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The effects of structural features on various properties of enzyme systems are studied. 
Some of the effects are: in a homogeneous reaction, enzyme compartmentalization decreases 
the rate; in a heterogeneous reaction, compartmentalization increases the rate. The steady- 
state concentration of intermediates is larger in a non-uniform than in uniform systems. Perio- 
dicities do not generally occur in the common kinetic systems; they do occur in autocatalytic 
systems, but compartmentalization reduces their probability of occurrence. The conditions 
for overshoot are different for uniform and non-uniform systems. Multiple stable steady states 
are not a common occurrence among biologically typical reactions; they do occur in combined 
autocatalytic and surface systems (a mechanism for the gene position effect is suggested by 
this property). The local pH is affected by the enzyme aggregation as well as by the geometry 
of the enzyme structure. A 2-step system can give rise to the characteristic rate vs. pH curve, 
where the optimum is not necessarily at isoelectric point. The expression for the osmotic pres- 
sure inside a spherical particle is deduced. The pressure is shown to be dependent on the 
radius. The rate inside a cell particle is shown to be determined by the shape of the particle. 

Biologists have recognized for some time tha t  a living system (cell, 

organ, organism) is not  simply a homogeneous volume in which chemical 

reactions proceed. I t  represents, rather, a structure of definite spatial or- 

ganization, which organization is of decisive importance in determining 

the behavior of the cell. This fact has received additional recognition in 

view of recent developments in cytochemistry,  where it has  been shown 

tha t  mitochondria are the seat of whole enzyme systems in a large variety 

of organisms, ranging from bacteria (Mudd, 1953) to insects (Levenbook, 

1953), plants  (Bonner and Millerd, 1953), and mammals  (Hogeboom and 

Schneider, 1950; Green, 1952). In particular, the mito chondria contain the 

enzymes of the all impor tan t  tricarboxylic acid cycle (Kennedy and 

Lehninger, 1949) as well as of oxidative phosphoryla t ion (Potter, Lyle, 

and Schneider, 1951), and the act ivi ty of these enzymes depends decisively 

on the spatial integri ty of the mitochondria  (Green, loc. cit.). 
Additional evidence concerning the existence of structural organization 

in cellular processes can be found in various areas of biology. We can men- 

tion here, among others, the localization of ribose nucleic acid in micro- 
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somes (Holter, 1952) which may imply the localization of protein synthe- 
sis. The localization in cellular membranes of enzymes participating in the 
transport of metabolites is also noteworthy (Lindberg, 1950; Rothstein, 
Meier, and Hurwitz, 1951). 

Another aspect worthy of mention is the discovery (Harman, 1950) of 
a definite correlation between the changes in the shape of mitochondria 
and alterations in the general physiological state of the cell. Here the old 
problem of the relation of structure to function has reappeared on the 
microscopic level, linked most intimately with some of the most impor- 
tant metabolic processes. 

It  is interesting to consider the possible effects such structures may have 
on the behavior of the cell. In certain specific cases, as in the preservation 
of bioelectric potential or in active transport (Bierman, 1953), the func- 
tion of the structural elements can be fairly easily postulated. But in deal- 
ing with more general metabolic systems other, more general effects need 
to be considered. In a recent stimulating book, D. Danielli (1950) dis- 
cussed some of the variables which are of significance in controlling en- 
zyme systems. He listed the following factors: pH, sulfhydryl (SH) con- 
centration, concentrations of inhibitors and activators, and those processes 
controlling access of substates to enzymes. 

In this paper the following problems will be considered: 

1. The effect of enzyme localization upon the steady-state rate of a 
reaction sequence. 

2. The effect of enzyme localization on concentration of reaction inter- 
mediates. 

3. The influence of enzyme localization on competing substrates. 
4. The effect of enzyme localization on the manner by which the steady 

state is reached, e.g., oscillations and overshoot. 
5. The effect of Structures on the possibility of multiple steady states. 
6. The effect of enzyme localization of the local pH. 
7. The effect of enzyme localization on osmotic pressure. 
8. Some relation between the shape of the cell particle and the steady- 

state rate. 

It  is hoped that the consideration of these problems will lead to a more 
concrete evaluation of the role of structured enzyme systems. 

Before proceeding, we must specify what shall be considered a struc- 
tured enzyme system. If we consider cellular particles (mitochondria) two 
possibilities arise: 
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1. The enzymes can be distributed uniformly inside the particle (most 
probably in soluble form). 

2. The enzymes can be fixed in specific regions or compartments of the 
particle. 

For our purposes the significant difference lies in the following. In the 
first case, the "uniform" system, each step of a reaction sequence is carried 
out in the same volume and hence diffusion is ignored. In the second case, 
the "non-uniform" system, different steps occur in different regions and 
hence products of one reaction must diffuse from the region of their pro- 
duction to the region of their consumption for the reaction to be able to 
proceed. On the basis of present experimental evidence (Palade, 1953) 
both types seem to exist. If the  enzymes are uniformly distributed, this 
type of localization differs from the non-localized system (e.g., the en- 
zymes of anaerobic glycolysis) in that  the reaction is compressed into a 
small volume and the intermediates are able to diffuse into and out of the 
reaction volume. The first model of a structured system is, therefore, a 
system in which all enzymes are uniformly distributed, but in which inter- 
mediates diffuse. Attention must be paid here to the problem of volume 
dependence of reaction rates. 

The second, "non-uniform," model is that  of a volume divided up into 
various compartments, i.e., regions in which enzymes are localized. As 
described before, for a reaction sequence to occur, substrates must diffuse 
from one Such compartment to the next. This picture of a sequence of com- 
partments conforms to recent photographic evidence concerning the inter- 
nal structure of mitochondria (Palade, loc. cir.). Electron microscope in- 
vestigation has shown that mitochondria are in all probability divided up 
lengthwise into segments or cristae, which could very well be loci of 
enzymes. 

These compartments may be so arranged that  each enzyme is adjacent 
to the one following it in the reaction sequence, and, furthermore, are 
close enough that  each product is simply "handed over" from one cata- 
lytic surface to the other. This is the picture biochemists frequently have 
in mind when they speak of enzyme localization (Michaelis, 1951). For 
these reactions, the advantage of enzyme localization is apparent. On the 
other hand, it requires a structure extremely well adapted to one particu- 
lar reaction sequence; that  is, if the reaction proceeds in the order of inter- 
mediates, X~, X2, . . . .  Xn, the enzymes have to be located precisely in 
that  order. 

We shall consider the possibility tha t  the enzymes are not quite so pre- 
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cisely ordered, and that  they are separated by some distance over which 
the substrates must diffuse. Since the distances involved are quite small, 
on the order of hundreds of Angstroms, a fairly random arrangement of 
compartments would be quite acceptable. 

We shall now proceed to examine the criteria listed above to determine 
the effect of enzyme localization on cellular metabolism and behavior. 

I. Steady-state rates. It  is clear that  one of the most significant properties 
to be examined is the steady-state rate of biological reactions. Such 
studies have been carried out for open and closed systems (Hearon, 1949a, 
b), but  always oll the assumption that  the enzymes are uniformly dis- 
tributed throughout the reactiort volume. We shall consider here the par- 
ticular effect of enzyme localization on the steady-state rate. 

Two comments need to be made concerning the model which we shall 
investigate. First of all, the volumes in which the reactions take place 
(mitochondria, etc.) occur in the cytoplasm, and it is this cytoplasm which 
makes up their external environment. We shall treat this environment as 
uniform and unchanging in time. Further, wherever experiments are sug- 
gested involving manipulation of the "external" concentrations of metabo- 
lites, we have in mind particles that  have been separated from the cellular 
matrix by centrifugation and whose environment is now directly accessible 
to experimental control. Secondly, throughout this first section we shall 
treat reactions of the type 

kj 
C~+Xi-lk~_ , j =  1, 2 . . . .  n .  (1) 

The CTs, Xi's, X~-_l's, and B / s  are all considered as substrate and product 
molecules. The enzymatic effect is included in the coefficients kj and k_j. 
This approximation is, of course, only valid as long as the enzymes are not 
saturated, i.e., as long as the reaction rate is linear with respect to the 
enzyme concentration. Hence, if so desired, we can also think of kj and 
k_~- as v~Ei and v_~E_j respectively, where v~. and v_j are constants and 
Ei and E-i  the concentrations of the enzymes of the j t h  step. 

A. Uniform system. The first model, that  of a uniformly distributed en- 
zyme system inside a cell particle, differs only from the commonly de- 
scribed open system reactions in tha t  intermediates are permitted to dif- 
fuse. This case was treated very briefly by Hearon (loc. cir.), and we shall 
investigate it here more fully. 

