
THE EXACT NON-CENTRAL DISTRIBUTION OF 

THE GENERALIZED VARIANCE 

A. M. MATHAI 

(Received Sept. 21, 1970; revised March 23, 1971) 

1. Summary 

This article gives the exact non-central distribution of Wilks' gen- 
eralized variance in the most general case, in terms of computable func- 
tions involving Zonal polynomials, Psi and Zeta functions. The exact 
distribution is obtained by using inverse Mellin transform, properties of 
Meijer's G-function and Calculus of residues. The cumulative distri- 
bution function is also available from the representation of the exact 
density. 

2. Introduction 

Let S=XX', where the mxn matrix X has the normal density, 

(2.1) (det 2~X)-~n exp [ t r  -1X-'(X--M)(X-M)'],  

where det (.) means the determinant of the square matrix (.) and tr (.) 
means the trace ( . )=sum of the diagonal elements of the matrix (.). 
Here S is called a non-central Wishart matrix with n degrees of free- 
dora with non-centrality parameters P.=MM'X-~/2. Constantine [7] gives 
the density of S as, 

(2.2) [ F , [  ~ ln  -' exp exp ( t r - I I - ' S )  

X (det S)( . . . .  , /~,FI(2;II- 'gS),  

where, in general, 

(2.3) F,~(u) =~"('~-"/' ~ F[u-- (i-- 1)/21, 
4=1 

and 0F~(.) is a hypergeometric function of a matrix argument which is 
defined as a certain series involving Zonal polynomials. For convenience 
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the definition of a generalized hypergeometric function ~F~(.), with ma- 
trix arguments, will be given in Section 3. Wilks [18] defined the de- 
terminant of the sample dispersion matrix as the sample generalized 
variance. Hence the aim of this article is to give the exact distribution 
of the determinant of the non-central Wishart  matrix S. Constantine 
[7] gives the tth moment, about the origin, of (det S) as follows. 

(2.4) E[(det S) +] = [/".(t +n/2)/F,(n/2)] (det 2X)' 

x exp (tr -~2),F,(t+n/2; n/2; •). 

In a recent paper, Sugiura and Fujikoshi [17], it is reported that  
Fujikoshi [11] obtained an asymptotic distribution of (detS).  In the 
non-central linear case, that is, when all the eigen values of the deter- 
minental equation, 

(2.5) det (~-- 2,r) = 0 

are zeros except one of them, (2.4) reduces to a very simple form. The 
hth moment in the non-central linear case was given by Anderson [1]. 
Bagai [3] used some complicated integrals, arising from some convolu- 
tions, to obtain the exact density of (de tS)  in the linear case for m =  
2, 3 and 4. Consul [9] used inverse Mellin transform technique and ob- 
tained the distribution for m = 2 ,  3, 4, 5, 6 and 7. Bagai [4] and Consul 
[8] also considered some limiting distributions in the non-central linear 
case. Mathai and Rathie [15] gave the exact distribution, for the gen- 
eral value of ~n, in the non-central linear case. Here we will obtain 
the exact distribution of (det S) for the most general case. 

3. Some definitions 

(i) Braaksma's H-function: This is the most generalized Special 
Function and is defined as, 

(3.1) H(z)--H~4" z (b~, ~), .  ., (bq, ~,) ] c ' 

where i = ( - 1 )  ~,  z is not equal to zero and 

(3.2) z '=exp  {s(log I zlq-i arg z)} , 

in which log I zl denotes the natural logarithm of I z[ and arg z is not 
necessarily the principal value. 

+ 1 /  (3.3) h(s)= F(bj+fljs) TT / ' ( 1 - a j - ~ j s )  
J = l  
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where  p, q, m, n are integers such that ,  

(3.4) O<n~_p , l < m < q  , 

a s ( j = l ,  2 , . . . ,  p), /~s ( j = l ,  2 , . - . ,  q) are  positive numbers and a s ( j = l ,  
2 , . . - ,  p), b s (3"=1, 2 , . . . ,  q) are complex numbers  such that ,  

(3.5) as(b~ +v):/: ~ ( a s -  l - r )  , 

for v , r = 0 ,  1 , . . .  ; h = l , . . . ,  m;  3 " = 1 , . . . , n .  

