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1. Summary

This article gives the exact non-central distribution of Wilks’ gen-
eralized variance in the most general case, in terms of computable func-
tions involving Zonal polynomials, Psi and Zeta functions. The exact
distribution is obtained by using inverse Mellin transform, properties of
Meijer’s G-function and Calculus of residues. The cumulative distri-
bution function is also available from the representation of the exact
density.

2. Introduction

Let S=XX', where the m X matrix X has the normal density,
@2.1) (det 23)~"" exp [tr ——;-Z’“(X——M)(X—M)’] ,

where det (-) means the determinant of the square matrix (-) and tr(.)
means the trace (-)=sum of the diagonal elements of the matrix ().
Here S is called a non-central Wishart matrix with n degrees of free-
dom with non-centrality parameters 2=MM'3-!/2. Constantine [7] gives
the density of S as,

n\1™! —n/2 — 15y
(2.2) [I’,,.(-Eﬂ (det 2X) 2 exp (tr —02) exp(tr 5 bX S)
(n=m—1>/2 n. 1oy
X (det S) .,F,(z, 13 93),
where, in general,
(2.3) L= {T Iu—(i-1)/2],

and Fi(-) is a hypergeometric function of a matrix argument which is
defined as a certain series involving Zonal polynomials. For convenience
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the definition of a generalized hypergeometric function ,F,(-), with ma-
trix arguments, will be given in Section 3. Wilks [18] defined the de-
terminant of the sample dispersion matrix as the sample generalized
variance. Hence the aim of this article is to give the exact distribution
of the determinant of the non-central Wishart matrix S. Constantine
[7] gives the tth moment, about the origin, of (detS) as follows.

(2.4) E[(det SY]=[Ia(t+n/2)/[n(n/2)](det 25)
Xexp (tr —Q)Fi(t+n/2; n/2; Q) .

In a recent paper, Sugiura and Fujikoshi [17], it is reported that
Fujikoshi [11] obtained an asymptotic distribution of (detS). In the
non-central linear case, that is, when all the eigen values of the deter-
minental equation,

(2.5) det (2—23)=0

are zeros except one of them, (2.4) reduces to a very simple form. The
hth moment in the non-central linear case was given by Anderson [1].
Bagai [3] used some complicated integrals, arising from some convolu-
tions, to obtain the exact density of (detS) in the linear case for m=
2,3 and 4. Consul [9] used inverse Mellin transform technique and ob-
tained the distribution for m=2,3,4,5,6 and 7. Bagai [4] and Consul
[8] also considered some limiting distributions in the non-central linear
case. Mathai and Rathie [15] gave the exact distribution, for the gen-
eral value of m, in the non-central linear case. Here we will obtain
the exact distribution of (det S) for the most general case.

3. Some definitions
(i) Braaksma’s H-function: This is the most generalized Special
Function and is defined as,

(3.1) H(z)=Hp'Té"(z @y, ), -+, (@, “P)) = (2mi)™ Sc h(s)z*ds ,

(blr .Bl)r' ) (bq’ lsq)

where 1=(—1)"%, z is not equal to zero and

3.2) 2'=exp {s(log | z|+1 arg 2)} ,

in which log |z| denotes the natural logarithm of [z| and argz is not
necessarily the principal value.

3.3) his)= { fire+s91 r(1—a,—a,s)} /

(1T ra-v,-9 T re+as)

J=m+1



EXACT NON-CENTRAL DISTRIBUTION OF THE GENERALIZED VARIANCE 55

where p, q, m, n are integers such that,
(3.4) 0snsp, 1l=m=q,

a, (7=1,2,--+,p), B; (=1,2,---,q) are positive numbers and a, (j=1,
2,---,p), b; (j=1,2,--+, q) are complex numbers such that,

for v,r=0,1,---; h=1,---,m; j=1,--+,n.

