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I t  was previously shown that  the abstract biological systems called ( .~,  ~)-systems could 
be regarded formally as sequential machines, and that  when this was done, the reversibil- 
i ty  of environmentally induced structural changes in these systems was closely related to 
the strong eonneetedness of the corresponding machines. Lr~ the present work it is shown 
that  the sequential machines arising in this way are characterized by the property tha t  the 
size of the input  alphabet is very small compared with the size of the set of states of the 
machine. I t  is further shown that  machines with this property almost always fail to be 
strongly connec~ l .  Therefore, it follows that  one of the following alternatives holds: 
either most environmentally induced structural alterations are not  environmentally 
reversible, or else many  mappings in the category from which the (J/t ' ,~)-systerns are 
formed must  not  be physically realizable. 

1. Introduction. In  a previous note (Rosen, 1964), we showed tha t  an arbit- 
rary ( ~ ,  ~)-system could be represented as a sequential machine. We pointed 
out at tha t  time tha t  certain peculiarities arose in this representation, which 
have no counterpart in the general theory of sequential machines. In  the 
present work, we explore these peculiarities somewhat further, and point out 
certain connections between our representation and some important problems 
relating to the realizability of abstract ( ~ ,  ~)-systems, and to the reversibility 
of environmentally induced alterations in the structure of such systems. 

We recall that  it was shown in ~oc. cir. tha t  a general sequential machine was 
specified by the set S of its states and a subset 2 of the set H(S, S) of all map- 
pings of S into itself. This subset 2 is connected with the "input alphabet" 
of the machine in a 1-1 fashion via the next-state map 5; explicitly, we have the 
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correspondence r determined by the relation r 8(~, 8), where 
Ca e 92, ~ E ~l, s e S. I t  was further shown that,  if ( f ,  ~Pl} is an (all, ~2)-system 
of simplest form, where f : A - - > B  and ~PpB-->H(A, B), then this system 
could be regarded as the sequential machine whose set of states is S = H(A, B), 
and whose next-state map is defined by 8(a, f ) = r f( f (a)), a ~ A, f E H(A,B). 
Combining the two results just stated, we find that  the input alphabet to the 
sequential machine determined by the (rig, ~)-system {f,  Cr}, which in this 
case is just A, may  be regarded as a subset 92 of the set H[H(A, B), H(A, B)]. 

A heuristic description of our argument may  now be given. Let  us denote 
the cardinality of an arbitrary set T by v(T). Our first observation is tha% if 
v(A) = a and v(B) = ~, where a and 7 need not for the present be finite, then 
the cardinality of the full set H(A, B) of set-theoretic mappings of A into B is 
v ~ and the eardinality of H[H(A, B), H(A, B)] is (~o)To. But clearly, if 
v(B) > 1, we will always have a << v(S); in fact, for a = 4 and T = 2, v(S) will be 
of the order of l019. That  is: the input alphabet A to any sequential machine 
representing the (J t ' ,~)-system must always be negligibly small compared 
with the total  number of mathematically 19ossible states of that  machine (the use 
of the term "mathematically possible" will be clarified in a moment). 

l~ext, we remark that  a sequential machine whose input alphabet is very 
much smaller than its set of states is not  likely to be strongly connected. The 
precise relationships existing between r(A), v(S), and the notion of strong 
connectedness do not seem to have been deeply explored in the literature; some 
partial results in this direction are given below. 