C is a contour in the complex s-plane separat ing the points, 

- s=(b j+v ) /~ j  , 3"--1, . . . ,  m;  v--O, 1 , . . .  (3.6) 

and 

(3.7) - - s=(as - - l - -v ) /a  ~ , j = l , . . . ,  n ;  v=0 ,  1 , . . . .  

When  a~ = az = . . .  = ar = 1 = ~1 = " '" -- ~ ,  the  H-function reduces to a 
Meijer 's  G-function, 

"',bq 
A definition of a G-function may  also be found in Erd61yi ([10], p. 207). 

q P 

The H-function exists for every  z r  if ~=~'s=, ~s-J~--, a s > 0  and for 0 <  

[ z ] < ~-~ if /~ = 0 where,  
p q 

(3.9) fl----]-[ a 2 -[]-/~7 ~s . 
S = I  J = l  

A detailed discussion of the H-function is given in Braaksma [6]. In 
our discussion a special case of the  G-function occurs and it  is easy to 
see t ha t  the  G-function exists. In the  evaluation of the exact  density 
of (det S) we will use a property  of the  H-function which  is proved in 
Braaksma ([6], p. 278, (6.1)) and which in effect says tha t  H(z) is avail- 
able as the  sum of the residues of h(s)z-' in the  points (3.6). The de- 
finition of the H-function is slightly modified in (3.1) to present  it as 
an inverse Mellin transform. This modification does not  affect the re- 
sult of Braaksma ([6], p. 278, (6.1)) which is mentioned above. 

Since the  non-central moments  of the  generalized variance are given 
in t e rms  of a hypergeometr ic  function with a matr ix  a rgumen t  a defi- 
nition of the  generalized hypergeometr ic  function will be given here.  
These functions are defined in te rms of Zonal polynomials. A discussion 
of Zonal polynomials can be found in James ([13], [14]) and Constantine 
[7]. The notation cr (Z)  for the  Zonal polynomial can be found in Con- 
s tant ine [7] and the conditions for the  existence of the  generalized hy-  
pergeometr ic  function can be found in Herz [12] and Constantine [7] 
and hence these won ' t  be given here.  
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(ii) 

(3.10) 

where 

(3.11) 

(3.12) 
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Hypergeometric functions with matrix arguments:  

~ q ( a l , . . . ,  ap; b~,..., b~; Z) 

- - ~  ZE{[(a~)x(a~)E. . . (a~,)KC~(Z)]/[(b,)K. . . (bq)~k!l} 
kffiO 

~g 

(a)~ = ]-[ ( a -  ( i -  1)/2)~,, 
t ~ l  

K-'(k l , ' "  ", k.), kl~__"" ~k.~__O, k l+k2+""  +k,~=k , 

(a)~----- (a) (a + 1) . . .  (a -}- n- -  1) 

and CK(Z) is the Zonal polynomial. Hence (3.10) is a generalization to 
matrix arguments of the generalized hypergeometric function with scalar 
arguments. A detailed discussion of the Bessel function with matrix 
arguments may be found in Herz [12]. The generalized hypergeometric 
function with scalar arguments is also available as a special case from 
the H-function in (3.1). 

(iii) The ~-function: This is the logarithmic derivative of the 
Gamma function and is defined as, 

(3.13) r =~-z  log F(z)= -T+(z- -1 )  ~o ~ [(re+l)  (m+z)]- '  

where r is the Euler's constant; r=0 .577 . . - .  

(iv) The generalized Riemann Zeta function ~(s, v): 

(3.14) [(s, v)= ~, (v+m)-', R(s )> l ,  v r  

where R(-) denotes the real part  of (-). 

