~(X,  n,  O) and  let's as- 
sums  that 0 is  a co~stant m a t r i x  w i t h  respect to n.  P u t  

(3.1) 2= ~ log {det S/det Z}. 

Then we have 

Pr {2<x} = ~ ( x ) + / - d @ ~  + 

where 

(3.2) 

m n  m n  4 mn '  +O , 

G t = l  ( ~ ' - 2  t r  O)~~ l~cz~(z). 

Gz = 8 {raZ(m' + 2 ) -  4m' t r  0 + 4(tr O) n} ~r 
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+ ~ 2  (m'+ 1 - 2  tr D)~"(~) + ~ 2  ~'"(z), 

Gs = T 2  {m'(2m2-1) + 6m tr I2} ~c~(z) 

+ 4 ~  {m2(~n' + 2) (ms + 4) - 6m2(m ~ + 2) tr D + i2m~(tr 12) ~ 

-- 8(tr a) s} ~'"(x) 

1 {5m 4 + 20m s + 12-- 20(m ~ + 1) tr D + 20(tr D) ~} ~cs~(x) 

,,, ~ " ( z )  + ~4-~(m~+2-2 tr t~)~ (z )+--~-~6- .  

�9 '~'(x) denotes the k-th derivative of the standard normal distribution 
function ~(~). 

PROOF. We can easily obtain the characteristic function ~(t) of 2 as 
follows : 

( 1 ) " ~  F - ( n + i t 4 n / m  ) ~p~(n+it n4"~7~/m,n; t2). (3.3) etr (-- D) ~,(n) 

Hence by expanding (3.3) as the series of order 1[4-n and by applying 
Lemma 2, we have the asymptotic expansion of ~(t). Therefore, by 
inverting this series, we obtain the result (3.2). 

THEOREM 2. Let nS be distributed with CW,(X, n, t2). 

Case 1. 12 is a constant mat1~iz with ~'espect to n. Put 2=4-~" 
(tr S - t r  ,Y)]r, where d = t r  2 n, then 

(3.4) pr{ j<:z]=~(x)__~n. l_T,  - T, - I-0(~)  
nJ-n- 

where 

T1=~ct~(0c) tr ~rt2 . tr 2"I -c8~- - 

+ 1--T~r8 {3~"~(z) tr 2r'+4 tr t22~ tr z'} +~• (tr ~)s, 



Case 2. 

Then we have 

(3.5) 

where 

PROOF. 
by 
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+ #("(x) I tr 2 ~ _~ tr 2 9  tr Z' 
- - P - - C - g -  4 

(tr 29)'  tr 2 ~ ~ tr 2 '  tr  ~ 9  l 
6 3 ) 

#'"(x) 1 ~ 2' 2~+~8 tr (tr 23) ' + ~  {-~ t .  t r  2"~')(tr 2)'} + ~(9'(x) 
-- 162r9 

O--n S, where 6 is a constant matrix.  Put 

~= ~/~ (tr S - t r  (I+O)X), 
ff 

= tr  (I + 28)X ~ . 

Pr{~Kx}=r M' 4 M2 M3 +-0(--~) 

M,- @'"(x) tr  (I+30)2 ~ , 
333 

�9 _ ~<6)/X~ 

M~- ~"'(x) tr ( 1 + 4 o ) 2 " , + ~  {tr (I+30)2~} ~ 
43~ 

Ms- @(S'(x) tr (I+58)Zs+ @('(x) tr (I+38)2 ~ tr (I+48)Z' 
5a 5 123 ~ 

+ @(9'(x) (tr (I-t-3~)2~) 3 
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Case 1. As the characteristic function @(t) of ~ is given 

(3.6) @(t)=etr(--Q)etr(-- i t  ~/~'r X)de t ( I  ~/n-rit X)-" 

') 
we expand this as the series of order 1/~/~ by using the formulae 
such that 

det ( I - - ~ n t  r Z) -"=e t r  ( ~ / ~  itX) t2 
r [1--2"~r' tr  X'+" ""} ' 

I it  r  2") -' = I + / - ~ t  2 -  -t-~-2-~ 2~+"" " ' ,  n~  nr 

where the above formulas are only valid for it l< ~/nr]1211, where 21 is 
the maximum latent root of 2". Hence 



q, ( t )  = .  

where 
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, t -  , / ~ ' ~  ~o(t) for , , > ~ ,  

exp(--~--)[ l+-~+ T2* + T* +0/1~1 
~ ~ / J '  

t - 4 W r  for , ,<.~, 
I~I 

3 5 

T * = Z  l ,~(i t)  ~p-' , T * = : Z l ~ p ( i t )  ~ , T * = Z / 3 ~ ( i ~ )  "-1 , 
l= I  t = l  $=3 

and l j s ,  3"=1, 2, 3 are the corresponding coefficients of ~aP-~(x) or 

Since, for arbitrary positive integer k, 

1 

the second term is estimated by 

I ~  f,,,> ~,m~, exp (--itx) exp (--~)(it)'dtl 

~ l f,> ~,/,2x, exp (-~)t 'dt  

�9 k=e en, + ( k - 1 ) ( k - a ) . .  \ I~,1 / J 

+ ( k -  1) (k -  3).. .  2] for k = odd. 