Finally, we point out that  not  every mapping in H(A, B) need be realizable, 
in the sense in which we have used that  term (cf. Rosen, 1962, 1963). The total- 
i ty of realizable maps in H(A, B), which we may denote by Hs(A, B), and which 
is bounded above by ~ ,  may actually have a cardinality very much less than 
re. Thus in any physical realization of the system {f,  ~Pl}, the total number of 
states which actually occur in the associated sequential machine may be very 
much less than the number (~):~ of mathematically possible states, depending 
on the size of H~(A, B) compared with H(A, B). Since we have shown (Rosen, 
1964) that  a close relationship exists between the notion of strong connected- 
ness of a sequential machine associated with an (~' ,  ~)-system A, and the 
reversibility of environmentally induced structural alterations in A, we are left 
with the following alternatives: Either most mappings in an abstract set H(A, B) 
are 2hyslcally realizable, in which case most environmentally induced alterations 
in structure are irreversible in principle, or else many mappings are not realizable, 
and most environmental alterations can be reversed. This rather paradoxical 
conclusion, which asserts roughly that  the more things it is physically possible 
to do, the fewer things can be undone, will be further discussed below. 
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2. Strongly Connected Sequential Machines. The present section is devoted 
to a brief exploration of the problem of determining how many different sequen- 
tial machines on the same set of states are strongly connected. More specific- 
ally, we wish to relate the number of such machines with the cardinality of the 
input alphabet, so that  we may calculate how probable it is, roughly speaking, 
that  an arbitrary sequential machine with a given set of states, and input alpha- 
bet of given cardinality, is strongly connected. As with all enumeration 
problems of this type, a complete solution is hindered by  formidable combina- 
torial difficulties. However, a number of partial results in this direction are 
more or less readily obtainable, and will be described below. The discussion in 
this section is restricted to machines on a finite set of states S. To simplify our 
results we shall consistently write N = v(S) and K = N N = v[H(S, S)]. 

According to our previous work (Rosen, 1964), a sufficient condition that  a 
sequential machine (S, A) be strongly connected is that  A contain a permuta- 
tion consisting of a single cycle. I f  a is such a permutation, then the probabil- 
i ty tha t  a set A c H(S, S), selected at random from the total i ty of all subsets 
ofH(S,  S), shall contain a is just  �89 (since obviously there are 2 K- 1 subsets which 
do not contain a, and hence 2 K- 1 subsets which do). Thus we can already con- 
clude that ,  in a certain sense, at  least half of all possible sequential machines 
defined on S will be strongly connected. 

This result can easily be sharpened. Since there are in general N permuta- 
tions on S consisting of a single cycle, the probability tha t  a set A = H(S, S)  
shall intersect the set H of all such permutations can readily be calculated. 
There are obviously 2 K-N subsets of H ( S , S )  which do not intersect H, and 
hence 2 K - 2 K-N subsets which do intersect H. Thus, the probability that  an 
arbitrary subset of H(S, S)  selected at random shall intersect II is just  

2 K - 2 K-N 1 
-2K ---- 1 -- ~ .  (1) 

Stated otherwise, this result shows tha t  the number of strongly connected 
sequential machines defined on S is at least (1 - 1/2 N) times the total number 
of sequential machines defined on S, or (1 - 1/2N). 2 K. We may note that,  as 
N and K increase, the total number of strongly connected machines approaches 
the total  number of machines; hence we may say that,  if the set S is sufficiently 
large, almost every machine defined on S is strongly connected. 

This result, although interesting and perhaps somewhat unexpected a priori, 
is only indirectly related to our main purpose. A moment 's  reflection will 
reveal that  most of the sets A which contribute to the total number of strongly 
connected machines in the above argument are the "large" subsets of H(S, S). 
For the "small" subsets A (i.e., those for which v(A) << K )  the above line of 
argument gives no direct information concerning the number of  sequential 
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machines on S, with input alphabet of cardinality << K, which are strongly 
connected. This question, moreover, is our primary interest. 

Let  us therefore restrict attention to "small" subsets. I f  a represents a per- 
mutation without cycles, and A is a singleton (i.e., contains only one element), 
then the probability tha t  A contains a is just  1/K. 