4. The exact density 

The exact density is given in (4.2), (4.7) and (4.8). For conven- 
ience, we will consider the density function of (detS)/(det2X). From 
(2.4), we have, 

(4.1) E{[(det S)/(det 2,?)]'} 
= [F,(t + n/2)/F,(n/2)] exp (tr -- 4) ~Fl(t § n/2; n/2; 4) 

= [exp (tr - O)/F,(n/2)] ~ ZE {Cz(O)F,(t +n/2) 
kffiffiO 

x (t + n/2)x/[k!(n/2)~]}. 

Since (4.1) exists and is unique for all complex t such that  R ( t ) > - n / 2  
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+(m-- l ) /2  the density function of (detS)/(det 2Z), denoted by f(x), is 
uniquely determined by the uniqueness of inverse Mellin transform of 
(4.1). Further, since the series corresponding to iF~(t+n]2; n/2; :2) is 
absolutely convergent, see Herz [12], f ( x )  can be obtained as follows: 

(4.2) f (x )=  exp (tr --•) ~, Xx CK(:2) (2~i)-~ 
F~(n/2) ~=0 k!(n/2)K 

x F,( t  + hi2) (t + nl2)~ x, - ' - 'd t  
jr 

where i = ( - 1 )  in and c is chosen properly. But, 

(4.3) F~(t + n/2) = ~(~-D/~F(t + n/2)F(t + n[2-- 1/2). �9 �9 

F[tTn/2- - (m--1) /2]  

and 

(4.4) (t + n]2)r = (t + n/2)k~(t -t- n/2 - 1/2)k~- �9 �9 (t + n / 2 -  (m - 1)/2)~ . 

Therefore, 

(4.5) F~(t+n/2)( t+n/2)r=~(~- ') /4F(aTk,)F(a--1/2+k2) . . .  

F[a--(m--1) /2+k~] 

where 

(4.6) a=t-{-n/2 . 

Now by using (3.8) we can write (4.2) as, 

(4.7) f ( x )  = [~(~-~':~/r~(n/2)] exp (tr -- 9) 

x ~, , ~  C~(~) x-'G~,~(x I nt2 +k, ,  n /2 -1 /2+ks , .  �9 
~o ki(n/2)K 

n /2- - (m--1) /2Tk~)  , O<x<oo. 

The representation in (4.7) is not in a computable form due to the fact 
~,o that  the parameters in G0,~(.) in (4.7) differ by integers and hence a 

representation in computable forms is not available in the literature for 
the G-function appearing in (4.7). We will give a representation of the 
above G-function into computable forms by using Calculus of residues. 

THEOREM 4.1. 

(4.8) G~.~(xinl2+k~, n l 2 - 1 1 2 + k z , . . . ,  n l 2 - ( m - 1 ) 1 2 + k ~ )  

Ix, "a-c''+t,a+',,,+' ( 1 )  
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where 

(4.9) 

and 

(4.1o) 
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,2ffio \ V2 / 

where a~, bj, Ao, A~ "), B,, Co, C(o "), Do are available f rom (4.16), (4.17), 
(4.40), (4.41), (4.42), (4.43) for the case m-odd and f rom (4.46), (4.47), 
(4.56), (4.57) for  the case m-even. It may be noticed that (4.9) and (4.10) 
are finite sums and (4.8) can be programmed and computed. In order 
to prove Theorem 4.1 we will mak~ the following observations. 

4.1�9 Case I. m-odd. 

(4.11) 

and 

(4.12) 

Consider the following sets of Gammas, 

F(a T kl), I'(a-- l-t- ks) , ' . . ,  F[a-- ( m -  1)/2-t- k=], 

F(a-- 1/2-t- k2), F ( a -  3/2 T k,), . . ., F [ a -  ( m -  2)/2 ~- k._,l. 

The poles of the Gammas within the sets (4.11) and (4.12) overlap 
whereas the poles of the Gammas between the sets do not overlap. In 
general, the poles of F(z) are available from the equation, 

(4.13) z = - v ,  v=O, 1 , . . . .  

Further,  in (4.11) and (4.12), kL:~kz~. . .~_k~_O and hence by a little 
simplification, it can be easily seen that  the poles of 

(4.14) A = F ( a  + k,) / ' (a--  1/2 + k~). �9 � 9  (m - 1)/2 + k . ]  

are available by equating to zero, the various factors in (4.15) where 
the exponents denote the orders of the poles. 