Consider a reaction system as described in (1), where the concentrations 
C~- and Bj, as well as X0 and X~, are considered to be constant with respect 
to time, while the concentrations of the intermediates X1 through X~_I are 
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functions of time. Let G(X~) represent the flow rate of t h e j t h  intermediate 
per unit volume out of the reaction chamber. By definition, the rates per 
unit volume of t h e j t h  and (j + 1)th step are given by 

vi = k j C i X i - ~ -  k_jB~X~ , "[ 
(2) 

f 
Q 

Vj+l ky+lCy+lXy-  k-(j+I)Bj+IXj+I 

In the steady state dXi /dt  must equal zero. Hence 

k~C~Xs-1 - k-jBjX~ -- kj+lCj+lXj -}- k-( j+l)Bi+lXj+l - -  G ( X j )  = 0 . (3) 

I t  follows from (2) and (3) that  

Vj+I ~--- Vj -- G ( X j )  , 
or, more generally, 

j+m--1 

vj+m= v~-- ~ G(Xk) .  (4) 
k = i  

The meaning of (4) is clear. Given a system from which intermediates dif- 
fuse, different steps in the reaction sequence will have different steady-state 
rates. The relation between the steady-state rate of the (j + m)th and the 
j t h  step is given by (4). 

Our problem now is to investigate the effect of this diffusion of inter- 
mediates on the steady-state rate. We shall limit our investigation to the 
2-step system, because of the mathematical complexity involved in the 
solution of equations representing higher step systems. The system 
studied here is the same as that  investigated by previous workers in the 
field (Hearon, loc. cir.) and can be represented as follows: 

C I +  X o ~ - X I + B 1  , \ 
(5) 

f X1 -~C2x -~- X2  +B2 �9 

Following our previous notation let wr - kr w-~ - k - ~ i .  As stated be- 
fore, X1 is the only metabolite whose concentration is a function of time. 
In particular, we shall assume that  it is kept at a fixed concentration X10 
outside of the reaction system, and diffuses out of the system at the rate 
~,(X1 - X10) per unit volume. Consider a reaction chamber of volume 2V, 
surface area 2A, and concentration X1. If D is the diffusion coefficient of 
X1, the outflow per unit volume is given by 

2 A D  
- - - -  ( X 1 - -  X l 0 )  , 
2 VAll 

where All is an element of length of the order of magnitude of a particle 
diameter (Rashevsky, 1948). Hence X = DA/VAl l .  We shall discuss this 
more fully later on. 
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We can now find the value of the steady-state rate of the first step, 
vl = wlXo - w_lX1. Setting (3) equal to zero and remembering G(X~) = 

X(X1 - X10), we find 

X1 = wlXo + kXlo + w-2X2 (6) 
w-~-t-w2 + X 

Inserting (6) into the expression for Vl gives us 

w~Xo ( k + w~) - w-~w-2X2 - w - l  XX~o 
v~ - (7) 

X + w 2 + w - 1  

If we designate by q the corresponding rate in the non-diffusing system 
(k = 0), the ratio q/v~ becomes 

q - 1 -} w-iX [X10 (w~-]-w-1) - w - 2 X 2 - w l X o ]  (8) 
vl (w~ + w_~) [wlXo (X +w2)  - w - l w - 2 X 2  - w-lXX10] " 

We shall also assume tha t  in the non-structured system the 2-step chemi- 
cal reaction derived above proceeds in the forward direction. This requires 
tha t  the change in free energy of t h a t  system be negative. This means tha t  

R T  In w - l w - 2 X 2  
WlW2Xo 

is negative, or WlW2Xo > w_~w_~X2. I t  can be seen from (8) therefore tha t  
q/vl is less than  1 for Xlo = 0, becomes 1 if 

X10 --  wlXo -]- w - 2 X  2 
W2 .-}- W_ 1 

and approaches infinity at 

X,o - wlXo ( ~, +w~) -- w - lw-2X2  
w-~k  

For larger values of X~o, q/vl is always less than  1 (Appendix 1A). Hence 
variations in the external intermediate concentration result in wide vari- 
ations in the value of the above ratio. 

From (4) and (6) and remembering the definition of G(X1), we can 
solve for vs. The expression is 

wlw2Xo - w- lw-~X2  - Xw-2X2 + >.W2Xlo 
v2 = ~ + w 2 + w - 1  (9) 

Hence q/v2 (q = v2 when k = 0) is given by 

q---= 1 -~ w2k [ w l X o + w - 2 X 2 -  Xlo (w2 + w - l )  ] (10) 
v2 (w2 +W-l)  [wlw2Xo+ ~w2X~o-w-~X2  ( w - ~ +  X)] " 

A number of observations can be made regarding (10). 
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1. If X10 is zero, and 

k <wlw2X~ w-1 (11) 
w _ 2 X  2 

the ratio is greater than 1. Considering that  

�9 W - l W - 2 X 2  AF = R T  in . . . .  , (12) 
w l w 2  X o 

the second condition can also be written k < w_l(e -(aF/Rr) -- 1). 
If this second condition is not fulfilled, i.e., if the flow coefficient k is 

large, this ratio becomes less than 1. 
2. The ratio becomes 1 when 

X~o = wlXo +w-2X~ 
202 -}- W-- 1 

and is less than 1 for larger X10. I t  should be pointed out tha t  q/vl equals 
1 for the same value of Xi0 as q/v2. 

The effects of large Xlo and large X are therefore the same: to increase 
v2 relative to q. 

Systems such as described do, of course, occur in cellular particles, and 
it would seem possible, at least in principle, to measure the two rates, vl 
and v2, independently (by measuring, for example, the rates of appearance 
of B1 and B~). The ratio of these two rates is given by 

v-2~= 1 ~ X [Xlo(W-l+w2) - -wiXo--w-2X2]  (13) 
7) 1 ~Tg)l~kX0 - ~  X o W l w 2  - -  W _ l , W _ 2 X  2 - -  W _ l ) k X l o  ~ 

This ratio can be plotted as a function of X10 (Fig. 1). Experimentally, 
four measurements should be possible: 

1. v2/vl when X10 equals zero, 
2. the value of Xlo when v2/vl equals 1, 
3. the value of X10 when vl equals zero, and 
4. the asymptotic value of v2/vl as X10 becomes very large. 

If we assume that the second step is irreversible (w-2 = 0) and desig- 
nate the experimental values of the four measurements above by Q1 
through Q4, the following ratios can be easily found 

w2_ Q1 ] 
X 1 - Q I '  

w__~_~ = -Q4, 
W--1 

W--i - -  Q1 

x Q~(QI-1)" 

(14) 
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Also, as a test of the validity of the model, the following relation must hold 
between the Q's 

Q2=03(1  -Q1) (15) 
1 - Q4 

B. The non-uniform system. We have defined the non-uniform system 
to be a reaction volume, with diffusible intermediates, which is distin- 
guished from the uniform system in that  it consists of a number of corn- 

T 

Q~ 

0 

Q4 

I 

i 
I ! 
I I 
I I 

Q2 ~3 XJO 

I 

I 
FIGURE 1 

partments, each of which is the locus of a particular enzyme. Further, as 
mentioned before, we shall assume these enzymes to be sufficiently far 
apart to make diffusion the principal agent of transfer from the site of one 
step to the site of the other. I t  was mentioned before that  recent electron 
microscope observations of mitochondria (Palade, loc. cir.) show the exist- 
ence of structures which could well serve as enzymatic loci (Schneider, 
1953). 
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We wilt investigate the kinetics of such a two-compartment system in 
which the following reaction occurs: 

kl 
0~ + 20 ~,  z~ +&, 

(16) 
k2 _ 

- - ~ B ~ +  r~- X12  -t- C2 k-~-~ X 22. 

The first step can occur only in the first compartment because the enzyme 
catalyzing this step is localized there. The product of this reaction, )(11, 
diffuses out of this compartment, partly into the medium and partly into 
the second compartment. There, designated as X~2, part of it reacts with 
the localized enzyme of the second step to form 222 and J~2 and part also 
diffuses out into the medium. The effect of the enzymes catalyzing these 
reactions is expressed through the rate constants, ki, k_~. As in the uni- 
form system, we shall assume that  Xll and X~2 are time dependent vari- 
ables. For the purpose of this discussion d~, C2, B1, B2, X0, and Jr22 are 
kept constant. In particular, we set z~ - k~C~, ~-~ = k-d)~. 

In line with previous notation, GI(Xn) represents the flow rate per unit 
volume of Xn into the medium, G2(Xn) the flow rate of Xn per unit vol- 
ume from compartment 1 into compartment 2, and Ga(XI2) the flow rate 
per unit volume of Xt2 out of the second compartment into the medium. 
Hence the system is described by the following differential equations 

dXl1=7~12 0_2~_1X1 l _ G l ( X l l )  - - G 2 ( X l l )  , 
dt 

(17) 

dX12 ~-2f(22 --~2X12 +G2 (Xn)  -- Ga (XI2). 
dt 

We now set G1(X11) equal to Xl(Xn - X10), G2(X11) equal to Xs(Xn - X12), 
and Ga(X~2) equal to Xa(X~2 - X10). Since we assume that  the volume of 
each compartment is exactly one-half of the total  volume in the corre- 
sponding two-step uniform system, the flow coefficients in the two com- 
partments of area A and volume V can therefore be written as DA/VAI2 
on the simplifying assumption that  the two compartments are identical 
with respect to permeability and diffusion properties. Furthermore, if we 
assume that the particles are cylindrical in shape and that  the amount 
diffusing out through the ends is negligible as compared to that  diffusing 
through the sides, A12 can be equated to All. Hence X~ and Xa are each 
separately equal to X of the uniform system. 

