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A B S T R A C T R I~ S U M I~ 

This paper describes a number of statistical methods 
to estimate, through an analysis of in-place test results, 
the in-place compressive strength of concrete expressed 
as strength of standard specimens. The evaluation of the 
probable existence of a linear correlation as a function of 
sample size is discussed. The regression laws and the 
degree of reliability of the estimates obtained is also dis- 
cussed. A criterion is proposed for the choice of the 
number of points to be used in the regression. Finally a 
method is proposed, knowing the number m of repli- 
cated in-place tests, to estimate the equivalent number n 
of replicated tests performed on standard specimens. 

Cet article pr&ente diverses m~thodes statistiques qui per- 
mettent, par le biais de l'analyse des r&ultats d'essais 'in- 
situ" l'estimation de la re'sistance du b&on exprim& comme 
r&istance sur &hantitlons standard. I1 est procM~ 21 l'&atua- 
tion de l'existence probable d'une corrdlation lin&ire en fonc- 
tion de la taille de l'dchantillon. I1 est procMd 21 l'analyse des 
lois de rdgression, ainsi que du niveau de fiabilitd des estima- 
tions obtenues. II est proposd un crit&e pour l'&aluation du 
nombre de points a employer dans la rdgression. Enfin, il est 
proposd une mdthode qui permet, pour un nombre m d'essais 
ffpdtds selon les m&hodes non-destructives, d'estimer le 
nombre n dquivalent d' essais rdpdte's sur &hantillons standard. 

1. I N T R O D U C T I O N  

In many situations, the compressive strength of the 
concrete making up a structure cannot be evaluated by 
performing compressive strength tests on standard - 
cube or cylinder - specimens manufactured with the 
same concrete (potential strength); it therefore proves 
necessary to resort to indirect methods working on in- 
place concrete. Numerous techniques have been devel- 
oped to this end, ranging from the classical core tests to 
various non-destructive methods, such as pull-out, hard- 
ness, penetration resistance tests, or any of the other 
methods described in the literature [1-3]. 

In general, while the use of indirect methods is rather 
easy when it comes to the execution of in-place tests, a 
correct interpretation of the experimental findings is not 
as straightforward. While keeping in mind that it is not 
possible to define an "intrinsic" strength of concrete [4] 
and that even "potential" strength is but a conventional 
notion adopted for purposes of evaluation, the aim is to 
fine-tune a method to work out an estimated value of 

in-place compressive strength from indirect test, which 
may be expressed as the strength value on standard speci- 
mens [5]. This will yield strength values which generally 
do not coincide with potential strength, even when the 
tests are conducted on the same type of concrete. 

To this end, it proves necessary first of all to know 
the relationships linking the indirect test measurements 
with the corresponding standard test values; these rela- 
tionships can be derived from experimental investiga- 
tions (conducted on the same concrete) enabling the 
results of indirect tests to be compared with those of 
standard tests. Obviously, the testing campaign has to be 
planned and interpreted by means of statistical methods, 
by taking into account the fact that, as a rule, only a rela- 
tively limited number of test data is available to serve as a 
statisncal sample for the formulation of estimates applic- 
able to all the concrete considered and hence to the 
entire population. 

To study the relationships worked out on the basis of 
a comparison between indirect and standard tests, it is 
advisable that both standard and indirect tests be per- 
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formed, as far as possible, on standard specimens. This is 
so because if the tests are performed on structural mem- 
bers, albeit manufactured with the same concrete, new 
elements of uncertainty are introduced [5, 6]. 

It should also be noted that if the tests conducted on 
standard specimens are compared with core or micro- 
core tests, we shall be able to express the results in the 
same units of measure, which facilitates matters. When it 
comes to interpreting the results, however, it should be 
kept in mind that the values of strength obtained from 
this type of indirect tests cannot be directly linked with 
those obtained from tests on standard specimens. 

In most  non-des t ruc t ive  methods,  instead, the 
strength values obtained on standard specimens will have 
to be compared with data measured in units other than 
strength. 

At any rate, regardless of the testing method selected, 
the procedures for the estimate of direct and indirect 
relationships are characterised by several common fea- 
tures, as discussed below. 

2. DISTRIBUTION OF THE DATA 

Let us assume we have tested N types of concrete, for 
each of which n standard specimens (cubes) have been 
subjected to compressive strength tests, and we have 
obtained m indirect test results. We may consider the N 
groups of cubes as N samples of size n, each of which has 
been taken from a different population of cubes; simi- 
larly, for the indirect tests, we shall have N samples of 
size m,  each sample having been taken from a different 
population. 