[ a - ( m  + l )/2 + k ,  + j ]~ (a -m/2  + k~_l + j) ~J , (4.15) 

where 

(4.16) ~ 1, j= l ,  2,..�9 l+k=_z-k~, 

2 ,  j=2+k~,_~-k, , , .  �9 2+k~_,-k~, 

(m--1)/2,  j = ( m - - 1 ) / 2 §  ( m - 1 ) / 2 §  , 

( r e+ l ) /2 ,  3 ~ ( m + l ) / 2 T k i - k ~  , 



and 
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(4.17) 

, 

2 ,  

b#=. (m--3) /2 ,  

( m - - l ) ] 2 ,  

j = l ,  2 , . .  -, l+ k ,~ _s -k ,~ _~  , 

j = 2 + k , ~ _ 8 - - k , , _ l , ' "  ", 2 + k ~ _ s - k , , _ 1  , 
. �9 

3 = ( m - - 3 ) / 2 + k , - k , ~ _ , , .  . . ,  

( m - 3 ) / 2 + k s - k , , , _ l  , 

j > = ( m - 1 ) [ 2 + k ~ - k , , _ ~  . 

In general,  if G(a) is a Gamma product  with a pole of order  s a t  a = a  

then  the  residue R of G(a)~-"  a t  a = a  is available from Calculus of res- 
idues as, 

(4.18) R -  1 i~ -I [ ( a - a ) ' G ( a ) x - ' ]  at  a = a  
( s - l ) !  aa "-1 ' " 

Also (4.18) can be simplified to the  form, 

(4.19) 

But, 

(4.20) 

where  

(4.21) 

(s--l)!  ,=0 v ( - l o g x ) ' - l - ' ~ [ ( a - a ) ' G ( a ) ]  , at  a = a  . 

[ ( a -  a)'G(a)] = ~ [ ( a -  a) 'G(a)H]  aa , d a - - ,  

3 log [ ( a - a ) ' G ( a ) ]  . H =  ~a" 

Now extending the result  in (4.21) we can write,  

. ) . , . , . , )  

X ~,  . . .  [ (a--a) 'G(a)]  , 
v~=O \ "02 / 

where  

(4.23) H ( J ) = S  H .  

According to Braaksma ([6], p. 278, (6.1)), the G-function in (4.7) is the 
sum of the residues at the poles of (4.14). But the poles are available 
from (4.15) when m is odd. Hence from the result (4.18) to (4.23) it 
is easily seen that the expansion of the G-function is as given in (4.8) 
where,  
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(4.24) B0 = [6-  (m + 1)/2 + k. + j]'~A, 
at  ~ = ( m + i ) / 2 - k . - j ;  ~ = t + n / 2 ,  

(4.25) Ao----~- t log [a-(m+l)/2+k=-t-3]~a 

at a f ( m +  l) /2-k . - -3 .  , 

(4.26) ,4(o ")-  a'+l at,+ ' log [a-(m+l)12+k,,,+3.]"Ja, 

at a = ( m + l ) / 2 - k , , - 3 . ,  r ~ _ l ,  

(4.27) D0=(~-,,#2+k._,+3.)~,a, at ~=,n/2-k._, -3 . ,  

(4.28) C0 = ~  log (~-~/2+k._,+3.)~ at ~=,n/2-k._,-3. 

(4.29) C~')= a'+l at,+ 1 log ( v g - - m / 2 + k , , _ l + 3 . ) b J a  , 

at a=m/2--k=_l--3., r~_ l , 

where ~ is given in (4.14). Now (4.24) to (4.29) will be evaluated with 
the help of the following lemmas. In order to see the steps clearly, no 
simplification is done in (4.31) to (4.40). From (4.41) onwards, the ex- 
pressions are simplified by using 52. and TT notations. 