This implies that the second terms is O(1/n ~) for arbitrary positive in- 
teger l. 

Next we estimate ~(t) for [t[>4~'r/12tl. Let w,'s a-- l ,  2, . . - ,  m, 
be the diagonal elements of H'DH such that HZH'-.-A, then 
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<_exp l=~__, w.t l- l-~-~z l , )  I 

( ~ / ~ \-IIZ~ 
_<exp ~ ,  w.{l+~-~-_ j} ~ =Constant .  

't~=* \ 2~ / ) 

239 

4. The likelihood ratio criterion in a linear model 

In the linear hypothesis we have a following canonical model. 
Let  the each column vectors of Y=[y,  ,y , , . . . ,  Y~]~• be independent- 
ly distributed with the complex normal distribution with the same co- 
variance matr ix X. The hypothesis H and the  alternative K are speci- 
fled by 

H :  

(4.1) K :  

E ( y . ) = 0 ,  a = l ,  2, . , . ,  q, and q , + l ,  . . . ,  N .  

E ( y . ) r  for some a (l_<a_<q,) and 

E(y.)=O, for some a = q , + l , . . . , N .  

( q* K qz) 

~Const. j,> ~.,,,,, g l / l + - ~ f ) d t  

I" / ~? \ -mnlZ 
~Const. ~ {I-1- "'-z~. t '} dt 

Jt> 4~,/I~,I \ ~%r �9 / 

< C o n s t . / ~  [ z l '  \-.~,z 

= Const. ( ~Y~r \ / 2 \ / 22 \-c~./2-~ 

for arbi t rary positive integer g. 
Thus, summarizing the above consideration, we have (3.4), formally. 

Case 2. This is obtained by the similar way as Case 1. 
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The likelihood ratio criterion for this test is expressed by 

( detA ) N 
(4.2) A= det ( A + B )  ' 

.Y ql 
where A =  ~, y.~: and B = ~ ,  y ~ : .  Under K, A...,CW, J I ,  N-q2)  and 

a=q .+ l  a l l  

B, . .CW. ( I ,  q~, E), E = F f ' I  -t, where F=E[y~, . . ., Yql]" 
Put 2 = - - p l o g A ,  where p N = 2 n - 2 q , + q , - - m .  Then the character- 

istic function r of 2 is given by 

(4.3) F~(n + (q, § m)/2)F~(n(1--2it) -- (q, -- m)/2) etr (--/2) 
l~,Jn -- (q, -- m)/2)F.(n(1--2iO § (q, § m)/2) 

�9 ~ F , ( n + l ( q , §  n ( 1 - - 2 i t ) § 2 4 7  Q) 

�9 

We expand (4.3) as before. 

i~(t) =~ +~ I1 + ~ ( m : + q ~ - - 2 ) ( x ~ - - l ) + O ( 1 - - - I I  etr (--/2) 
L T.~'Y& z \ ?&s / ~ ' 

F 1 
 (O-etr {=' tr m§ tr /2} 

where 

Az-- --24B z t r /2§ 12B~(tr/2)2§ 12B tr  ~ ,  

A s - 2 4 B  ~ tr/2--12(2B~+1)(tr/2)2--48B tr  ~ §  tr/2 tr ~ §  tr ~ ,  

(4.4) A~-12(B2§ tr  ~--24 tr  ~ - 2 4 B  tr  ~ tr ~ §  ~)z, 

A5---16 tr  ~ §  tr ~2 tr ~ - 6 ( t r  ~ ) z  

A,= 3(tr ~)2. 

z=(l--2it)-', B = l ( q ~ + m ) .  

Therefore, we obtain the asymptotic expansion of r with respect to 
the order I/~t as follows. 

(4.5) ~t)----z'," etr ((1--x)/2)I1%-~- {e tr ~§247 E--tr ~) 

- - x ( q t §  tr/2} § 1 { - -q~m(m'§  �9 
Z415" 
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+(q,m(m~+q'~--2)-l-A2)xz+ ~, A~x a} +0 . 
a=3 

Since we know that exp{(1--x)trg}~, ~+~ is a characteristic function 
of the x ~ variable with 2(q~m+~) degrees of freedom and with non- 
central parameter 62=tr9, by inverting (4.5) we have a following 
theorem�9 

THEOREM 3. In the linear statistical testing hypothesis model (4.1), 
we have the asymptotic distribution of A under the alternative K as fol- 
lows : 

(4.6) Pr {--p log A<x} = P r  {Z]~,~(~') gx} 

+__1 {tr 9 '  Pr {Z]ql.+,(~')_<x} 
2n 

+ ((q, + m) t r  9--  tr  9'-) Pr {Z]q,~+,(6') < x} 

--(q,+m) t r  f) Pr {z,~q,~+,_<z} } 

+ 2--~ {--q,m(m'+q~--2) Pr {Z]q,<~:] 

+(q,m(m2+q~-2)+Az) Pr {X~q,+,Kx} 

where pN=2n=2N-2q2+q~--m, and A. and B are given in (4.4). 