Setting (17) equal to zero, the steady-state rate per unit volume of the 
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first step, Pl = ~ 2 o  - ~_~Xn, can be easily found. The expression for 
X~ is given by 

Xll  = 7~lX~ (w2 -1- ~k2 -1- X3) -1- ~k27~-2222 -[- Xlo (Q 2{_ ~k17~2 ) 
~2(~-~+Xl+x~)  +~_~(X~+ x~) + a  , (1~) 

where  f~ = XlX3 2{- XlX2 -1- )~2X3. H e n c e  

7~1X0 [a -]f- ~2 ( hi -1- X2) ] -- X107-~-1 ( X17~2 ~- ~~) -- X2W-lW-2222 
pi = (19) 

f~ + ~2 (Xl + X2 + ~-1) + ~-i ( X2 + X3) 

Similarly, to find p2 = 92X12 - 9-222~, we first determine XI2. I t  is 
given by 

X12 _ 2v120 X2 -[- 7~-2 222 (7~- 1 -Jt- ~k1-1- X2) -[- X'lo (~ -1- X~w-1) (20) 
~ ( ~ - I + X ~ + X 2 )  + ~ - I ( M + X , )  + ~  

The expression for p2 follows immediately. I t  is 

7~17~2Xo~k2 -{- W2Xlo (~2 -[- X3W_l) - ~_2J~22 (~ --{-w-1)k2 --~-1~3) 
P~ = f~ + ~  (Xi + X2 + w - i )  +@-1 (X2 + k~) 

(21) 

These two results now enable us to compare the rates of uniform and non- 
uniform systems. To do this, we must of course compare rates for the 
whole reaction volume. This means that  (19) and (21) must each be mul- 
tiplied by V, the volume of the reaction compartment, while the corre- 
sponding expressions for the uniform system, (7) and (9), must be multi- 
plied by 2 V. Furthermore, some assumption must be made concerning the 
relative magnitudes of the concentrations of the constant metabolites in 
the two systems. 

As was indicated before, the only difference between the uniform and 
non-uniform systems is that  in the latter the enzymes are concentrated in 
special regions inside the particle. Therefore there is no reason to assume 
that the concentrations C1, C2, B1, B2, 20, and X2 are affected by the 
enzyme localization. The only reasonable effect of this enzyme localization 
should be on the rate coefficients, kl and k_~, i.e., we should expect, as afirst 
approximation, that concentrating the same amount of enzyme in half the vol- 
ume would double ki and k_~. Hence @~ -- 29~, @~ = 2w_i. 

We can now evaluate the ratio 2Vvl/Vpl ,  where vl is the steady-state 
rate of the first step in the uniform system and Pl the corresponding rate 
in the non-uniform system. We use the simplifying assumption that 
Xi = k3 -- X. The following expression results: 

2vl w-1 (2w2+ M) 
- 1 - [  

Pl X~D1 
{ 2 (wlw~Xo -- w-lw-~X2) (22 ) 

+ X (wlXo -- w-~X2) + XXIo (w~ -- w-l) }, 
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where 

Dx = (h +w2-4-w-l) [2wlXow2-4-2wlXoX- 2 w-xw-2 X2 -  2w-lw-2X2 

(23) 
- -  2w- ,kXlo  + 1 ( 2WlW2X Xo + wlXok 2 -- 2w-,kW2Xlo -- w-lX10h 2) ] . 

X2 

A number of observations can be made with respect to (22) : 

1. If h2 becomes infinite, the ratio of the steady-state rates approaches 
1. I t  should be pointed out that  this is not a self-evident result because, 
even with infinitely rapid diffllsion between the two chambers, the non- 
uniform system differs from the uniform one in that  the compartmentali- 
zation of the two reaction steps is still preserved. 

2. The denominator D1 is positive as long as Pl, as given in (19), is posi- 
tive, i.e., as long as the external concentration X10is small enough to per- 
mit the reaction to proceed forward. If this condition is met, and if all 
forward coefficients, wiXo, w2, are greater than any of the reverse coeffi- 
cients, w-l, w2X2, then the ratio of the steady-state rates is always greater 
than 1. 

3. If X, the flow coef~cient to the medium, becomes very small, the 
ratio is always greater than 1. 

Since, in general, the forward coefficients do tend to be greater than the 
reverse ones, and since the flow coefficient is probably not too significant, 
we can conclude that  the rate of the uniform system of the first step will 
tend to be greater than the corresponding non-uniform rate. 

A similar calculation can be carried through which compares the 
steady-state rates of the second step, i.e., 2Vv2/Vp2. This ratio is given by 

2 v2 _ 1 -~ w~ (2w-1+ k) { 2 (wlw2Xo -W- lW-2X2)  
P2 X2D2 (24) 

+ X (W~Xo -- w-2X~) + XXlo (w2 -- w-l)  }, 
where 

[ 2wlw2Xo + 2 hw2Xl~-  2w-2X~ (w-1 + k) D2 (~, +w~+w-1)  
i_ (25) 

1 1 

+ (2),w2w-xXlo + w2Xlo)3 -- 2w-1),w-2X~ -- Xzw-2X2~) J 
X2 

We can conclude from a consideration of (24) tha t  
1. the ratio approaches 1 for very large h2, 
2. the ratio is always greater than 1 for small X, and 
3. if p2, as given in (21), is positive, i.e., X10 bounded from below, then 

D2 is positive. If this condition is met, and if the forward coefficients are 
again greater than the reverse ones, the ratio is greater than 1. 

These conclusions, as can be seen, are very similar to the ones in the case 
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of the first step. We can therefore conclude that  under certain assumptions 
concerning the order of magnitude of the reaction coefficients and flow 
coefficients, the steady-state rates of  the uni form system will, in  general, tend 

to be greater than of  the non-uni form system. 

I t  may be rewarding to examine this conclusion a little more closely. 
There are two factors involved in the difference between uniform and 

non-uniform systems. One is that  in the non-uniform system we posulate 
a finite flow coefficient; in the uniform system it becomes infinite. The 
second factor is the effect of compression on the chemical reaction. By de- 
creasing the volume in which a given particular reaction takes place, and 
hence by increasing the enzyme concentration, the rate per unit volume 
is accelerated. These two factors operate in opposing directions. I t  is the 
particular resolution of these two conflicting factors which determines the 
relative magnitudes of the steady-state rates in the uniform and non-uni- 
form systems. Since we have shown that  in general the uniform rate will 
tend to be larger than the non-uniform one, we can conclude that  the fac- 
tor of diffusion is more significant than the factor involving the compres- 
sion of the reacting enzymes into a smaller volume. 

That this explanation is correct can be seen immediately from the fol- 
lowing considerations. 

The steady-state rate of the general reaction system (1) can be written 
(Hearon, loc. cit.) 

Xo H  jN ci- x. H 
1 1 

(261 
V {i/2728 . . . v n N 2  �9 �9 , N n C 2  �9 �9 �9 C n - 3 l  - �9 �9 �9 + 1 2 - 1 / 2 - 2  �9 �9 �9 v-(~-1)M1 . . . M~-iB1 �9 �9 �9 B . - , }  

where 

j - vjl:~j -- -~--, k_j =/2-jE-j =/2-j -V ; 

V represents here the volume of the particle, and Nj and Mj the total 
amounts of enzyme available. 

The total steady-state rate for the whole volume is then given by vV 

and is independent of the volume of the reaction system. Since the flow 
coefficient k is also inversely related to the volume V, it can be seen upon 
inspection of (7) and (9), for example, that  its introduction into the rate 
expression does not alter this conclusion. 

Since a decrease in the reaction volume does not increase the rate, the 
only effect of compartmentalization is to decrease the steady-state rate 
because of the finite flow coefficients. 
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At this point we note that  the above results follow from a particular 
model of the reaction system, a model in which the essential acts, collisions 
between molecules, are assumed on the average to occur identically in 
each volume element. This is equivalent to the assumption that  the reac- 
tion system is essentially homogeneous. This assumption is fairly adequate 
where the surfaces on which the reactions occur are relatively small as 
compared to the distances between molecules. On the other hand, when 
dealing with localized surface catalyzed systems it becomes less certain 
that  this homogeneity actually holds. 

A different model, representing the non-homogeneous case, would be 
that  of catalytic surfaces immersed in solution in which reactants and 
products diffuse to and from the active sites. Here the volume elements 
do not have the same properties. Diffusion occurs only in a certain region, 
free from chemical reaction; the chemical reaction occurs in a special area, 
on the catalytic surfaces. 

As the simplest example of this model, consider two surfaces, one at 
x = 0, the other at x = 1. A substance A present in large quantities in the 
solution between 0 and l forms B on the surface at x = 0 at a rate klA 
which we take to be constant. Substance B diffuses then to x = I where 
it forms irreversibly a substance C at a rate k3. We further assume that B 
can also re-form A at the first surface. 

In the steady state the problem becomes mathematically simply one of 
evaluating the one-dimensional Laplace equation with the boundary 
conditions 

(dB) t 
- -  D -~  o=klA--k2B(O) , 

(27) 

- - D  ~ ~ k~B(1 ) .  