L~.MMA 4.1. For, 

(4.30) iTk,~_2(,_1,-k,~j~_i+k=_u-k~, i = l ,  2 , . . . ,  (m- - l ) /2 ,  

(4.31) [a-- (m + 1)12 + k,,, + 37~'~ {V(a + k,)F(a-- 1 + k3). . . F[a -  (m - 1)/2 + k=] } 

=V(a+k,)I '(a-l  +k3). . .V[a- (m+ l)12+i + l +k.,_d 

x r ' [ a - ( m +  l)12+k,,+ 3. + l]l {[a-(m + l)/2+k,,,+ 3.-1]' 

x [a-(ra+l)12+k,,+3.-21'... [a-(m+DI2+i+k. ,_, ,_d'  
• [a-(m+l)/2+i+k=_2(,_,)--l]'-'... [a--(re+l)/2 

+ i -  1 + k~_~,_..,] '-~- �9 �9 [ 6 -  (m + 1)/2 + k ,  + 1]'}. 

The proof follows from the observation that  when 3" satisfies (4.30), 
aj=i. Now (4.31) at a=(m+l)]2-k,~-3,  becomes, 

(4.32) V[(m+ l)/2-k,,-3.+kdI'[(m+ l ) / 2 - k , , - 3 . - l  +kd. . .V[i+ Z-3. 
--k,,+k._,,lV'(1)/{[(-1)(-2)...(-k..-3.+i+k,~_,._,,)]' 

x [(--k,,,--3.+i-l+k,,_,,_l,)... ( - k , , - 3 . + i -  1 

+ k,_,,,_,,)l '- ' .  �9 �9 ( -  3.+ z) '} .  

In a similar way it can be seen that,  when ]g(m+l) /2+k, -k , , , ,  a~= 
(m+l ) ]2  and (4.81) at a=(m+l)12-k,, ,-3, becomes, 
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(4.33) r'+ +'~/'(1) / {[(- 1) ( -  2)... ((m + 1)/2- k~- j + k,)] ''~+''/~ 

x [((m + 1)/2-- k~-- 3" + kl - 1). .-  ((m + 1)/2-  k~-- 3"- 1 

+~,)F'-',/~...(-3.+1)'}. 

It is easy to see that (4.32) and (4.33) can be combined by using the 
convention that, 

(4.34) F[(m+ l) /2-k~-- jTk,]F[(mT1)/2--k~--3.-1Wks].  . . 

F[i + l--3.--k~ +k~_u]= l 

if m--2i~_O. In this case (4.31) at a = ( m + l ) / 2 - k ~ - 3 "  is given by (4.32) 
for i=1 ,  2 , . . . ,  (m+1)/2. (4.34) is consistent with the convention that 
an empty product is interpreted as unity. 

LEMMA 4.2. For, 

(4.35) i+k=_(u_D-k~_l~_3"~_i+k~_(u+,)-k~_~, i=1 ,  2 , . . . ,  ( m - l ) / 2 ,  

(4.36) (a--m/2+k~-~+ j)~J[F(a--1/2+kz)F(a--3/2 +kO " " " 
r[a--(m-2)/2+k~_~]} 

at a=m/2-k~_l-3",  

= F [ ( m  - 1) /2  - 3" + k , -  k ~ _ d r [ ( m  - 3 ) /2  - j + k ,  - k ~ - d . . .  

F [ i + I - -  j-t-k~_(u+,)-k~_,lF+(1)/{[(- 1) ( - 2 ) . . .  ( i -3.  

+k~_(u_,,-k~_,)]'[(i- l-j+k,, ,-(2,- , ,-k. ,-0. . .( i-- l-3.  
- t - k , , , _ ( 2 + _ a , - k , ~ _ , ) ]  ' - ~ .  . . (-3.+1)'} ,  

with the convention that, 

(4.37) F[(m--1)/2-3"+k,--k~_dF[(m--3)/2--3"+k,--k=_d... 

F(i+l--3"Tk=_(u+,--k~_O=l i f  m - ( 2 i + 1 ) _ ~ 0 .  

LEMMA 4.3. 

