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P r o o f  o f  a C o n j e c t u r e  o n  t h e  
S u p p o r t s  o f  W i g n e r  D i s t r i b u t i o n s  

A.J.E.M. Janssen 

Communicated by John J. Benedetto 

ABSTRACT. In this note we prove that the Wigner distribution of an f ~ L 2 (R n) cannot be supported 
by a set of finite measure in R 2n unless f = O. We prove a corresponding statement for cross-ambiguity 
functions. As a strengthening of the conjecture we show that for an f ~ L2(R n) its Wigner distribution 
has a support of measure 0 or c~ in any half-space ofR 2n. 

1. Introduction 

Benedicks [1] has shown that when f ~ L 1 (]R n) satisfies 

I~( f ) l  ~(fi)  < o o ,  (1.1) 

then f = 0. Here Z ( f )  is the set { x l f ( x )  # 0}, I3(f)  is the set {Y I f(Y) # 0} with 

f ( y )  = ( . T f ) ( y )  = f e -27rix'y f ( x )  d x ,  y 6 JR" , (1.2) 

the Fourier transform of f ,  and I I denotes Lebesgue measure. We refer to [2, Section 7], for historical 
notes and further comments on this theorem. 

It is conjectured in [2, Section 7], that when f ~ L2(R  n) and I E ( W ( f ,  f)) l  < c~, then f = 0. 
Here 

E ( W ( f , f ) ) =  l ( t , v )  E R2n I W ( f , f ) ( t , v )  ~ O }  , (1.3) 

and W(f, f )  is the Wigner distribution of f .  When f, g ~ LZ(•n), we define the Wigner transform 
of f and g as  

f ( 1 ) g . (  1 ) W ( f , g ) ( t , v ) =  e -2rriux f t + ~ x  t - ~ x  d x ,  t, v E ~ n ,  (1.4) 
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and when f = g in (1.4), we speak of the Wigner distribution of f .  We refer to [2, Section 6], and [3, 
Ch. 1, Sections 4, 8], for more information on Wigner distributions, and to [2, Section 7], for some 
partial results regarding the conjecture. The author was kindly informed by Folland that the conjecture 
occurred during discussions between Mustard and Sitaram who noticed, for instance, that one must 
have ])-'~ (W(f ,  f ) ) [  = c~z when f 6 L2(]~ n) is even or odd. It was furthermore observed by 

Mustard, see [2, Section 7], that(as W(f ,  f )  e L I (R  2n) when f e L2(R n) and IE (W(f ,  f ) ) l  < oo) 
one could use Benedicks' theorem with f e L 1 (]Rn) replaced by W(f ,  f )  e L 1 (l~2n) once one would 
know that IE (.Y" (W(f ,  f ) ) ) l  < oo as well. 

2. Proof of the Conjecture 

We shall now present a proof of the conjecture. It is based on the following formula, 

f f w ( f l ,  f2) (t, v) W* (gl, g2) (S --  t ,  11, - -  U) e -2rr ia ' t+2rr ib 'v  dt dv 

___ (11 ) 1 e_Zria.s+rrib. t t  W ( f l ,  gl)  l S  + 4 ' ~/Z + ~a  
4 n 

4 '  ~a , 
(2.1) 

valid for / '1 ,  f2, gl,  g2 6 L2(R n) and s, /z,  a, b e IR n. This formula, see Section 3, is a straight- 
forward consequence of Moyal's formula, see [3, Ch. 1, Section 8, (1.93)], and a special case, viz. 
where f l  = f2 = gl = g2 and a = b = 0, has been used already in [4, Section 6, (75)], to study 
the interference phenomena present in Wigner distributions. Also, formula (2.1) can be regarded as 
a generalization of Siebert's self-transform property [5] for ambiguity functions, see (2.4) and (2.5) 
below, for which the choice f l  = g2 = f ,  f2 = gl = f ,  s = / z  = 0 must be made. Formula (2.1) 
was found by Hlawatsch in 1986, see [6, 7], formula (7.77-78) and also [8], and, independently, by 
Nuttall in 1989 [9]. 

To prove the conjecture, we le ts , /z  e R n be fixed, and we choose f l  = f2 = gl = g2 = f e 
Lz(R n) in (2.1), so that 

f f W(f ,  f ) ( t ,  v) W*(f,  f ) ( s  - t, lz - v) e--2rr ia.t + 2rr ib.v dt dv 

le_Jria.s+rrib.;z ( 1  l b  1 1 ) 
-- 4--- ~ W(f , f )  ~ s + 4  ' ~ / z + ~ a  

4 ' ~/z - ~a 

for all a, b e ~n. The function 

(2.2) 

X(t, v) = W(f ,  f ) ( t ,  v) W*(f,  f ) ( s  - t, lz - v) , t, v 6 ]R n , (2.3) 

which is in L 1 (R 2n) since W(f ,  f )  e L 2 (R2n), has a support of finite measure when [E (W(f ,  f ) ) l  < 
oo, and so has its Fourier transform as we see from (2.2). Hence, Benedicks' theorem yields that 
X = 0. Since s , /z  e R n are arbitrary, it follows easily that W(f ,  f )  = 0, i.e., f = 0. 