The solution is completely straightforward (Appendix IB). The rate of 
production of C is given by k3B(l), and hence equals 

Dklk~A 
Dk3+ Dk~+ k2k3l" (28) 

We can see that  this rate is inversely dependent on I. As expected, the 
greater the distance between the catalytic surfaces, the slower the rate. 
Further, if the reaction is completely irreversible, i.e., k2 is zero, the 
steady-state rate is independent of the distance. 

Therefore in so far as the enzyme reactions inside of particles can be 
represented by such arrangements of surfaces, the distances between the 
enzymes become a significant factor in influencing the steady-state rate. 
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One way of looking at this effect is to say that  the distance between en- 
zymes determines the "necessary" concentration of the substrate. In the 
above example, suppose we have two identical enzyme systems (two sur- 
faces each), differing only in the distance between the surfaces. To 
achieve the same rate, different concentrations of A are necessary in the 
two cases. If 11 and/~ represent the respective distances, and A1 and A2 the 
respective necessary concentrations of A, we find, from (28), 

D (k3-'}- ks) + k~k~ll 
A1 = A2 (29) D (k3+ ks) + k2k312" 

If the diffusion coefficient D of the substance B is large compared to 
(ksk311)/(k3 + ks) this ratio becomes 1. But  if diffusion is not so rapid, the 
necessary concentration A1 can decrease to Asll/ls. 

We can also compare this surface reaction with the corresponding homo- 
geneous reaction. I t  can be shown very easily that  if the distance I between 
the surfaces becomes small enough the surface rate will be larger than the 
homogeneous rate. 

In the previous example, let us assume that the number of active sites 
on a unit surface of that  system corresponds to the enzyme concentration 
of a unit volume. Hence the steady-state rate, per unit volume of the 
homogeneous system, is given by 

klk3A 
k2 + ks" 

(30) 

This is of course identical with (28) when D becomes infinite. Equation 
(30) must now be compared with the corresponding surface rate per unit 
volume, which in this case is simply k3B(l)/l. I t  can be seen that  the 
smaller l, the greater the surface rate. In particular, the two rates are 
equal when 1 equals 

-D(k2+k3)  + ~v/[D2(ks+k~)2+4Dk2k3(k2+k3)] (31) 
2k2k3 

For smaller l, the surface rate is larger than the volume rate. When D be- 
comes very large, (31) approaches 1, as expected. 

It  can therefore be concluded that  if we view the reactions from the 
standpoint of surface systems, compression of volume does result in in- 
crease of rate. And it can further be assumed that  for localized systems 
such as mitochondria, in which the dimensions between enzymes are fairly 
small, the surface model is a better approximation than the volume model. 
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II .  Concentration of intermediates. Another criterion by which we can 
compare uniform and non-uniform systems refers to the total amount of 
intermediates stored in the reaction system in the steady state. This can 
be of importance biologically for the following reasons: 

1. At certain times intermediates may suddenly seep from the reaction 
system. Complete drainage makes it difficult to reestablish the desired 
steady-state rate. This seepage could be due, for example, to injury of the 
system, or to the necessity of adjusting to an unusual temporary environ- 
ment. 

2. Some of the metabolites reacting with the intermediates can also be 
used in other reactions. Hence competition exists for these metabolites, 
which will be greatly affected by the amounts of competing intermediates 
This follows from the law of mass action. 

Therefore for both of these reasons it seems useful for the metabolic sys- 
tem to have stores of intermediates available. 

Now consider the diffusing uniform system. The concentration of inter- 
mediate is given by (6). When k becomes zero (6) becomes the correspond- 
ing concentration X1 for the non-diffusing system. The ratio of the two 
expressions is given by 

X1 ~ [X10 (w2+w-1) - w l X o - w - 2 X 2 ]  
X~ 1 -~ (wlXo-kw-~X2) (~-kw2-l-w-1) (32) 

Clearly, if X10 is small, X1, the concentration in the closed system, is larger 
than X1; for X10 greater than (w~Xo --}- w_~X2)/(w2 --k w_l), X~ is larger. 
Hence, as in the case of the steady-state rate, the external concentration 
becomes a mechanism for adjustment of the intermediate concentration. 

We can similarly compare the concentration of intermediates in the uni- 
form and non-uniform systems. To make this comparison meaningful we 
have to compare total amounts of intermediate, which is given in the two- 
step case by the ratio 2X1/(X~ q- X~2). This ratio can be computed very 
easily from (6), (18), and (20): 

2 X1 - 1 (w2 - w-l) 
Xllq- X12 X~D3 (3 3) 

X [2 (wlw2Xo -W-lW-2X~) + XX10 (w2 -w_l )  - X (w-2X~ -wlXo)  ] , 

where 

D~ = (X-[-w2-kw-1) 2wlX0+ 2w-2X2-t- 2XX10+ X-2 

• [w~Xo (2w~ + X) +w-~X2 (2w_1 + X) + XXlo (w2 + X +w_~) ] t 
) 

Q 
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A number of observations can be made with respect to (33) : 

1. If ),2 becomes very large, the ratio approaches 1, as expected. 
2. If X is very small and w~ greater than wl, the ratio is less than 1. 
3. If w_l is greater than w2 and X is negligible, the ratio is greater than 1. 

Since on the basis of experimental evidence k can be considered quite 
small, and the forward coefficients are generally considerably larger than 
the backward coefficients, we can conclude that  the total amount of inter- 
mediate present in the non-uniform system will be larger than in the uni- 
form system. 

I f f .  Access ofsubstrates to enzymes. One of the factors listed by Danielli 
(lot. cir.) as being significant in control of enzyme systems is the access of 
substrate to enzyme. There are two aspects to this: 

1. It  is advantageous to the cell that  certain reactions proceed well. The 
cellular structures would then be so designed as to channel the substrate 
toward the desired enzymes. 

2. I t  is advantageous to the cell that  certain reactions be suppressed. 
The cellular structures would then be so designed as to prevent access of 
substrate to the particular enzymes. 

I t  is clear on the basis of the previous discussion that  a structure such 
as a mitochondrion can be very useful in focusing substrate flow toward 
the desirable enzymes and eliminating loss in seepage or undesirable side 
reactions. As a mat~ter of fact, any system of membranes relatively im- 
permeable to the substrate and so arranged as to permit flow only toward 
the particular enzyme would accomplish this result. 

Another method whereby access of substrate to a particular enzyme is 
enhanced and access to an undesired side reaction prevented is spatial 
localization with respect to the substrate source. Consider the following 
simple situation. A substrate S is homogeneously dissolved in a medium. 
I t  can react with C1 to form Pl, or with C2 to form P2. The rate of the first 
step, ql, is klC1S; tha t  of the second step, q~, is k2C2S. Hence 

q1_klC1 
q~ k2C2" 

(34) 

As seen from (34), in the case where spatial localization does not enter, 
the only factor determining the amount of substrate flowing to the desired 
goal, pl, and the undesired goal, P2, is the ratio of the concentrations of 
C1 and C2. 

Now consider the following localized system. As shown in Figure 2, the 
source of S is at A. I t  diffuses in from the source along the X-axis into a 
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compartment  where only C1 is present, or, if preferred, where the enzyme 
catalyzing the first reaction is localized. Hence, in this compartment,  

Si JvCi--* pi , 

where S~ is the concentration of S in tha t  region. Whatever remains of S~ 
diffuses further toward B where the second enzyme is localized. Here P2 
is produced according to the reaction 

S2+C~ ~p~ , 

where $2 is the substrate concentration in the second region. I t  is clear tha t  

So SI§  t ~ P, . . . . .  -> 

A B 

s2+c2---~p a 

FIGURE 2 

such a spatial arrangement greatly enhances the accessibility of S to C1 
and reduces it to C~. The differential equations of this system are 

dS1 } 
dt = Xi (So -- S1) -- kiSiCi - X2 (Si - $2) , 

(35) 
dS~ 
dt X2 ($1 $2) k2S2C2. 

The ratio of the steady-state rates, ql = klCIS~, ~2 = k2C2S2, is found by 
solving for S~ and $2 from the steady-state expressions corresponding to 
(35). I t  follows tha t  

~1 _ klC1 (1 + k~C2"~ 
q2 k2C2 -~-2 / "  (36) 

To compare (36) with (34), assume tha t  a certain ratio (ql/q2)* is desired. 
To make this feasible in the uniform system, a concentration 

( * 
C~ = ~ \ ~ /  (37) 
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is required. Clearly, the larger C2, the greater C1 must be. But in the lo- 
calized system, using (36), C1 is required to be 

- k , C , ( q , ' ~ * {  1 �9163 (38) 

As expected, the smaller k2, the smaller the required C,. Further, as C~ 
increases, C1 does not become arbitrarily large, but reaches the asymptotic 
value of 

kZ" 

Enzyme localization, as described, is therefore a simple and effective 
mechanism for controlling reaction systems, enhancing certain reactions, 
and suppressing others. Such a mechanism could conceivably be involved 
in the well known transformation principle (Braun, 1953) or the alteration 
in bacterial synthesis upon viral infection (Epstein, 1953). In both cases, 
outside agents consisting largely of desoxy-ribose-nucleic acid (DNA) 
shift the synthetic pathways into new channels. I t  is suggested that DNA 
might be able to accomplish this, perhaps, by locating itself near the 
sources of energy and/or substrates being competed for, thus suppressing 
the normal enzyme pathways. 