(4.3s) ~ ,  logj~ r(cj+z)=~,, r i f  r = o ,  

P 
(4.39) =(--1)'+:r! ~ ~( r+ l ,  c~+z), i f  r>_l, 

Jffil  

where the ~b and ~-functions are defined in (3.17) and (3.18) respectively. 

Now by using the Lemmas 4.1, 4.2 and 4.3 we can write down 
B0, A+, AcJ ), Do, Co, Co (~ for the case m-odd. These are given in the 
following equations. 

(4.40) B,=  {r[(m+l)/2--k~--3"+kdF[(m+l)/2--k~--3"--l+k~].. .  

r[i  + l -  3"-k,  + k,_,,lr,(1)} [F(m/2-k~-3" + ka) 
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x F ( m / 2 - 1 - k , ~ - j + k , ) .  . .F (312-k , , , - - j+k=_ , ) ] /  

{[(-1)(-2)...(-/c~-j+i+k,,_,,,_t,)]' 
x [(-k~-]+i+k~_,(,_,,--l)-..(--k.--]+i-I 

+ / ~ . , _ , . _ , , ) 1 ' - '  �9 �9 �9 ( -  ] + 1 ) ' } ,  

for i = 1 ,  2 , . . . ,  ( re+l) /2  under (4.34). 

(m-*)12-t 
(4.41) ,40= ~ @[(m+l)/2-k~-]-t+ku+~]+i~b(1) 

tffiO 

(~a-3)/~ a 
+ Z r  57, (--l--t) -~ 

t=O tffiO 

b 

--(i--1) Z ( - k m - 3 + i + k . _ , ( , _ , , - - 1 - t ) - *  . . . .  (--3"+I)-', 

where a=-l+k, , ,+j - i -k=_, ,_ , )  and b=b,~_,,_l)--k,_,,_,,, for i = 1 ,  2, 
�9 . . ,  ( re+l ) /2  under (4.34). 

(4.42) 
( ( m - D / ~ - ~  

A~(') ----- ( -- l)'+* r! [ ~ {(r-I-l, ( m + l ) / 2 - - k = - - j - t W k u + , )  

+/{(r-I-l ,  1)+ N { ( r + l ,  m/2--k.-- j- t+ku+,) 
tffiO 

-}-i ~, (--1--t)-('+"-{-(i--1) :~] (--k.--3"-l-i 
r r 

+ k , _ 2 , _ , , - 1 - t ) - ( , + " + .  �9 �9 + ( - - ] + 1 )  -('+',} , r ~ _ l ,  

where a and b are given in (4.41)and i=1, 2 , - . . ,  ( re+l ) /2  under (4.34). 
I t  may be noticed that  (4.41) and (4.42) can be easily obtained from 
(4.40), by using the following procedure. Introduce a dummy variable, 
say z, in every factor of (4.40). Then evaluate the logarithmic deriv- 
ative of B0 with respect to z, at z-O to obtain (4.41). Multiply (4.41) 
by (--1)'+~r!, replace ~ . )  by {(r-t-l, .), multiply the terms not contain- 
ing ~b(.) by ( - 1 )  and raise the denominators of the terms not contain- 
ing ~b(.) to the power ( r + l ) ,  to obtain (4.42). These are also seen from 
Lemma 4.3. Hence we will give only Do for the case m-odd and B0 
and Do for the case m-even. 

(4.43) Do= F[(m-1)/2--]-k._t--t+k~,+2]F'(1) 

x(:~n r(~12-k._,-j+k,,+,-O1/ f~ (-1-O ' 
�9 �9 ( - j + l ) ' } ,  

$ffi0 

where 
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(4.44) c = - - l  +]--i+k,~_,-k,,,_(u_,) , d=k~,_c,,_,-k,~_(u_,) , 

i = 1 ,  2 , . . - ,  ( m - l ) / 2  under (4.37). 

Co and CQ (') are available from Do by using the procedure discussed 
after (4.42). 