C is a contour in the complex s-plane separating the points,

(3.6) —s=(b;4+v)/8, , j=1,-++,m; v=0,1,--.

and

3.7 —s=(a;—1-v)/a, , j=1,--<,m; v=0,1,..-.

When ¢y =ay=+--=a,=1=p,= .- =p,, the H-function reduces to a
Meijer’s G-function,

(39) =Gz (a|p o) -

A (definition of a G-function may also be found in Erdélyi ([10], p. 207).

The H-function exists for every z#0 if ,a=j§q] ﬁ,——?pjl a;,>0 and for 0<
=1 =

|zj< Bt if =0 where,

(3.9) p=1T o T 7%

A detailed discussion of the H-function is given in Braaksma [6]. In
our discussion a special case of the G-function occurs and it is easy to
see that the G-function exists. In the evaluation of the exact density
of (det S) we will use a property of the H-function which is proved in
Braaksma ([6], p. 278, (6.1)) and which in effect says that H{(z) is avail-
able as the sum of the residues of i(s)z~* in the points (3.6). The de-
finition of the H-function is slightly modified in (3.1) to present it as
an inverse Mellin transform. This modification does not affect the re-
sult of Braaksma ([6], p. 278, (6.1)) which is mentioned above.

Since the non-central moments of the generalized variance are given
in terms of a hypergeometric function with a matrix argument a defi-
nition of the generalized hypergeometric function will be given here.
These functions are defined in terms of Zonal polynomials. A discussion
of Zonal polynomials can be found in James ({13], [14]) and Constantine
[7]. The notation Cx(Z) for the Zonal polynomial can be found in Con-
stantine [7] and the conditions for the existence of the generalized hy-
pergeometric function can be found in Herz {12] and Constantine [7]
and hence these won't be given here.
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(ii) Hypergeometric functions with matrix arguments:
(3.10) ,F',,(a,,---,a,,;bp"';bq;Z)
= g Zell(a)x(@s)x- - (@) xCxl(Z)V/[(B)x* - - (b)) xk!1}

where

@11) @e=]] (@—G=1)2),,
K=(k17' * %y km)’ klg b g.kmgor kl+k2+ v +km=k )
(3.12) (a)a=(a)(a+1)---(a+n—1)

and Cx(Z) is the Zonal polynomial. Hence (3.10) is a generalization to
matrix arguments of the generalized hypergeometric function with scalar
arguments. A detailed discussion of the Bessel function with matrix
arguments may be found in Herz [12]. The generalized hypergeometric
function with scalar arguments is also available as a special case from
the H-function in (3.1).

(iii) The ¢-function: This is the logarithmic derivative of the
Gamma function and is defined as,

(13)  HD=-Llogl@=—1+E—1) 5 (m+D(m+2)]"

where y is the Euler’s constant; y=0.577---.

(iv) The generalized Riemann Zeta function (s, v):
(3.14) (s, v)=io(v+m)-', R(s)>1, v#0, —1,--

where R(-) denotes the real part of (-).

4. The exact density

The exact density is given in (4.2), (4.7) and (4.8). For conven-
ience, we will consider the density function of (det S)/(det2Y). From
(2.4), we have,

(4.1)  E{[(det S)/(det 23)I'}
=[Ia(t+n/2)/Ta(n/2)] exp (tr —Q),Fi(t+n/2; n/2; 2)

=[exp (tr —Q)/Tu(n/D) 3 Zx{Cx(DTnlt+n/2)
X (E+n/2)/ (k! (n/2)x]} .
Since (4.1) exists and is unique for all complex ¢ such that R(t)> —n/2
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+(m—1)/2 the density function of (det S)/(det 2X), denoted by f(x), is
uniquely determined by the uniqueness of inverse Mellin transform of
(4.1). Further, since the series corresponding to Fi(t+n/2;n/2; Q) is
absolutely convergent, see Herz [12], f(x) can be obtained as follows:

_exp(tr—9) < Cx(2) 1
4.2) f(x)——m—-g Zx'lzl(—nl—z—);(zm)

X S”:“ To(t+1/2) (E+1/2) ez~ dt ,

where t=(—1)"* and ¢ is chosen properly. But,

(4.3) L(t+n[2)=za™"PACt+n/2)[ (¢t +n/2—1/2). - -
I'it+n/2—(m—1)/2]

and

(44)  @+n2x=@E+n/2)(t+n/2—1[2),,- - - +n/2—(m—1)/2),, .