I r A  contains two elements, we can calculate the probability that  A contains 
a as follows: there are K(K - 1)/2 subsets of H(S,S)  which contain two ele- 
ments, and clearly only (K - 1) of them can contain a, Thus the probability 
in question is 

( K - 1 ) / K ( K ~  - 1) 2 = ( 2 )  

Likewise, if v(A) = 3, the probability tha t  A contains a may be calculated: 
there are K ( K -  1 ) ( K -  2)]2.3 different subsets A c H(S,S)  such that  
v(A) = 3; moreover, the number of  these subsets which contain a is readily seen 
to be the same as the number of different two-element subsets of S - {a}; i.e., 
is given by  (K - 1)(K - 2)]2. Thus the probability in question is given by 

(K - 1)(K - 2)/2 3 
K(K - 1)(K - 2)]2.3 = ~:" (3) 

In  general, if v(A) = r, then the probability that  a e A is given by  r/K. 
We may note explicitly that  all these probabilities tend to zero as K -+ ~ .  

Thus, if the above computations were perfectly general, it would follow that  the 
number of  strongly connected machines with alphabet A such that  v(A) << K is 
almost empty,  in a sense, when K (i.e., S)  is very large. The above results fail 
to be perfectly general for two reasons: (A) we have thus far considered only a 
single permutation a, whereas there are in general N such permutations al, 
a2 . . . . .  aN; (B) in any case, the condition st e A, where st is one of the N permu- 
tations just  specified, is only a sufficient and not a necessary condition for the 
strong r of our machine. We can dispose of the second objection 
by  noting that,  for A small compared to S (which is the only case we are inter- 
ested in) the condition expressed in (B) is "almost necessary" as well as suffici- 
ent; i.e., most of the strongly connected sequential machines which do have 
small alphabets owe their strong eonnectedness to the presence of such a permu- 
tation. Therefore, taking (B) into account does not  affect our computations 
appreciably. We further assert tha t  (A) also does not affect the limiting value 
of the probabilities derived above. We can show this by  rederiving the proba- 
bilities in question, taking (A) into account. For example, if v(A) = 1, the 
probability that  A contains at least one of the _h r permutations al, a 2 . . . . .  a N is 
just  N/K.  Remembering that  K = N N, we see that  this ratio still tends to 
zero as K (and 2V) become larger. The computation for v(A) = 2, 3, etc. is 
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complicated by the fact tha t  sets containing more than one of the a~ must be 
counted only once in determining the number of sets of desired cardinality con- 
taining at least one of the a~. For example, for v(A) = 2, the reader may verify 
tha t  the expression corresponding to (2) above is 

( g  - 1) + ( g  - 2)  + . . .  + ( K  - N )  
= 1 - / ( / ; ,  N ) ,  

K ( K -  1)/2 

where f ( K ,  N )  is a readily computed expression converging to uni ty as K and 
N increase without bound; hence the entire expression converges to zero, as 
asserted. 

The above arguments have shown that,  in effect, the smaller is the ratio 
v(A)/v(S), the more unlikely is the sequential machine determined by S and A 
to be strongly connected. The same result can be derived in a somewhat 
different manner by using methods of an asymptotic nature. These methods, 
which were developed in some detail by P. ErdSs and A. Rdnyi (1960) in their 
work on the evolution of random graphs, seem to be applicable to a wide class 
of combinatorial problems of biological interest. Accordingly, it may be useful 
to briefly sketch how these ideas may  be applied to the present problem. 

ErdSs and R~nyi (lee. cit.) consider graphs formed from & set of N vertices, 
and a number n of edges chosen at random without repetition from the totali ty 
of all possible edges. The problem is to determine how the structure of the 
graph changes as n increases relative to N; in particular, it is desired to deter- 
mine at what point in the "evolution" of these graphs a particular kind of struc- 
ture (i.e., eounectedness) becomes manifested by almost all graphs at tha t  
"evolutionary stage." This is accomplished by  putting n = n(N) ,  and study- 
ing the asymptotic behavior of the probability tha t  a particular structure is 
manifested in an arbitrary graph satisfying n = n ( N )  as N --> oo. 