We have mentioned so far two structural features involved in substrate 
accessibility, namely, permeability features (membranes, etc.), which pre- 
vent flow in undesired directions, and enzyme localization of the kind de- 
scribed in the model above. There is another way in which enzyme locali- 
zation could conceivably effect access of substrate to enzyme. I t  is well 
known that  the addition of a colloid to a solution increases the solution 
viscosity. A particular expression for this viscosity, due to Einstein, is the 
well known expression 

n = n0 (1 + 2.5~), (39) 

where ~ is the coefficient of viscosity of the suspension, 70 that of the dis- 
persion medium, and ~ the relative volume concentration of the suspen- 
sion (Gortner and Gortner, 1950). Since the diffusion coefficient is general- 
ly considered to be inversely related to the viscosity of the suspension in 
which diffusion takes place, it can therefore be concluded that enzyme 
localization could give rise to a considerable decrease in the rate of diffu- 
sion of substrate in the localization region. 

I V .  Oscillations and overshoot. Although most of the work done so far on 
cellular metabolic systems has dealt with the steady state, nevertheless a 



TI-IE B E I I A V I O R  OF ENZYME SYSTEMS 221 

good number of investigations have also been made of the time dependent 
behavior of these systems. Most  attention has been paid here to the possi- 
bility of periodic behavior, and to the possibility of overshoot. 

A. Periodic behavior. Burton (1939), in his pioneering article, indicated 
interest in possible periodic behavior of open systems, but did not actually 
study it. A detailed investigation of the periodic behavior of autocatalytic 
systems was made by M. Moore (1949). She showed tha t  those systems 
possess periodicities which are physically feasible. Hearon (1953) studied 
the possibility of periodicities in open and closed linear systems and came 
to the conclusions that ,  under certain general conditions, periodicities are 
not possible for them. 

We will a t tempt  here to carry this investigation somewhat further, em- 
phasizing in particular the effect of localization on possible periodicity. 
Unfortunately no general, easily utilizable criterion is known to the author 
by which periodic behavior can be definitely established. 

The following procedure will be followed. In all cases dealing with vari- 
ous nonlinear systems, we shall assume tha t  the system fluctuates only 
slightly from a steady state and hence we will be able to transform the 
original nonlinear differential equations into linear differential equations. 
These linear equations involve the amplitudes of fluctuations from the 
steady state. 

The solution of this set of linear equations will be of the form 2~u~ 
e x p ( -  kit) and the X~ will be determined as the roots of the auxiliary equa- 
tion of the form 

Xn-~ - a lXn- t -{  - a 2 X n - 2 + . . . - 3 1 -  a n  = 0 . (40) 

The solution will be oscillatory if any of the X~'s are complex; our problem 
therefore becomes one of determining the existence of complex roots of 
(40) without  having to solve it explicitly. Unforttmately, the author is 
aware of only a sufficient condition for the existence of complex roots 
(Tumbull, 1944). If a~ <_ 2a~ in (40), complex roots exist. Of course, the 
condition may not be satisfied and yet complex roots will occur. This con- 
dition is particularly useful to us, because, given the determinant of co- 
efficients from which (40) is derived, we can easily determine the two co- 
efficients of X "-1 and X "-2, al, and w2. 

Consider a set of n differential equations 

"~clt = a q Y i  ' 
= l , 2 . . : n .  (41) 
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On the assumption that yi = ~u~ exp (-Xt), (41) becomes 

O = ~ y i ( a i j + X ~ i j ) ,  i = 1 , 2  . . . .  n, (42) 
i = 1  

where &j is Kronecker's delta. When the determinant of the coefficients 
of (42) is expanded, the auxiliary equation (40) results. The coefficient a~ 
of k ~-~ is given simply by 

2 ~i i .  
i = 1  

The coefficient a~ of k "-2 consists of two series. The first series is 

and the second 
~ t 

n 

i ,  i = l  

i.e., the sum of all products of all diagonal terms subtracted from the first 
series. I t  is clear that  (Ea,) 2 > Ea,ajs - 2Ea21. Hence a~ can only be less 
than 2~ if the second series of a~ is negative, thus canceling the minus sign 
in front. This can only be true if at least one a~i has the opposite sign of 
ajr If this condition is not satisfied, we have clear proof that  the sufficient 
condition is not satisfied. 

This criterion can now be applied to various systems. The following 
do not meet the above requirements: 

1. the linear uniform system, 

X I - I + C I ~ B ~ +  Xi , 

as expected from Hearon's investigation, 
2. the same system as in 1., except that  it is made nonlinear by treating 

the C~'s and B~'s as functions of time, 
3. an open enzyme system of the Michaelis-Menton type with the mod- 

ification that  its second step be reversible, e.g., 

E~A-S~k~ i X~ i=  1, 2 , . . . n  

a i 
tr-- i 

(Si is the i th substrate, X~ the i th enzyme.substrate complex), and 
4. the non-uniform system, analogous to 1. and 2. above. 
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From the four cases above it can be assumed that  periodicity is not a 
widespread property of simple kinetic systems. 

The following systems do satisfy, or can satisfy, the sufficient condition 
for periodicity: 

1. The closed reversible enzyme system. This differs from 3. in that  the 
equation of conservation of mass is used. If K is the total amount of mate- 
rial present in the system, 

K= 2 (Si~-Xi) ~-Sn+l. (43) 
1 

Setting al = Xi - X~ and /34 = S~ - S~, where X~ and Si are steady- 
state concentrations, and using (.43) to eliminate $1, the determinant of 
coefficients of the a~'s and/~ 's  now has one diagonal pair with opposite 
signs (Appendix IVA), namely, 

al(n+l) = - -  ( k l -  if--l) (Eol- S l )  , "~ 

f a (n+ l ) ,  1 = q l  -~- 0--1S2 �9 

Hence if kl > a_l, the barest possibility of oscillation exists. Clearly, the 
greater n, the number of steps in the system, the smaller the possibility 
that  this one term can outweigh the other negative terms. 

But it can be easily shown that oscillations are not possible in the most 
favorable case, i.e., n = 1. The characteristic equation of this system be- 
comes (Appendix IVB) 

•2 __ X { k 1 (/~1 -t- S1) -~- o'1 31- k-1  q- 0"-1 (~1 31- S2) } (44) 
+ E , {  0"-~kl (E1+$1+$2)  + 0"-~k-1+ 0"1kl} = 0 .  

Oscillations cannot occur if b ~ - 4ac > 0, where b is the coefficient of ~, 
a = 1, and c is the constant term in (44). By simple rearrangement of the 
coefficients of (44) it is easily shown (Appendix IVB) that  b 2 - 4ac is 
always positive. 

We can therefore conclude that closed reversible systems of the type 
described will not oscillate. 

2. I t  was shown by Moore (loc. cit.) that  autocatalytic systems show 
oscillatory behavior. She investigated n-step systems of the type described 
here as diffusible uniform systems. We shall therefore investigate similar 
non-uniform systems. 

Consider n linearly arranged compartments, as shown in Figure 3. The 
metabolites are designated A i~, where Akt is the concentration of the kth 
metabolite in the lth compartment. In all cases Ai~ is produced in the j t h  
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compartment ~rom Aj_t,j autocatalytically, i.e., at the rate kjAjiAj-~,~. 
The metabolite Ajj diffuses out of the compartment  into the medium at 
the rate zj~-Ajj and into the next (j  + 1)th compartment  at the rate 
ri(Ajj - Aj,j+I). The only exception is in the first compartment,  where 
An is produced at the rate KAn.  The differential equations describing this 
system are 

dA~,i+~ 
dt = r i ( A i i - - A i ,  i+l) - - k i A i ,  i+lAi+l , i+l--~i , i+tAi ,  i+l 

dt - k iAi ,  j+~Aj+l,j+ _ ri+~ (Ai+ui+ _ Ai+l,i+2 ) (45) 

- -  c r i + ~ ,  i + l A i + l ,  i + l  �9 

The solution of (45) is straightforward and the determinant of coefficients 
easily ascertained (Appendix IVC). If A~j represents the steady-state 

[L 
FIGURE 3 

value of Aij., we can solve for the two coefficients of X "-1 and X "-2. They 
are 

' : (n-- l )  - } al = ~ O~ Q1-  rlAl`: r , A n  r`:A~3 
' A l l '  Q`:- Al~'  Q3- A`:~' " ' "  

(46) 
1 2(~-- l) n--1 n--i 

2 rj-+ E }~X,, i+lA ~'+1, i+1" 
% i=i 1 1 

Hence 
2(n--l) n--I n--I 
5_2 Q +2 2, -2 2k'X X , a ' l  ~ i i ,  i + 1  i +  , 1+1 " 

1 1 1 

As can be seen from (46), the sufficiency condition for periodicity is not 
always satisfied. Since in the case of uniform systems studied by Moore 
periodicity always occurs, we can immediately conclude that  compart- 
mentalization militates against periodicity. 
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I t  can also be seen from (46) (Appendix IVC) that  the sufficiency con- 
dition is satisfied if 

2 k~ [A}, i+lAi+l, i+IA~.] 
r2"<2A2 -~ i+ l+A4  A4. �9 (47) 

Hence the flow coefficient ri must be bounded from above. It  should be 
pointed out here that  this non-uniform autocatalytic system reduces to 
the uniform system by setting Aj,j+I equal to Aji, which, using (45), 
eliminates all terms involving r~. 