The first problem to be addressed is the type of distri- 
bution of each of the 2N populations of origin of the sam- 
ples, in particular, by considering whether or not the 
hypothesis of  a normal distribution, as is generally 
assumed in the drafting of reinforced concrete codes, 
applies. To this end, we can use different tests, including 
the )~2 test, which supplies reliable answers when sample 
size is large enough, and the Kolmogorof-Smirnov test 
which can be used on smaller sized samples, as is generally 
the case in investigations of this sort [7]. Finally it should 
be noted that in the literature we can also find examples of 
asymmetrical distributions, other than gaussian distribu- 
tions [8-10], for which it sometimes proves possible to 
adopt a log-normal distribution model [2, 9-11]. 

At all events, it is obvious that the type of distribu- 
tion to be adopted will necessarily be de termined  
through an examination of the test data with the aid of 
statistical methods, through a process, that is, which 
inevitably calls for assumptions ofa probabilistic, not of a 
deterministic nature. 

If the outcome of normality tests is satisfactory, the 
procedures described below will be supported by strong 
assumptions. If it is not, this means that the proposed 
techniques may still be used, but the reliability of the 
estimates will be poorer. 

3. CORRELATION 

If the N concrete types tested are quite similar to one 
another, it often proves possible to identify a functional 
link between cube compressive tests and the results of 
indirect tests. To this end, it might be useful to process 
the data concerning the mean values, to identify the 
function correlating variable Y, i.e. the mean strength of 
the cube sample worked  out  on the basis of  the 
strengths, y, of the individual specimens, with variable 
X,  i.e. the mean value of the results, x, of indirect tests. 

By working on mean values, albeit worked out from 
samples, it proves possible to reduce quickly the uncer- 
tainties as to the estimate of the population values, since 
the standard errors of the mean on cube or indirect test 

Gy . o* x 
(YY = ~ , (YX = 

decrease rapidly with increasing sample size (n and m), 
and consequently the two variables to be correlated can 
be worked out with great accuracy, provided that the 
experimental basis is large enough. 

Going back to the functional link, the simplest and 
commonest case is a linear correlation between the two 
variables, X and Y. An estimate of the validity of this 
correlation can be supplied by the coefficient of linear 
correlation 

cov(X,Y) (13 p= 
(~XO*y 

from which, with the sample data, it is possible to obtain 
an estimator, r, to be used to evaluate whether or not the 
linear correlation model is appropriate. 

To this end we may perform a significance test by 
taking as null hypothesis (Ho) the value of the coeffi- 
cient of correlation corresponding to the absence of cor- 
relation, 9 = 0. This can be done by making use of the 
transform of the random variable r 

r~/N- 2 (2) 
~Jl - r 2 

which, as is known [12], follows a Student distribution 
with N - 2 degrees of freedom in the case of no correla- 
tion between the X and Y variables. 

Having determined the degree of significance, c~, the 
non correlation hypothesis will be discarded in favour of 
the alternative hypothesis if the experimental data verify 
the inequality 

r ~]N~-2 >t  
1"2;N-2 (3) 

where t l_cq 2. N 2 is the quantile of  order 1-ct/2 of  
Students random variable with N - 2 degrees of free- 
dom. 

Fig. 1 and Table 1 supply, as a function of the size of 
the sample N and for ot = 0, 0.5 and 0.01, the minimum 
values of I r[ for which exp. (3) is verified. In other 
words, the threshold values of r, in absolute terms, 
which enable us to reject, with a probability level of 95% 
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N r 95% r 99% 

6 0.811 0.917 

7 0.755 0.875 
8 0.707 0.834 
9 0.666 0.798 

10 0.632 0.765 
11 0.602 0.735 
12 0.576 0.708 
13 0.553 0.684 
14 0.532 0.661 
15 0.514 0.641 
20 0.444 0.561 
30 0.361 0.463 
40 0.312 0.403 

Table I and Fig. 1 - Threshold values for r as a function of 
sample size and 95% and 99% probability levels. 

and 99%, the hypothesis of p = 0, and consequently, to 
accept the existence of the correlation. As can be seen, 
these threshold values decrease fast with increasing N. 

Obviously, r being the same, a bigger sample will 
supply a greater probability of p ~ 0 and vice versa, sam- 
ple size being the same, a greater probability level will 
require higher values of r. An examination of the values 
of r cannot therefore be limited to the pure observation 
of the numerical value regardless of the number of 
points. At all events, a situation in which the tests per- 
formed lead to the acceptance of the p = 0 hypothesis 
does not rule out the existence of functional links other 
than linear correlation. 