The results of the above-mentioned authors which are of particular interest 
for our present purposes are the following: (A) I f  n(N) = cN, where c is a real 
number greater than one-half, then the size of the largest component of a graph 
with N vertices and cN  edges is given approximately by G(c)N, where 

G(c) = 1 - x(c)/2~ and x(c) = ~'*~ ]~k- 1 (2ce-2C)~, (4) 

wi th  probability tending to uni ty  as N - ~  ~ ;  and (B) if the above conditions 
are satisfied, then almost every point of such a graph belongs either to a small 
component, which is a tree, or to the single "giant" component of size G(c)N. 

These results can be applied to our present problems in the following way. 
Let (S, A) be a sequential machine. We shah say that  two elements s t, 8j of S 
are connected by an edge if there exists a map f c A such that  f(s~) = sj or 
f (s j )  -~- 8~ (we exclude the case i = j ,  in accordance with the usage of Erd0s and 
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R~nyi. This definition turns the set S into a graph, and it will be noted that  
the sequential machine (S, A) can be strongly connected only if the graph we 
have just defined consists of a single component, Suppose as before that  
v(S) = N, and let us restrict attention for the moment to sets A which are small 
relative to N. I f  A consists of only a single map, then the number n of edges 
in the graph we have just defined is precisely N. I f  A consist~ of a pair of map- 
pings, then the number n of edges in that  graph lies between N and 2N; if A 
consists of three mappings, then N ~< n ~< 3N, etc. In  general, the number of 
edges in the graph associated with a sequential machine (S, A) is bounded above 
by n(N) = v(A)N (and indeed, if N is large compared to v(A), it will be readily 
seen tha t  the number of edges will in general actually be equal to v(A)N). 

As we have noted previously, if the graph associated with a sequential 
machine has more than one component, then that  sequential macMne cannot 
be strongly connected. To see the meaning of the results (A and B) of Erd~s 
and Rgnyi in this situation, we must calculate G(v(A))for the various (small) 
eardinalities of A. We have approximately 

G(1) = .8; G(2 )=  ,98; G(3)-- .999.  

This means that  for N = 100, say, v(A) = 1 implies tha t  there are, on the aver- 
age, only 80 vertices of the associated graph in the largest component; v(A) = 
2 implies that  there are approximately 98 vertices in the largest component, and 
v(A) -- 3, 4, 5 . . .  implies that  all vertices lie in a single component. On the 
other hand, for N = 1000, v(A) = 1, 2, 3 implies respectively that  800, 980, and 
999 vertices lie in the largest component, etc. Thus, we see as before that  as 
the number of states of a sequential machine increases without bound, it be- 
comes more and more improbable that  a sequential machine with a small input 
alphabet will be strongly connected. We obtain, moreover, some numerical 
idea about the relative magnitudes involved. I t  mus t  be observed, however, 
that  the magnitudes so obtained are far from precise, because the strong con- 
nectedness of a sequential machine, and the connectedness of the graph which 
we have above associated with tha t  machine, are not really closely related con- 
cepts. That  is, many (if not  indeed most) sequential machines whose graphs 
are connected will not  themselves be strongly connected. As a result, the 
probability tha t  an arbitrary sequential machine, with an input alphabet of 
specified cardinality, will be strongly connected is substantially smaller than  the 
probability computed above, that  the associated graph consists of a single 
component. 

3. Applications. We have seen in the preceding section that,  in a sense, it is 
infinitely unlikely for a sequential machine (S, A) satisfying the condition that  
v(A) << v(S) to be strongly connected. According to the discussion in Section 
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1, moreover, any sequential machine arising from an (~s ~)-system will always 
have this property, if H(A, B) is taken to be the full set of setdheoretic maps of 
A into B. A computation of the orders of magnitude involved, even using the 
rough estimates of the preceding section, shows very quickly that,  if  A and B 
are finite, then any sequential machine arising from the simplest possible ( ~ ,  ~)- 
system (f, (I)~} is infinitely unlikely to be strongly connected. From the manner in 
which the magnitudes behave, it is a fair conjecture that  the same result will 
hold in the infinite ease, although this would involve a much deeper analysis 
than was carried out in the preceding section. Moreover, it is seen immediately, 
via the representation of arbitrary (r163 ~2)-systems as sequential machines, tha t  
the discussion given for the case of the simplest system carries over verbatim to 
the general case. That  is, any sequential machine which represents an ( ~ ,  ~)- 
system is infinitely unlikely to be strongly connected. 