B. Overshoot. Burton (loc. cir.) discussed in some detail the biological 
Significance of overshoot phenomena. Some of the examples cited by him 
as evincing this property are:positive overpotential in nerve, oxygen con- 
sumption in bacteria and Arbacia eggs, and the so-called "vagus escape." 
This same property of open systems was also investigated by Denbigh, 
Hicks, and Page (1948). Overshoot is defined as occurring when a system 
in moving toward a steady state from one side crosses the steady-state 
value and takes on values on the other side of the steady state. 

Mathematically, it means the following. Let the displacement of the 
system from the steady state be given by ~ui exp (-3"it). Overshoot oc- 
curs, then, whenever this series changes sign. In general, we can see that  
the larger the number of terms in this series, the greater the possibility 
that  such a reversal can occur. In particular, since a non-uniform system 
either always has 2n - i or 2n terms, the non-uniform system has a larger 
number of parameters which can be adjusted so as to make overshoot pos- 
sible for a corresponding uniform system of n terms. 

As the simplest possible example consider a 2-step system with uniform 
enzyme distribution. If we set X = X1 - X1, where X1 is the steady-state 
value, the following differential equation results 

dx _ (w-1 +w2) x .  
dt 

The solution is X = ve -(~-1+~2~, and overshoot is clearly not possible. In 
the equivalent non-uniform system, 

C1 -[- X0 ~ X l l  +B1 , 

X12 + C2 ~ X2 +B~ , 

we set Xl = Xn - J?n, X2 = X12 - J712, and from the resulting differen- 
tial equations find (Appendix IVD) 

x l =  p l e - ~ t + ~ 2 e  ~ t  , ) 

X~ = ~le-"t- t  -/3~e-W,t , f (48) 
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2X~-w2~-w-1 + x/4X~-{ - (w2 - w - l )  2 
3'1, 2 -  2 (49) 

If we set Xx0 equal to Xt(0) and x20 equal to X2(0), we can then solve for 
the coefficients in (48). In particular, for Xl we find 

Xl0 (X "~- W--1 -- '~2) -- ~kX20 t 
/~1 = ~ 1 -  ~2 ' ( 5 0 )  

XX20 - -  Xl0 (X ~w-1 - -  71) 

In order to have overshoot Xl must be zero for some finite time t*. Ac- 
cording to (48) this requires tha t  

_/~_2 = exp (')'1 - ")'2) t*. 

Hence if "}'i > 5'2, -(~1)/(#2) > 1. The latter requirement, considering 
(49) and (50), is equivalent to (Appendix IVD) 

w2--W-l-- 2X X:--2~ [4X:-{- (w2--w-l) 2] 1/2. (51) 
Xlo 

Equation (51) is feasible only if (x2o)/(xlo) < 0. Following the argument 
of Burton in his article mentioned above, we now examine the conditions 
for which (x2o)/(Xlo) < 0 holds. In particular, we require tha t  Xl0 and 
x20 represent differences in steady-state values of Xn and X12. These 
steady-state values are given by (18) and (20), with the simplification of 
setting ~1 = k 8  = 0. 

Inspection of these equations discloses that  the inequality (X2o)/(Xlo) < 
0 cannot be satisfied for any variations in X0, X2, or in any of the chemical 
reaction constants wi, w_~. I t  is, however, satisfied by a change in the flow 
coefficient X. In particular, if k goes to X -[- AX, Xl0 becomes ~2Ak(~-l~-2X2 
- - ~ l ~ X 0 )  and x20 becomes - ~ - l A k ( ~ - l ~ - ~ X 2 -  ~1~2X0). This is 
completely different from the situation found by Burton for a uniform 
system. There overshoot was only possible for a variation in the reaction 
constants, and impossible for a variation in the diffusion coefficients. We 
can therefore conclude that  non-uniformity in the kinetic system alters 
the requirements and conditions of overshoot. 

We can now summarize the results of this last section: periodicities are 
not common characteristics in simple kinetic systems, at least as deter- 
mined by the sufficiency condition. Their occurrence is reduced in non- 
uniform systems as compared to uniform ones. In particular, the flow 
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coefficient k, unique to the non-uniform system, has a sign which militates 
agains,t periodicities. 

Owing to the larger number of terms in the solution of the equations of 
non-uniform systems, more parameters can be adjusted to make over- 
shoot possible. In comparing a 2-step non-uniform system with a similar 
uniform one as described by Burton, we find that  the conditions for over- 
shoot are altered as a result of the non-uniformity. 

V. Multiple steady states. Another property which is of biological inter- 
est is that  of multiple steady states. We mean by this the ability of a kinetic 
system to possess more than one stable steady state and to move from one 
to the other if sufficiently displaced. Most steady-state systems discussed 
in the literature (Burton, loc. cir.; Denbigh, Hicks, and Page, loc. cit.; 
Bertalanffy, 1950) show only one stable steady state, and for these systems 
the final state is independent of the initial starting point and only depend- 
ent on the fixed parameters of the system. This condition has been de- 
scribed as "equifinality," as was pointed out in a previous note (Bierman, 
1954) ; this is not a general property of steady-state systems, since, clear- 
ly, systems possessing multiple steady states wilt move toward one rather 
than another of the possible steady states dependent on the initial starting 
point upon displacement. 

This property is not unique, but occurs frequently in nonlinear systems 
(Minorski, 1947; Rashevsky, loc. cir.). I t  is also of biological interest be- 
cause shifts from one level to another do occur and are of decisive impor- 
tance, e.g., in genetics (mutations), adaptations, or embryology. Therefore 
it seems useful to inquire what kinds of systems can give rise to multiple 
steady states a~nd how structure relates to this property, if at all. 

We have used the graphical method in this investigation, because it is 
the simplest. For example, given two variables with respect to time, x(t) 
and y(t), whose first-order differential equations are nonlinear functions 
it(t) -- Pl(x, y), f](t) = P2(x, y), Pl(x, y) = O, and P2(x, y) = 0 are then 
plotted in the x, y plane. The intersections of these two curves represent 
steady states. The stability of these steady states must then be deter- 
mined by going back to the original differential equations and noticing the 
effect of displacement from the steady state on the variables x and y. 

Clearly this method is really only applicable to two variables. For three 
variables the method can be extended to a three-dimensional model, but 
this becomes complicated already. We have therefore limited ourselves 
here to considerations of two variables. 

The following systems were investigated and were shown not to possess 
multiple steady states: 
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1. a 2-step linear uniform system, 
2. a 2-step uniform system made nonlinear by letting B1 become a 

variable of time, 
3. the corresponding nonlinear non-uniform system, 
4. a reversible 2-step enzyme system, 
5. a 2-step system where A forms B via the Langmuir adsorption iso- 

therm k l A / 1  --k r and is similarly re-formed from B at the rate k2B/1 --k 
~2B, and 

6. a 2-step autocatalytic system. This was treated by Denbigh, Hicks, 
and Page (loc. cir.) and was shown to possess one stable and one unstable 
steady state. 

From the list above it is apparent that  the simpler nonlinear kinetic sys- 
tems, both uniform and non-uniform, do not possess multiple steady 
states. I t  was possible, though, to find one 2-step system possessing two 
stable steady states; this system involves autocatalysis as well as surface 
reactions. I t  can be described as follows: 

Let x be produced via a Langmuir adsorption isotherm at the rate 
k~x/1 --k a~x. I t  then can either diffuse out of the system at the rate k3x 
or react with another metabolite y to form a complex xy. This complex 
goes over to y via a surface reaction described by k2xy/1 q- o'2xy. This is 
also an autocatalytic reaction by y. The metabolite y can also diffuse out 
of the system at the rate k4y. 

This system, which possesses multiple stable steady states, is then de- 
scribed by the following nonlinear differential equations 

dx  k lx  k2xy ) 
dt - 1 -t- c~lx 1 -1- ~ x y  k~x , 

(52) 
dy  _ k~xy k4y . 
dt 1 -t- ~2xy 

Before proceeding with an analysis of (52), it is of interest to point out, 
first of all, that  neither a pure, autocatalytic system nor a purely surface 
reaction system alone gives rise to multiple steady states. A system that 
combines both those features, however, can do so. Secondly, both sur- 
face kinetics and autocatalysis are significant and characteristic features 
of biological reaction kinetics, and are moving more and more into the 
forefront of investigation in such areas as virology, genetics, and enzy- 
motogy. Thirdly, surface reaction systems are generally indicative of 
enzyme localization and hence associated with what we called non-uniform 
systems. 
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The graphical analysis of this autocatalyt ic  and surface system is given 
in Figures 4, 5, and 6. In each case the various intersections of the two 
curves represent the steady-state positions in the x, y plane. The directions 
of the arrows indicate the stability of these steady states. If the arrows 
lead back to the steady state, it  is stable, i.e., any displacement gives rise 
to compensatory processes. If the arrows lead away from the steady state, 

O 

FIGURE 4. The case: kl < ks 

y---~  

O 

FIGURE 5. The case: ka < kl < ks + k~(crl)/(.~) 
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it is unstable. For details, see Appendix VA. It  should also be mentioned 
that one steady state of this system is given by x = y = 0, which is not 
given as an intersection but  shown as a point in the figures. 