When we take f ,  g e L2(R"),  and we define the cross-ambiguity function A(f ,  g) of f and g 
by 

a ( f , g ) ( p , q ) =  f e 2 7 r i q ' Y f ( y + 2 p ) g * ( y - ~ p ) d y ,  p, q e ] R  n, (2.4) 
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then it follows in a similar fashion that f = 0 or g = 0 whenever I~ (A(f ,  g))[ < co. For this we 
use the fact 

W ( f ,  ~) (u, v) = 2 n A ( f ,  g)(2u, 2v) = W* (,~, f )  (u, v ) ,  (2.5) 

valid for all u, v ~ R n, where we have set ,~(x) = g ( - x ) ,  x ~ R n, together with formula (2.1) in 
which f l  = g2 ---= f ,  f2 = gl = g is taken, to conclude that a ( f ,  g) = 0 whenever IN ( a ( f ,  g))l < 
co. Since A ( f ,  g) = 0 if and only if f = 0 or g = 0 we get the result. Obviously, we now also have 
that f 6 L2(R) is the null function whenever its short-time Fourier transform Sg f = tA( f ,  g)12, 
using a window 0 r g 6 L2(R), vanishes outside a set of  finite measure. 

The argument used to prove the conjecture gives somewhat more. The extension of  the conjec- 
ture given below is significant since it shows, for instance, that supporting sets of Wigner distributions 
cannot have finite-measure protrusions. 

Corol lary  1. 
Assume that f E L2(~;~n), and let H be any half-space in ]~2n. Then 

I{(t, v) ~ HI  W ( f ,  f ) ( t ,  v) 7~ 0}l = 0 or oo.  (2.6) 

P r o o f .  We start by noting that we can write (2.2) as 

l e - ~ r i a ' s + T r i b ' l ~ ( l  I b  l / z +  1 ) 
()rt .Y'v X) (a, - b )  = ~ , X ~s + 4 ' ~a  (2.7) 

with X given for s , /z  6 R n by (2.3) and 5rt, 5rv denoting Fourier transforms with respect to the 
respective variables. 

By using symplectic transformations, see [3, Ch. 4, Section 2], we can assume that H is given 
by 

n = { (t, v) I t = (tl . . . . .  tn )  E • n ,  t l  < O, v E ]~n} . (2.8) 

Suppose that the set in (2.6) with H in (2.8) has finite measure; we must show that it has measure 0. 
For any s = (sl . . . . .  Sn) 6 R n, sl < 0,/z 6 R n we have that X of (2.3) has support of  finite measure 
since a~ least one of  tl and s l ' -  tl is negative when tl 6 R. Hence, (2.7) and Benedicks' theorem 
yields that 

W ( f ,  f ) ( t ,  v) W*(f,  f ) ( s  - t , /z  - v) = 0 ,  t, v E R n , (2.9) 

with arbitrary s = (sl . . . . .  Sn) ~ R n, sl < O, lz ~ R n. Now when (t, v) 6 H, we use (2.9) with 
s = 2 t , /z  = 2v to conclude that W ( f ,  f ) ( t ,  v) = 0. Hence, W ( f ,  f )  vanishes on H, as required. 
[] 

We finally note that the Corollary remains valid, with essentially the same proof using (2.5), 
when we replace W ( f ,  f )  by A ( f ,  g) in (2.6) with g 6 L2(Rn). 

3. Proof of Formula (2.1) 

For f ~ L2(Rn), x E R n, y ~ R n we let 

f x , y ( t )  -~ e 2rriy't f ( t  -- x)  , t E N n . 

Now when s, t , /z ,  v, a, b ~ N n and gl,  g2 E LE(Rn), we have 

W (gl,  g2) ( s  - -  t ,  lz  - -  v )  e 2rria't-ETrib'u = W (hl ,  hE) (t, v) , 

where 

hi = (@l)s,~)~ ~ , h 2 =  ((g2)s~t) �89 �89 " gb ,~a  , - , - -  

(3.1) 

(3.2) 

(3.3) 
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Hence Moyal ' s  formula, see [3, Ch. 1, Section 8, (1.93)], 

ff W ( f l , f 2 ) ( t , v ) W * ( h l , h 2 ) ( t , v ) d t d v  

= ( f  fl(x)hT(x)dx) ( f f2(y)h~(y)dy)* , (3.4) 

yields formula (2.1) on using 

f f l ( x )  h*l(X) dx 

( 1 )  n ( _lb 1 1 ) = ~Tr e�89 Jrig'b-rrilz's-�88189 W ( f l ,  g l )  ~s  -4- 4 ' ~/z q- ~a  (3.5) 

and a similar formula for the second factor at the right-hand side of  (3.4). 
Note added in proof. The author was kindly informed by Prof. G.B. Folland that Dr. P. Jaming 

and Dr. E. Wilczok have obtained proofs, independently of  one another and of the author, of  the 
Mustard-Sitaram conjecture (to appear in C.R. Acad. Sci. Paris Series 1, Vol. 399, 1998) and 
of the result on the short-time Fourier transform proved in Sec. 2 (in E. Wilczok, Thesis, "Zur 
Funktionalanalysis der Wavelet- und Gabortransformation," TU Muenchen, 1998), respectively. 
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