Therefore,

(4.5) IE+n/2) (t+n/2) =2 "V (a+ k) (a—1/24+F,) - - -

Ia—(m—1)/2+k.]

where

(4.6) a=t+n/2 .

Now by using (3.8) we can write (4.2) as,

(4.7 f@)=[z""""TW(n/2)] exp (tr —2)

515, 2D_ o 2.
X B Ty ? G2tk m2=1 2+,

nf2—(m—1)/2+k,), 0<z<oo.

The representation in (4.7) is not in a computable form due to the fact
that the parameters in G»%(-) in (4.7) differ by integers and hence a
representation in computable forms is not available in the literature for
the G-function appearing in (4.7). We will give a representation of the
above G-function into computable forms by using Calculus of residues.

THEOREM 4.1,
4.8) Grix|n2+k, nj2—-1[24+k;,- - -, 02— (m—1)[2+Fk,)

=3 { g mAD 2kt Y (af— 1) (—log x)~1-vA}
i (@,—1)! o=

Dk VLA g UL TR

e Ay G Z)DF,MC"’}

v
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where

@9 a=[F 7Y ar S (o) o,

v,=0 U =0 vy

and

@ a=[3 (") 5 (0 oo,

=0 vg=0 i

where a;, b;, Ay, A7, By, Gy, C7, Dy are available from (4.16), (4.17),
(4.40), (4.41), (4.42), (4.43) for the case m-odd and from (4.46), (4.47),
(4.56), (4.57) for the case m-even. It may be moticed that (4.9) and (4.10)
are finite sums and (4.8) can be programmed and computed. In order
to prove Theorem 4.1 we will make the following observations.

4.1. Case I. m-odd.

Consider the following sets of Gammas,
4.11)  (at+k), I'a—1+ky), - -, [Ma—(m—1)/2+k,] ,
and
(4.12) Ia—1/2+4 k), [Na—3/2+ky),- -+, Na—(m—2)/2+k,_,] .

The poles of the Gammas within the sets (4.11) and (4.12) overlap
whereas the poles of the Gammas between the sets do not overlap. In
general, the poles of I'(z) are available from the equation,

(4.13) z=—v, v=0,1,... .

Further, in (4.11) and (4.12), 5,2k =---=2k.=0 and hence by a little
simplification, it can be easily seen that the poles of

(4.14) d=I(a+k)(a—1/2+ks)- - - Ia—(m—1)/2+k,]

are available by equating to zero, the various factors in (4.15) where
the exponents denote the orders of the poles.

(4.15) [a—(m+1)[2+ka+ j)(a—m|24 Kn_+ ) ,

where

1,  §=1,2 1tkes—han,

2, GmBtkns—loms e, 2Hhini—en »

(m=1)j2,  j=(m—1)2+k—Kn, -+, (m—1)2+lo—Fn
m+1)2,  jzm+D)2+h—k,

4.16) a,=
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and
1 ’ j=19 27"‘1 1+km—s_km-1;
2 ’ .7 2+km 3 km—l’ * 2+km-—5"’km-1 ’

(4.17) b=+ (m 3)/2 j= (m A2+ki—kny, -,
(m—3)/2+kz"km-1 ’

m-1)2,  jzm—1)2+k—Fkn .