We have seen in our previous work (Rosen, 1964) that  the reversibility of 
environmentally induced alterations of the metabolic structure of an (~g, ~ ) -  
system, by means of purely environmental means, is possible only if the associ- 
ated sequential machine is strongly connected. The result just derived makes 
it clear, however, that  it is virtually certain for any such sequential machine to 
fail to be strongly connected. Thus we must conclude that ,  in any category 
which is as rich in mappings as the full category of sets, almost all environment- 
ally induced metabolic alterations will be irreversible by purely environmental 
means (i.e., by applying a particular set of environmental inputs to the altered 
system). This should be contrasted with the results obtained in previous work 
(Rosen, 1961, 1963) which had indicated that  reversibility required the exist- 
ence of a large number of maps within the system (i.e., implied a minimal degree 
of "richness"). 

The only way to increase the probability that  a strongly connected machine 
associated with an ( ~ ,  ~)-system be strongly connected (apar~ from adjoining 
mappings to the system, as described in Rosen, 1964) is to increase the size of 
the alphabet A relative to the set of states S = H[H(A, B), H(A, B)]. The 
only way to do this is to discard mappings in S; the natural  candidates for 
pruning are the maps which are not realizable, in the sense in which we have 
employed this term. We may now ask: how many  maps will have to be dis- 
carded before it becomes appreciably probable that  the associated sequential 
machine is strongly connected? We can give a coarse estimate by employing 
some of the computations we have already carried out. We have seen above, 
for instance, tha t  in the simple case for which v(A) = 4, v(B) = 2 we had 
v(S) ~ 1019. I f  we calculate the size of the largest component of the graph 
with 1019 vertices for which c = 4 according to (4), we find this number to be 
G(4)N ~ (.999634) x 1019, which is quite significantly less than  1019; in fact 
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there will be some 3.66 • 1015 vertices which do not lie in the largest compo- 
nent. From these computations, we see that  it will be necessary to reduce the 
size of S by  a factor of at least 106 in order to satisfy even a weak necessary con- 
dition for the strong connectedness of a sequential machine on S with four input 
symbols. Stated otherwise, if the above example were to be taken seriously 
in a model for abstract biology, it would for at  least one-third of the mappings 
in S fail to be realizable (in all probability the actual number of nonrealizable 
mappings in S would be of the order of half the total  number of possible 
mappings in this case). 

I t  is easily seen how this type  of computation may be carried out in general. 
I t  should also be noticed that  results of this type have implications for the num- 
ber of realizable maps in H(A, B) as well. In  the example just discussed, for 
instance, it is necessary to reduce the size of  the set S from about  1019 to about 
10 l~ in order to render it appreciably probable that  the sequential machine 
associated with the simple ( J / ,  ~)-system {f ,  r is strongly connected (which 
is in turn sufficient to allow environmentally induced structural alterations to 
be reversed by  appropriate sequences of environmental inputs alone). From 
this it follows that  the number of maps in H(A, B) itself which are realizable 
will be approximately 10 (instead of the full 16 maps which comprise the total- 
i ty of set-theoretic maps of.4 into B), if we make the assumption that  the non- 
realizability of mappings in S = H[H(.4, B), H(A, B)] arises from the non- 
realizability of maps in H(.4, B) itself. Once again, the principles employed in 
this special example may  immediately be extended to the most general case; the 
details are left to the reader. 

I t  is hoped to provide a detailed discussion of the relation between the above 
results and our previous work on reversibility and realizability in a forthcoming 
paper. 
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