Three possibilities must now be considered: 

1. Case: kl < k3. This system is represented in Figure 4 and described 
in Appendix VA. As can be seen from the graph, there is only one stable 
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steady state, namely, at the origin. This, therefore, represents a transient 
system. 

2. Case: k3 < kl < k3 q- k2(~1)/(~2). Here, as shown in Figure 5 and 
described in Appendix VA, exists one unstable root at the origin and one 
stable root for positive values of x and y. 

3. Case: kl > k~ -t- k2(crl)/(cr~). As can be seen from Figure 6, this sys- 
tem has four steady states, two stable and two unstable. Hence, given this 

FIGURE 6. The case: kl > ks q- k~(~rl)/(cr,). Evalua ted  for the values al = ~2 = 1, kl = 101, 
k 2 = 2 0 ,  k 3 = k 4 =  1. 
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set of parameters, multiple steady states arise for this system. The system 
will occupy a particular steady state according to the particular values it 
has on displacement. 

We can use such a mechanism to suggest an explanation of the gene po- 
sition effect. Let x and y be the concentrations of two enzymes produced 
at a certain chromosomal locus F and let x have as a precursor a metabo- 
lite produced by a gene G at another locus. Hence the parameter kl in the 
action scheme above can be equated to w,G, where G is the precursor con- 
cent.ration at F. This value is given by the following equation: 

d G  w l G x  (53) 
dt - k (Go - G) 1 -{- r  

where Go is its concentration at the locus of G. In the steady state 

XGo 
X -b wl x 

1 + ~lx 

Also, k is given by Q / l  where Q is a constant and 1 the distance between G 
and F. Hence if the distance 1 is increased because of a mutation involving a 
change in gene positions, G is correspondingly decreased. But, as pointed 
out, kl is proportional to G. The enzyme system may therefore start out 
in state 3 with its two possible stable steady states and, as a result of a 
shift in the respective distances between the two genes, the value of kl may 
be sufficiently decreased to make only state 1 or 2 possible. The system 
must then leave its previous steady state and drop to a lower one, includ- 
ing, possibly, to the zero steady state. 

I t  can be concluded therefore that multiple steady states are possible, 
but  require somewhat unusual kinetic systems. In particular, a combina- 
tion of autocatalysis and surface reactions gives rise to two stable steady 
states if certain inequalities are satisfied. Such a model can be used to ex- 
plain gene position effect. The required property of surface reaction again 
indicates the importance of the role of structural features in biology. 

V_r. pH and structure. The significance of pH in cellular systems is well 
appreciated and a great deal of experimental and theoretical work has 
been done bearing on various aspects of this question. In this paper we 
shall investigate the following two problems: 

1. I t  is well known (Danielli, loc. cir.) that  the amphoteric nature of 
proteins (enzymes) gives rise to a local pH near the surface of the protein 
which can differ markedly from the average value in the medium. We 
shall study the effect of enzyme aggregation on this local pH. 
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2. I t  is also well known that enzyme reactions are very sensitive to 
changes in pH. in particular, we shall examine the effect of enzyme locali- 
zation in a 2-step system on the optimum pH for the reaction. 

A. The local pH. Since enzymes are amphoteric in nature, they can 
possess a net charge. This net charge attracts ions from the medium to 
form a diffuse double layer as described by the Debye-Hiickel theory. In 
particular, H + and OH- ions will be attracted, thus giving rise to a local 
pH capable of differing considerably from the average. 

The enzyme aggregation causing this electrostatic field can, of course, 
differ in extent. I t  seems reasonable to assume that the size of the aggre- 
gation will have an effect on the magnitude of this local pH. 

We shall investigate two models. The first is represented by a sphere 
whose outer surface consists of a layer of charge-bearing enzymes. If we 
increase the radius of the sphere a n d  keep the surface charge density con- 
stant, we are essentially describing a situation of increasing enzyme aggre- 
gation. Physically, perhaps such a sphere could correspond to a microsome. 

We now assume that the active groups on the enzyme surface are react- 
ing with the local H + and OH- ions according to the following scheme 

H+ + R A - ~  RAH , OH- + R'C+ ~- R'CO +H20 , 

where RA- represents a surface anionic group, RIC + a surface cationic 
group. I t  therefore follows, remembering (H+)(OH -) = _K = 10 -I~, that 

51 
(RA-) - (H+) (54) 

(RIC +) = 52 (H +) , 

where al and as are constants. Physically, this means that the surface 
charges of the enzymes are effected by the local pH of the medium at the 
same time that the local pH is determined by the surface charges. 

Let x0 be the hydrogen ion concentration in the medium, i.e., r = Go, 
and let ~(r) be the electrostatic potential due to the charged enzyme sur- 
face. I t  follows then from the Boltzmann distribution that the hydrogen 
ion concentration at r = a, i.e., at the sphere surface, is given by 

k T  ' 
hence 

;OH-]  = exp ] 
Xo l. k T  d" 

Here e represents the charge of one electron, k the Boltzmann constant, and 
T the absolute temperature. Remembering now that the surface anions 
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and cations react only with the H + and OH-  ions at r = a, we can 
rewrite (54) 

r er ] 
(RA-) =~oo exp [--k~--J 

(55) 
r e~ (a) 

(R'C +) = a2Xo exp [ )IT ] " 

Our problem now becomes that of finding ~b(r). This can be determined 
from the Debye-Htickel theory. I t  is given by (Verwey and Overbeck, 
1948) 

(r) =~o  e_~, ' (56) 
/, 

where K is the well known Debye-Hiickel constant. The coefficient if0 is 
evaluated by using the relation 

(d~r) 4~r - = - -  ~, ( 5 7 )  
a E 

where ~ is the dielectric coefficient. The surface charge density g is given by 

= e [ (R'C +) -- (RA-) ] . (58) 

From (55), (56), (57), and (58), the local pH can be determined quite 
simply. On the basis of the assumption underlying classical Debye-Hiickel 
theory, namely, [e~(r)]/(kT) << 1, the resulting transcendental equation 
can be linearized. Our final expression for the local hydrogen ion concen- 
tration [H +] (a) is given by (Appendix VIA) 

k r  ~ ( a K-]- 1) X o - b ' - ~ -  a ( a2x2o-t - al) 

It  is clear from (59) that if Xo > ~/[(al)/(a2)], the local hydrogen ion con- 
centration decreases with increasing radius a, and has the asymptotic 
value 

[H +] (a) = x0 exp k T r K x  ~ 47re 2 " . (60) 
+ ~ T - - (  2 0 + ~  

On the other hand, if x0 < ~/[(al)/(a2)], the local hydrogen ion concentra- 
tion increases with increasing radius a, and has the asymptotic value 

( 4 2, 2, ] ] "i~e__i, al --a2Xo) 

[H+]  ( a ) = x ~  ~ k T [ ~ K x o + - - ~ - ( a 2 X o + a l ) ]  
exp 4~re 2 2 . (61) 
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Hence if the pH of the medium is great, the local pH will decrease with 
increasing enzyme aggregation; if the pH of the medium is small, the local 
pH will increase with increasing enzyme aggregation. These conclusions 
are summarized in Figure 7. 

The second model which we shall investigate differs from the first in 
that  the enzymes are assumed to be adsorbed on the inner surface of a 
spherical shell. The significant pH is therefore that  on the inside of this 
sphere. Physically, this may correspond to a structure such as a mito- 
chondrion. 

(H% 

Xo 

O a 

FIGURE 7. Hydrogen ion concentration vs. radius; enzyme on outer surface 

The potential inside of such a sphere is given by Debye-Htickel theory 
(Appendix VIB) as 

~k ( r )  = ~bo sinh Kr, ( 6 2 )  
r 

and the constant ~0 is determined from 

d~)  = 41r~ (63) 
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From (55), (62), and (63), ~k0 can be determined. Again using the approxi- 
mation (e/kT) ~(a) << 1, we finally determined (Appendix VIB) 

( a )  - ~1 

(coth Ka--  ~-~---a) K +152' (64) 

where 

Since 

} 
us '~ -- 4r e~ (a2xo + 

(65) 

lira ~k (a) = ~._2 and lim $ (a) , -  /~1 
~-,o 32 ~-,~ K + 32' 

we can see from (64) that  ~k(a) is monotonically increasing for/31 > 0 and 
monotonically decreasing for 31 < 0. Since the hydrogen ion concentration 
is given by 

:co exp - - ~ - ~  (a , 

the following conclusions can be drawn: 

1. If x0 is less than v/[(al)/(a2)](31 > 0), the local (H +) starts off, for 
a - -  O, at 

x0 exp k-T 32 ' 

which is greater than X0, and decreases to 

[ e 3, ] for a=oo Xo exp kT K + fl 

2. If Xo is greater than v/[(al)/(a2)](/31 > 0), the local (H +) starts off, 
for a = 0, at 

[ Xo exp k-T ' 

which is less than Xo, and increases to 

[ e 3 1 ]  
xoexp kT K + 3 " 

These conclusions are summarized graphically in Figure 8. 
The behavior of the local pH inside of a sphere is therefore considerably 

different from its behavior outside of a sphere. 
B. pH and a 2-step enzyme system. I t  is well known that changes in 

pH greatly affect the rates of enzyme reactions. This is easily understand- 
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able, since a good part of enzyme-substrate interaction is probably medi- 
ated via electrostatic forces which are very much affected by the electro- 
lyte concentration in the medium. Also, hydrogen and hydroxyl ions prob- 
ably react with charged groups on the enzyme surface and hence compete 
with the substrate for reactive sites. 