4.2. Case II. m-even. 

In this case the poles of the Gammas in (4.14) are available by 
equating to zero the various factors of 

(4.45) [ a - ( m + l ) / 2 + k , + ] ] ' J [ a - m / 2 + k , _ , + ] ]  *j , a = n / 2 + t ,  

where the exponents denote the orders of the poles and 

(4.46) 

and 

(4.47) 

~ 1 , ]=1,  2 , - ' . ,  l + k , _ , - k ~  , 

2 ,  ]=2+k, , ,_ , - -k ,~ , . . . ,  2 + k ~ _ , - k ~ ,  

( m - 2 ) / 2 ,  ] = ( m - 2 ) / 2 + k ~ - k , , , , . . . ,  (m-2 ) /2+k , - - k , , ,  , 

(m/2), ]>_m/2+k,-k ,~  , 

, 

2, 

bj= (m--2)/2, 

m/2 , 

]=I, 2,'--, l +k~_,--k~_, , 

]= 2+k~_ , -k~_ , , "  �9 ", 2+k~_5-k~_,  , 

j = ( m - 2 ) / 2 + k , - k , , , _ , , .  . ., 

(m-2)/2+kL--k,~_~,  

] >-__m/2 + k l -  k,,,_, . 

Again the density function is given by (4.7), (4.8), (4.9) and (4.10) where 
the quantities A0 to Do are calculated in a similar fashion as in the case, 
m-odd. The procedure of getting Ao, A~ ") from Bo and Co, Co (') from Do 
is given in the discussion after (4.42). Therefore we will give only Bo 
and Do here. These are calculated with the help of the following 
lemmas. 

LEMMA 4.4. For, 

(4.48) 

(4.49) 

i+k~_~,_~,-k~<=j~_i+k~_u--k,  , i = l ,  2 , . . . ,  m/2 , 

[ a -  (m + 1)/2 + k~ + 3"]~;F(~- 1/2 + k~)F(a-- 3/2 + k,). �9 �9 

r [ a - ( m - - 1 ) / 2 + k , ] ,  at a = ( m + l ) / 2 - - k , - - ] ,  

/ { = J , =  ~ F ( m / 2 - j - - k ~ - - t + k u + , ) F ' ( 1 )  ( - - l - - t ) '  

' } x ]-[ ( - -k=-- j+i+k=_, ,_ , , - -1- -O' -* .  "- ( - - ]+1 ) '  , 
$=0 
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where 

(4.50) a =  - l  + k , . + j - i - k . _ z . _ l ~  , 

with the convention that 

b =k,~_2c,_t~- k~_,(,_~) 

( m - s ) / s - ~  

(4.51) 1-[ F ( m / 2 - j - k . - t + k n + , ) = l ,  i f  m - - 2 i < O .  
tffiO 

LEMMA 4.5. For, 

(4.52) 

(4.53) 

where 

i+k._cz,_t)-km_l<=3<=i+k~_cz,+D-k~_l , i = 1 ,  2 , . . . ,  m/2 , 

(~ - m/2 + k._, + j)'Jr(~ + k , ) r ( . -  1 + h ) . . .  

F[a-(m--2)/2-t-k~._d, at a=m/2--k~_t--3 , 

=,~2= ~ rOnl2-j-k._,+h,+,-t)r:(1 ( - l - t ) '  
/ I,t=0 

" } x-[l ( i - j -  l + k._,, ,_,--k,~_,-t) '- '  . . . ( - j  + l) ~ , 
tffiO 

(4.54) c=-I+j--i+km_l--k._c~,_1~ , 

with the convention that 

d = km-( . . , - l ) -  k~-(2,-3), 

Cm-S) /2- t  

(4.55) ]7 
g=0 

r (m/2 -  j -  k~_t + k~,+,- t) = 1,  i f  m - ( 2 i + D < 0 .  

From Lemma 4.4 we get B0 and from Lemma 4.5 we get  Do. 
are given below. 

(4.56) Bo--J,[~:~=~/'I'[(m+ l) /2-k ,~-3-{-k~§ } , 

where Jt is given in (4.49). 

( Cm -s)/s 
(4.57) Do-'zt,[ ~ F [ ( m - 1 ) / 2 - k . _ t - i + k u + ~ - t ] } ,  

These 

where J2 is given in (4.53). 
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