4. REGRESSION 

Once the linear correlation hypothesis has been 
accepted, the least square method makes it possible to 
identify the regression line: 

= a + bX (4) 

In this connection it should be noted that in order to 
improve the reliability of the regression several variations 
to ordinary OLS analysis have been proposed [2, 11, 13] 
so as to avoid a number of drawbacks associated with the 
scatter of  test data in indirect tests, x. In most cases, 
however, since the uncertainties as to the estimate of X 

can be reduced quite easily, it is possible to proceed with 
the customary methods. 

In actual practice, however, using the regression line 
alone to estimate the mean strength on standard cubes, 
Y, on the basis of the mean value of the results of indi- 
rect tests, X, has little practical validity in view of the fact 
that, even if the value read on the straight line at a 
generic X i represents a punctual estimate of the mean 
value of Y conditional to the X i taken into considera- 
tion, by doing so we disregard the fact that this result has 
been worked out from sample data, and therefore it 
proves possible to identify different lines with varying 
samples. This is obviated by identifying, at a desired con- 
fidence level (1 - 0t), the confidence interval for the 
regression line, whose width is: 

i (X-- X)2 (5) 
D?(X)= 2t2;N_aSyi x --~ + E (  xi  _ 2)  2 

where t_, 2. N 2 is the quantile of order c~/2 of Students 
variableU4vlth-N - 2 degrees of freedom and Svl x is the 
standard error of estimate 

Sv,x (6) 

Users, however, may be more interested in an esti- 
mate of  Y, rather than its mean value: this can be 
obtained, again at a desired confidence level (1 - ct), by 
considering the confidence intervals of this variable, 
whose width, is given by: 

Dy(X) = 2t~ Sy, x l + 1_] (X - 2)  2 
~;N-2 1 E ( X i  _X) 2 

(7) 

the confidence level being the same (1 - a), obviously 
turns out to be greater than the width of confidence 
interval of  the regression line. 

However, for the estimate of cube strength on the 
basis of a different parameter, we should consider that, in 
general, an overestimate is more dangerous than an 
underestimate, and therefore it is advisable to select a 
confidence level ensuring that the risk of the real values 
of Y being lower than the estimate is limited. 

This can be achieved by taking into consideration the 
lower limit of the confidence interval expressed by: 

tot Sylx /1+ i + ( 1 - 2 )  2 
V : a + b X -  ~;N 2 ~ N E ( X i _ 2 )  2 (8) 

where 0t/2 is the risk of making an overestimate error 
which is deemed acceptable. 

This is illustrated in Fig. 2 which shows an example 
of a correlation line and confidence intervals taken from 
an earlier experimental investigation [6]. The Y variable 
indicates mean strength values obtained on cubes, whilst 
the X indicates mean strength values obtained on micro- 
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Fig. 2 - Example of two-sided 80% confidence intervals for 
mean cube strength Y ( . . . .  ), and for the regression straight line 

( . . . .  ) as a function of  mean microcore strength, X. 

cores drilled from the same concrete types. 
The inner band, represented by the broken curves, 

shows the 80% confidence interval for the Y line, i.e., 
for mean Y for a given value of X. The outer band 
shows, for each value of X, the limits between which it is 
forecast that 80% of the individual observations will lie; 
it should be noted that at point X = X, the width of the 
intervals is minimum. 

5. NUMBER OF POINTS FOR THE 
REGRESSION 

At any rate, we are faced with the problem of how 
many points N are necessary to obtain an estimate of the 
regression, o r  to evaluate the lower confidence limit 
necessary t6 ensure that the values of ~" and Y, supplied 
by equations (4) and (8), are estimated with an accept- 
able degree of accuracy. 

The ACI recommendations [2], which repropose a 
criterion formulated by Carino [11], indicate an optimal 
number of points (that is, of X, Y pairs) of between 6 
and 9. 