5. The likelihood ratio test for the independence 

Let S be distributed with CW~(X, N) and let 's partition S and 27 
into m~ and m~ rows and columns (m~<m~) as 

S FS,, S,,] 2=r2, ,  2,,]. 
s,,j, L2:, z . j  

The likelihood ratio test for the independence H :  X~=O against all al- 
ternatives K :  2 ~ r  is given by 

det S~ det S= 

LEMMA 5. Under the alternative K, the moment of.A' is expressed as 

(5.2) f ~'1(N)f '~t(N-m2+ Nh) det (I-Xs'X,~X~'Z',) "~ 
f ,~,(N-m~)f ,~(N + Nh) 

�9 :F~(N, N, N+Nh;Xs'X,:X~'X~-~). 
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PROOF�9 The proof of this lemma is different from [7]. Let Z -~ 
--D and let 's partition D as 

D _I" 
Then the expectation of A ~ is written as follows 

det S 
E(A~)__.. 1 err ( -  Z-~S)(det S)'V'~( det S~ det S,, ) #~dS F~(N)(det 2.)~ ~,=s>o 

_ 1 I ~h =s~,>o dS~ etr ( -  D.S,~) (det S,,) 'v-~ 
/~,~(N) (det Z)" 

�9 I~h.s.>, dS~ etr ( -D ,~=)  (det Su) ~-~ 

f �9 ~s,~ etr {-(~:S~+D,,S~,)} -~/3 -, 5, -,/~ ~+~-I 

Let S~,=S~[*WS~', then dS~z--(det Sn)'~(det Sz,)'~ldW. Hence 

(5.3) 
E ( A  = 

1 
!~h . s~  ~ dS~ etr  (-D~LSz~)(det S~) ~-~ 

/~.(N)(det z)- 

�9 I ~= s.>o dS~ etr (-- D~S.) (det S~)~-~, 

�9 Iv etr  i L~,/3~v ~/.w--r ~,/3W-,u det (141-W~r')~+~-~dW. [ - - 1 ~ ' 2 2  a~'12.~'1,  w w  y a J  u ~ . F I ~  n r r  ] ]  

Since det ( I -WW')  is invariant under the transformation W to WU, 
U e U(mz), we first project etr It-x~321~'~3~mW+S~("D,zS~3~r')]~-12~,, into the 
space of ~(WW') and we integrate r on the whole space such 
that  WW'>O. Therefore, by using (1.3), 

etr [-(S,~2 D~3S~ W +S~, D , ~  W )} det (I-WW')X+~-'dW I W* 1/3 - -  I /2 1/$ 1/2 ~ ?  

I dW ~ etr ' 'S ''~-j' -~'"W rr'-~'/'D ~,,3n,~,u 
w Ju(:3) 

�9 det (I-- WW')~+'v~-~d(U) 

=( det (I--W~r')'+~-~'~(m,; S~I'/3D~,SnDf~3S~- "WW)dW.-' 
J w 

Hence by applying the Hsu's lemma in a complex case and (1.2), the 
above integral can be written as 

(5.4) 

z*e~ (det R)~-~  det (I-R)~+~'-'%~'~(m,; S~D~,S~S~3R)dR 
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P , ~ ( N - m 2 + N h )  
=re '~'~'~ ~ I ( N  + N h  ; - '  S,,D12S2..D12) . 

F,~(N § Nh) 

Thus inserting (5.4) into (5.3), we have the moments of A by integra- 
tion with respect to S,~ and S~ as follows 

rc~, ~, F"'(N)I"~2(N)I'~'(N-m'+Nh) (det D,l)-~(det D~2) -~ 
t~,(N)F,,,(N + Nh) (det I )  N 

�9 ,FI(N, N; N + N h ;  -1 -1-, D~, DI,D~I D,,). 

Since 

det X = (det Dll)-1(det D=) -1 det ( I - /5 ' /~2 /~I~ , ) ,  

= - m = m ,  + m s ,  

we have (5.2). 

THEOREM 4. The asymptotic distribution of the likelihood ratio 
crite~'iar~ for the testing of independence between two sets of variates is 
expresses as follows. 

Le$ 2 -  - (p]r4--n ) {log A--log {det I / (de t  1,1) (det/23)} N}, where A is 

(5.1), 2 n = p N = N - ( m l + m : )  and r=2~/ t r  P ,  P=I51I ,~I~I '~ .  Then 

Pr{2<__~}=r I l mlm~'1'(x) 2 ( t rP~ - t rP )~ ' " (x )}  
~7~ t r r 3 

67/, .=I T ~ 

where 

PROOF. 
Theorem 3. 

A1 = 3[m~m2 + (mlm~) ~ + (tr P )3 -  2m tr P ] 

A,=2[10 tr P3-3(5+2mlm~) tr  P'+6(m,mz+l)  tr P] 

As=12[(tr P~)~+(tr P)~-2  tr  P tr P~]. 

The proof is done completely the same way as the one of 
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