In general, if G(a) is a Gamma product with a pole of order s at a=a
then the residue B of G(a)r™* at a=a is available from Calculus of res-
idues as,

1
(s—1)! aa‘"

Also (4.18) can be simplified to the form,

(4.18) R=——ro- [(a-— a)G(a)x™} , at a=a

@19) R=—L ) ( ;1)(——10g ac)"“"é%[(a——a)‘G(a)], at a=a .
But,

(4.20) ’G(a)]— e [(a-'a)’G(a)H I,

where

(4.21) H=_a%. log [(a—a)'G()] -

Now extending the result in (4.21) we can write,

(4.22) 2YG(a)]= [0 (vv11> o

x,,,,%( v, )H ][(a—a)*am)],
where
(4.23) Hu):_@_J_H.

oo’

According to Braaksma ([6], p. 278, (6.1)), the G-function in (4.7) is the
sum of the residues at the poles of (4.14). But the poles are available
from (4.15) when m is odd. Hence from the result (4.18) to (4.23) it
is easily seen that the expansion of the G-function is as given in (4.8)
where,
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(4.24) B,=[a—(m+1)2+k.+71¥4,
at a=(m+1)/2—k,—J; a=t+n/2,

(4.25) A,=_g? log [a—(m+1)/2+Kn+ 5174 ,

at a=(m+1)/2-k,.—j,
ar+l

(4'26) Ai()r):: atr+1

log [a— (m+1)/2+k,+51¥4 ,

at a=(m+1)/2-k,—7, r=1,
4.27) Dy=(a—m/2+k,_+J)"4, at a=m/2—k,_,—7,

(4.28) C.,=;’_tlog(a—m/2+k,._,+j)°m, at a=m/2—kn—j ,

ar+l

(4.29) CP=—r

log (a—m/2+Fk,_1+ )4,

at a=m/2—k,_,—7, r=1,

where 4 is given in (4.14). Now (4.24) to (4.29) will be evaluated with
the help of the following lemmas. In order to see the steps clearly, no
simplification is done in (4.31) to (4.40). From (4.41) onwards, the ex-
pressions are simplified by using 37 and T[ notations.

LEMMA 4.1. For,
(4'30) i+km—Z(i—l)—km§j§i+km—Zi—km ’ "::1’ 27 ] (m—l)/z s

4.31) [a—(m+1)2+kn+ g1 (D (a+R)(@—1+ky) - - Ta—(m—1)/2+k,]}
=I(a+k) (a—1+ks)- - -Tla—(m+1)[24+i+14kn_y]

X Ma—(m+1)/2+kn+i+1]/{[e—(m+1)/2+k,+ 51T
X[a—(m+1)24+kp+5—2]': - - [a— (M +1)/2+ i+ kp_sq-n]*
X[a—(m+1)[2+i4+kn-zi-p—1]"" - - [@—(m+1)/2
+i—1+kn -] [a—(m+1)/2+ k. +1]} .

The proof follows from the observation that when j satisfies (4.30),
a,=i. Now (4.31) at a=(m+1)/2—k,—j becomes,
(4.32) I'(m+1)2—ko—j+k)[(m+1)/2—kn—j—1+ks]---[[i+1—7
— kA Ep ) ) {[(—1)(—=2) - - (—Kp—J+ 1+ Emza-p)]

X [(“km—j+i—1+ku-z(¢-1>)' s (=kn—i+i—1

+Ep_z-n)] e (—54+1)')

In a similar way it can be seen that, when j=(m+1)/2+k—k,, a,=
(m+1)/2 and (4.31) at a=(m+1)/2—k,—j becomes,
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(4.38) M) [{{(=1)(=2): - -(mA1)f2—Fon— -+ R)| "
X[(m+1)2—kn—7+k—1)- - -(m+1)[2—kn—7F—1
+k3)](m—l)/2. . _(_j+1)l} .