According to the proposed technique, from an exam- 

ination of the Dg(X)/syi x ratio between exp. (5), as cal- 

culated at point X = X, and equation (6), as a function of 
size N, the contribution of additional points after the 
first 9 would turn out to be negligible. It should be 
noted, however, that we are more interested in minimis- 
ing the width of the interval for the estimate of Y, not 
the mean value of Y, and therefore it seems more advis- 

able to consider the Dg(X)/syi x ratio. Working with a 

confidence level of(1 - 0t) = 0.95, from Table 2 it can be 
seen that by adopting the method proposed by the ACI, 

for N = 6 and N = 9, respectively, we get: D?(X)/sy,x = 

2.267 and D?(X)/Syi x = 1.577. These values show that 

the width of the interval decreases to a considerable 
extent if we use 9 as opposed to 6 pairs. On the other 

hand, by taking into consideration the Dy(X)/syix 

ratios, for the same two sample sizes, we get, respec- 
tively: 5.999 and 4.986, with a decrease which is even 
more appreciable. In either case, these differences in val- 
ues show that the choice of 6 points only leads to much 
less accurate results compared to the choice of 9, and 
that the suggested interval is affected by considerable 
variability. In any case, the choice of N = 9 seems best, 
as is obvious, since the estimates will improve with 
increasing size. 

Whether or not N should be increased also depends 
on other considerations, of a practical nature, and there- 
fore it might be useful to establish parameters to help 
decide whether the value of N should be increased 
beyond a limit to be defined. 

If we examine the Dq((X)/syi X ratios it might be con- 

venient to use, as proposed by Carino [11], the increment: 

D g , N ( X ) -  D g , N - I ( X )  (9) 
d?, N - Syix 

If we consider the D v (X)/SyI X ratios, instead, it might 

be advisable to take into consideration the increment: 

dy,N = Dy,N(X)- Dy,N-I( X ) (10) 
SyIx 

where  Di,N(X ) and D?,N_I(X); Du ) and 

Dy,Nq(X ) indicate equations (5) and (7) as a function 

of a size variation of 1. 
Equations (9) and (10), whose values are given in 

Table 2 and plotted in Fig. 3, measure the variation in 
the width of the confidence intervals expressed by equa- 
tions (5) and (7) when the points underlying the regres- 
sion are increased from N - l to N. 

As to the values taken on by equation (10), it can be 
seen that they decrease rapidly over an initial portion, 
whilst an asymptotic trend dy, N ~ 0 is observed for 
N ---~ ~. 

A limit to the value of N can be selected by establish- 
ing a threshold value delimiting a range within which 
the contribution of a few additional units might seem 
non negligible. For instance, if we accept for the decre- 
ments a threshold value dy N -< 0.05, which corresponds 
to N = 15, we shall find that for 10 < N < 15 the decre- 
ments take on values of 0.149 _< dy, N < 0.049, whilst 

N=15 
their sum within the same interval y ]dy ,  N = 0.524 

N=10 

turns out to be very close to the sum of the decrements 
N=9 
~-'dy, N = 0.511. This shows that in the reduction of the 
N=8 
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Table 2 - Width of confidence intervals for g, Ds((X)/syi x 

and for Y,Dy(X)/syi x and values of their increments, 

d~, N and dy,N, as a function of number of points N 

a D? (X)/Sy, x ds By(X)/Syix dy, N 

6 2.267 -0.579 5.997 -0.975 
7 1.943 -0.323 5.497 -0.500 
8 1.730 -0.213 5.191 -0.306 
9 1.577 -0.154 4.986 -0.205 

10 1.458 -0.118 4.837 -0.149 
11 1.364 -0.094 4.725 -0.112 
12 1.286 -0.078 4.638 -0.087 
13 1.221 -0.065 4.568 -0.070 
14 1.165 -0.056 4.511 -0.057 
15 1.115 -0.049 4.462 -0.049 
20 0.940 -0.029 4.306 -0.024 
30 0.748 -0.014 4.164 -0.010 
40 0.639 -0.009 4.092 -0.006 
80 0.447 -0.003 4.025 -0.001 

120 0.361 -0.002 3.976 -0.001 

6 7 8 g 10 11 12 13 

/ ,  

/. 
I 

I 

I 

I 

~4 15 16 17 18 19 20 N 

~ dq, N . . . .  dy, N [ 

Fig. 3 -  d~, N and dy. N increments in thewidth of confidence 

intervals for regression line ~( and variable Y as a function of 
number of points N. 

width of the confidence intervals for the Y's, the addi- 
tion of 6 points beyond the original 9 corresponds to 
adding 2 points beyond 7, whilst beyond the threshold of 
N = 15 it would take the addition of over 100 points to 
obtain a similar result. 

Hence, it would seem justified to raise the number of 
N from 9 to 15. 

6. NUMBER OF EQUIVALENT TESTS 

Several problems, including the estimate of mean and 
characteristic cube strength on the basis of indirect tests, 

call for an evaluation of the number rn of repeated 
indirect tests, which, at a certain strength level, 
corresponds to a number n of tests on cubes. 