It is easy to see that (4.32) and (4.33) can be combined by using the
convention that,

(4.34) I'(m+1)2—=kp—3+E[(m+1)2—kp—5—1+k]---

F[i‘l"l_j—km"'km-ﬂ]:l
if m—2i<0. In this case (4.31) at a=(m+1)/2—k,—7 is given by (4.32)

for i=1,2,...,(m+1)/2. (4.34) is consistent with the convention that
an empty product is interpreted as unity.

LEMMA 4.2. For,

(4-35) ":+km—(2¢—l)—'km—l§j§i+k _(21+l)—km—1 ’ i=1) 2) ] (m_l)/2 ]
(4.36) (a—m/2+kn-1+3) (F(@—1/2+ ) (a—3/2+K,)- - -
Ia—(m—2)[2+kn_1]}
at a=’m/2—k,._.l-—j,
=T(m—1)[2= j+he—Fon LT —3)[2— + = K] - -
Ii4+1=g+kn_con—kn O {[(-1)(=2)- - - (27

thn-ci-vo—Kn-)FE—1—F+En-ci-p—Fn-1) - -(G—1—73
+km-(2i—3)—km—l)]i_l' ° ‘(_j'l"l)l} ’

with the convention that,

(4.837) I'llm—1)/2—j+ky—Fn_ ([ [(m—38)/2—j+ki—Fn_]---
ra+1—j+kn-cio—Fkn-1)=1 if m—(21+1)=<0.

LEMMA 4.8.
(4.38) I g [ I(e,+)=3 ¢le,+2),  if r=0,
ozt i=t i=
(4.39) =(=1)*r! ,‘i‘ Lr+1, ¢+2), if r=1,
=]

where the ¢ and {-functions are defined in (3.17) and (3.18) respectively.

Now by using the Lemmas 4.1, 4.2 and 4.3 we can write down
B,, A,, AS?, D,, Gy, CS” for the case m-odd. These are given in the
following equations.
(4.40) B,={I'[(m+1)2—kn—j+k]1[(m+1)2—k,—j—1+ki]---
Tlit 1= bt ol OHT (0[2— Fon =+ )
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XI(mj2—=1—kn—5+k)- -T'(3[2—kn—3+kn-1)}/

{[(_1)(‘2)' * '(—km—j+i+km-!(i—l))]‘
X[(—kn—=J+i+knsa-p—1) - (—kn—J+i—1
+kn-zu-z))]“l‘ : '("‘.7.+1)1} ’

for i=1, 2,---, (m+1)/2 under (4.34).

(441) A= 3 GlmAD)2—ka— G —t+us] +ig()

(m=3)/2

+75Y" Gmf2— ko Foura— )~ 3 (— 18

t=0

)
—(-1) E (—kn—d+i+knss-p—1—t)" o —(—=5+1)",

where a=—1+kn+Jj—1—Kkn_sa— and d=FKn-ss-v—Kn-2:-n, for i=1,2,
«o+, (m+1)/2 under (4.34).

(4.42) AP=(—1y* rl{‘""‘;’:’" Cr+1, (m41)/2—kp— =t +Fnro)
FLrL D 3 L, M2l Gt
4 3 (~ 1) (1= 1) 33 (—hw— it
Fhnosap= 1= (=D, r2,

where a and b are given in (4.41) and =1, 2,---, (m+1)/2 under (4.34).
It may be noticed that (4.41) and (4.42) can be easily obtained from
(4.40), by using the following procedure. Introduce a dummy variable,
say 2, in every factor of (4.40). Then evaluate the logarithmic deriv-
ative of B, with respect to 2z, at z=0 to obtain (4.41). Multiply (4.41)
by (—1)"*'r!, replace ¢(-) by {(r+1, -), multiply the terms not contain-
ing ¢(-) by (—1) and raise the denominators of the terms not contain-
ing ¢(-) to the power (r+1), to obtain (4.42). These are also seen from
Lemma 4.8. Hence we will give only D, for the case m-odd and B,
- and D, for the case m-even.

@1 D={ T rion—1/2— ks —t-+ s D)
X" Fmf2—ton— g+ kuni—t)} / {TT (—1-0)

a
x;l;[; (i_l—j‘l"km-m-ukm—x"'t)i-l e (“.’H'l)l} ’

where
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(4.44) c= —14j—itkai—kn-ci , d=kn_ci-o=FKn-ci-» »
1=1,2,---, (m—1)/2 under (4.37).

C, and C{” are available from D, by using the procedure discussed
after (4.42).

4.2. Case II. m-even.

In this case the poles of the Gammas in (4.14) are available by
equating to zero the various factors of

4.45) [a—(m+1)24+k,+ 1Y a—m[2+kn+351, a=nf2+t,
where the exponents denote the orders of the poles and
1 s j’—:l, 21"'; 1+km—2_km ’
2 ’ j=2+km—2—kmr' ] 2+km—4_km ’
(4.46) a;=< - - - . . .
(m_z)/z ' j=(m_2)/2+k4"'km" c (m—'2)/2+k2_km [}

(m/2) , jizm/2+k—k, ,
and
1 ’ j=1’ 29"') 1+km-—a—km-l ’

2 ’ j=2+km—3_km—l)' ° %y 2+km—5—km—l ’

@A) b=1 (m-2)2,  j=(m—2)2+k—kns -,
(m—2)/2+ ki

m2, j2mi2 4l —Kms -

Again the density function is given by (4.7), (4.8), (4.9) and (4.10) where
the quantities A, to D, are calculated in a similar fashion as in the case,
m-odd. The procedure of getting A,, A{” from B, and C,, C{” from D,
is given in the discussion after (4.42). Therefore we will give only B,
and D, here. These are calculated with the help of the following
lemmas.

LEMMA 4.4. For,
(448) 7:+km—2('l-1)—kmgjéi‘l'km-ﬂ—km ’ i_—-l' 21 Ty m/2 ’

(4.49) [a—(m+1)/24kn+ 51 (@—1/2+ k) (@—3/2+FK,)- - -
Ia—(m—-1)/2+k.], ot a=(m+1)[2—k.—7,

(m—2)/2—1

=4,="H" ronfz—j—lka=t-+kud ") / {1 (<1~

]
x;l;l; (—km_j+i+km_2(i_l)—1—t)‘—1 [ (__j_'_l)l} ,
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where
(4.50) a=—1+kp+J—t~Kn_gi-n , b=kn-2i-pp—Fu-sci-n
with the convention that

(4.51) ‘"’ﬁ“1’(m/2-j-k,,-t+k2,+,)=1, if m—2i<0.

LEMMA 4.5. For,
(4'52) i+km-(2(—l)—km—l§j§i+km—(2i+l)—km-l ’ i=1, 2;' ) m/2 ’

(4.53) (a—m/24Fn_,+ T @+ k) (@—14Kp)- - -
F[a_(m_z)/2+km—l] ’ atl a=m/2_km—l_j ’

(m=2)/2-%

=d= ]| r(m/z—j—k,.-1+ku+l—t)r'-(1)/{]1(-1-—t)*

=0
4
X ;[;I; (=J—1+kn-ai-v—Fn—t)" -+ (*j-{-l)l} ,
where
(4.54) c=—14j—t+kn1—Kn-csi-p » d=Fpc—Kn_cs1-5 ,

with the convention that

(m-8)/2-1

(4.55) ‘ﬂ; Irm[2—j—Fkp+lp,—t)=1, if m—(2i+1)<0.

From Lemma 4.4 we get B, and from Lemma 4.5 we get D,. These
are given below.

{m=2)/2
(4.56) B=a4{ 1 Tlm+1)/2—kn—j+kuu—t1} ,
where 4, is given in (4.49).

(m-3)2 .
(4.57) D°=Az{ il I’[(m—l)/2—k,,-,—-_1+kg,+2—t]},

where 4, is given in (4.53).
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