If the indirect test is a core or microcore test, a 
solution can be obtained by imposing that the 
width of the confidence intervals for the means in 
cube tests be the same as in indirect tests. With the 
symbols used previously, this entails the equality: 

Sy = s x (11) 
t Y ~ -  n tX~m 

where r and t represent the quantiles of order c~/2 7Y x 
of Students variable for n - 1 and m - 1 degrees of 
freedom, respectively, whilst s. and s x stand for the 

�9 Y 
sample estimates of  the standard deviations for 
cubes and for indirect tests. Knowing the number 
of indirect tests, m, and the Sx/S. ratio (which must 
be determined from test data I14]), by means of 

ty 
equation (11) we may obtain the value of x/nn" 

ISO 2602 provides a table listing the values of this 
ratio as a function of sample size and in relation to the 
(1 - or) confidence level. From this table it is possible 
to determine the value ofn. 

If the indirect test, instead, supplies a value other 
than the value of strength, as is the case with most non- 
destructive methods, since we are dealing with a quan- 
tity of a different nature we are no longer able to equate 
the means of the results of the direct and indirect tests 
nor can we equate their confidence intervals. 

At any rate, the latter can be expressed by the follow- 
ing relationships: 

Sy (12) 
Y •  -~n 

for the cube tests, and 

X + t  Sx (13) 
- x ~ m  

for the indirect tests. 
Then, by dividing equation (12) by Y, i.e., the mean 

of  strength values determined on standard specimens, 
and exp. (13) by X, i.e. the mean of the values obtained 
from indirect tests, we get, respectively: 

Cvy (14) l •  

and 

1 + t x Cvx (15) 

where C. and C w denote the coefficients of variation in 
vy . . . .  

direct and indirect tests, which, as is known, are a- 
dimensional numbers supplying a measure of the vari- 
ability of the data. 

A comparison between equation (14) and equation 
(15) makes it possible to obtain - from parameters m (on 
which t x depends) and Cvx (i.e., the coefficient ofvaria- 
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ty 
tion of non-destructive tests) - an estimate of ~-n' and 

hence the estimated number n of tests on standard speci- 
men corresponding to m, provided that it proves possi- 
ble, on the basis of  the experimental data, to establish a 
Cvx/Cvy ratio. 

As a solution to this very problem, ACI Committee 
228 proposes [2] the following relationship 

m = 2 (Cvx/Cvy) 2 (16) 

which applies in the assumption that the tests on stan- 
dard specimens are 2. Equation (16) is derived from a 
more general relationship: 

m = n (Cvx/Cw)2 (17) 

presented in an earlier document [15] by the same 
Committee. In either case, however, the effects of the 
terms t 2 and t 2 are overlooked, with numerical conse- 

y x 

quences which may turn out to be non-negligible. 

7. CONCLUSIONS 

The process leading to the formulation of relation- 
ships for the in-place estimate of  concrete strength 
through non-destructive methods, or any kind of indi- 
rect methods, calls for the use of statistical methods to 
process the experimental data to be used as a basis to 
work out the relationships. It is also necessary to evalu- 
ate the type of distribution of the data and, in particular, 
to determine through tests whether the distributions are 
normal or not. 

When processing the data in order to identify possi- 
ble correlations between strength as determined on stan- 
dard specimens, y, and the results of indirect tests, x, it is 
advisable to work on the mean values, Y and X, because 
the standard errors of  the mean decrease fast with 
increasing sample sizes, n and m. 

The evaluation of the likely existence of a linear link 
between Y and X through the correlation coefficient, p 
or r, cannot be limited to the consideration of its numer- 
ical value, but has to be performed as a function of the 
number N of the pairs of X, Y values. 

The regression lines, Y vs. X, or, for that matter, any 
other relationship of a different sort between the two 
variables, often prove of little practical use if they are not 
accompanied by the confidence intervals for the regres- 
sion lines themselves and for the individual observations. 

From an analysis of the law of reduction in width of 
the confidence intervals for the individual observations 
(which supplies an indicator of the increase in the relia- 
bility of the estimates as a function of the number of 

points used to obtain the regression line), it is possible to 
propose N = 15 as the recommended number of (X, Y) 
points to be used. 

Finally, a method has been defined which, knowing 
the number of tests conducted with replicated non- 
destructive tests, m, and the resulting value of quantile 
t x, makes its possible to work out, from a comparison of 
the confidence intervals for the Y and X means, an esti- 
mate of the equivalent number of replicated tests, n, 
conducted on standard specimens. 
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