It  has been shown for a good many enzyme systems that an optimum 
pH exists, differing of course from enzyme to enzyme, and that the reac- 
tion rate drops away quite sharply on each side of this optimum. Various 

IH% 

Xo 

OC t Xo>J  

tZ 

FIOUI~E 8. Hydrogen ion concentration vs. radius; enzyme on inner surface 

theories have been advanced to account for these characteristic curves; 
some of them indicate that the expected optimum would be at the iso- 
electric point for the protein. Actually a good many of the experimental 
curves for enzymes place the optimum pH not at the isoe]ectric point but 
as much as 1 or 2 pH units off. This would seem to indicate that the rela- 
tion between pH and enzyme action is of a more complicated nature. 

We shall attempt to derive the typical bell shaped rate vs. pH curve 
from a simple model which does not require that the optimum pH be at 
the enzyme isoelectric point. To simplify the calculations we shall assume 
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here that the hydrogen and hydroxyl concentrations are uniform through- 
out the whole region, i.e., the Boltzmann distribution according to the 
electrostatic field is ignored. Our model is as follows: Assume two enzy- 
matic surfaces placed a distance I apart, so that the first step of a reaction, 
S~ --~ Pl, occurs on the first surface. We assume that S~ is present in large 
enough quantities in the medium so that its concentration can be consid- 
ered constant. The substrate pl diffuses through the medium and reacts 
on the second surface to form P2. We shall also assume that the production 
of Pl occurs on negatively charged sites of surface 1, while the production 
of p2 occurs on the positively charged sites of surface 2. Hence hydrogen 
ions will act competitively on surface 1, and hydroxyl ions will act com- 
petitively on surface 2. We shall also assume that pl tends to re-form $1 
on the first surface, but via a different uncharged enzyme. 

The reactions taking place on the first surface are, therefore, 

E1 + $1 ~- (ES1) , 

ty_ 1 

(ES1) ---' p l - t -  E1 , 

+Ka 
E1 -t- H ~ (EH1) , 

k~ 

Pl ~$1 �9 

The steady-state rate of production of pl is then given by 

(r2 (ESI)  - k2pl (0)  . 

The first part of this expression, ~2(ES1), follows directly from the theory 
of competitive inhibition (Wilson, 1949). It  is given by 

�9 ~2 (ES1) = ~1 ~ S 1 E I T  
(1 + K1H +) (~2+ ~-1) + ~ISI' (66) 

where El f  is the total concentration of enzyme available on the first 
surface. If pl(1) represents the concentration of pl at the second surface, 
we have a similar reaction there, giving rise to/'2 with OH- ions competing 
for the positively charged active sites. The rate of p2 production is there- 
fore given by 

~3o'4E2Tpl (l) 
v lpl  (l) -- (1 -[- K2OH-) (~4+ ~-3) + ~3S2" (67) 

To simplify calculations we shall assume that pl( l )  is much smaller than 

1 
- -  (1 -t- K2OH-) (~4-{- a-3) . 
O" 8 
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Hence (67) can be approximated by 

~3a,E2rpt (l) 
VsPl (1) - (1 + K2OH-) (~4+ ~-3) " (68) 

The desired rate is given by (68). But to evaluate it we must find p~(l). 

This requires solving 

with the boundary conditions 

d ~ P l _  0 
dx2 

d x . / o  = ~2 (ESt) - k2pl (0)  , d x  flt  " 

These equations in Pl are identical with (27) and (28) in B, except that 

k l A  = ~r2 (ES1) , ks = Vl . 

If we again set H + = x, OH- = a / x ,  the steady-state rate, v~p~(l), using 
(29), can finally be written 

v~ = ~'lx (69) 
72 + Tax + 7~x 2' 

where 

71 = ~rl~r2~raa4SIE1TEsTD , 

72 = Dk~K2o'4 (~4+ ~-3) (~2+ ~ - I +  alSt) , 

73 = (~+~-1+~1S1)  [Dk2(a4+~-3)+a3a~E2T(D+lk2)]  (70) 

+ KI ( a 2 +  a-i) a, Dk2K2  ( a , +  a-3), 

74 = K I ( ~ 2 + ~ - 1 )  [Dks(a4+~-~) + ( D + l k o . ) ~ 3 a ~ E 2 T ] .  

As can be seen from (69), v3 is zero for x = 0 and is again zero for x = oo. 
In particular, the optimum hydrogen ion concentration is given by 

X l n a x  ~ "~4 " 

I t  is clear from (70) that this optimum is determined not only by the pa- 
rameters involving the enzyme itself, but also by the separation between 
the two enzymes, and the diffusion coefficient D of the substrate Pl. Hence 
the optimum is not necessarily at the isoelectric point but is determined, 
in a complicated manner, by the total system. 

V I I .  Osmot ic  pressure ,  A n  integral part of studies on electrolytic solu- 
tion has been the investigation of osmotic pressure due to such phenome- 
na. One of the best known approaches to its determination has been via 
the Donnan equilibrium. 
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We shall examine this problem from our particular standpoint of en- 
zyme aggregation. Consider a sphere of radius a, whose inner surface is 
covered with protein material bearing a net charge. As a result of the po- 
tential arising from the surface charge, electrolytes from the solution will 
be attracted to or repulsed from the region of protein concentration de- 
pending upon their sign and the sign of the net charge. If the result of this 
attraction and repulsion is an increase in the total number of molecules in 
the inner spherical region, as compared to the medium, osmotic pressure 
will develop and water will tend to flow into the sphere. If the total num- 
ber of particles in the enzyme region is smaller, water will tend to flow out 
into the medium. As a first approximation, we shall use the van ' t  Hoff 
equation for osmotic pressure: 

P =  k t ~  ( n l -  nio) , 

where ~i represents the average number of molecules of the i th electrolyte 
per unit  volume of sphere, and hi0 its number per unit volume in the 
medium. 

Further, ni(r), 0 < r < a, is given by nl0 exp [-ezd/(r) /kt] ,  where zl 
is the valence of the i th electrolyte. Hence the average number per unit 
volume is given by 

3fo~ n~=-~ r2nloe-i~(r)l/(k~')dr. (72) 

This intergral can be evaluated by expanding the exponential and discard- 
ing all but the first three terms. Remembering (62), the final expression 
becomes (Appendix VII) 

p=3___e2~b~ v '  (Z z~2n ~0) (sinh 2 Ka - 2Ka)  (73) 
4 kTa3X 

where K = ),x/(Xz~ni0). We observe from (73) that  if ~b0 is independent of 
the radius P becomes infinitely large as a becomes infinite. 

We now modify the picture, by assuming further that  the electrolytes 
in the medium not only form a double layer, but  also react chemically with 
the charged groups on the enzyme surface; hence affecting the charge 
density and, therefore, ~b0 also. Using (63) we can, therefore, evaluate ~b0. 
As shown in Appendix VII  it  becomes 

~la~ (74) 
~bo= aK cosh K a +  sinh Ka ( a ~ - -  1)  ' 
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where 

41r[ _B + A t -  41re[ B + -4 A T -  

We can now express P as a function of a. I t  is given as 

2 2 a (sinh 2 K a  - 2 K a )  3 e ~1 x / ( ~ n ~ o )  (75) 
P = -4 kT--X [ a K  cosh K a  + sinh K a  (a~2 -- 1) ] 2" 

A few observations can be made about (75): When a equals zero, P is 
zero. When a becomes very large, _P becomes zero also; hence P must have 
a maximum for some radius a. 

I t  is difficult to assess how significant the actual magnitude of this os- 
motic pressure could become. I t  is of interest to read in the experimental 
literature (Shelton, 1953) that mitochondria, as observed in cultured 
fibroblasts, "assume a bewildering variety of shapes . . . .  Large 'hollow' 
blebs appearing at the ends or in the middle of a mitochondrion would 
swell and collapse, frequently pinching off a piece of mitochondrion at the 
point of rupture." 

It  is tempting to speculate that perhaps these morphological changes 
could be due to variations in osmotic pressure, which variation might per- 
haps be traced to changes in charge density of mitochondrial enzymes as a 
result of a progressing reaction or of alterations in the size of the particles. 

I t  also seems possible to ascribe the lysis of viral hosts to osmotic pres- 
sure resulting from the production, by the virus, of a large number of high- 
ly charged DNA molecules inside the cell. The lyric action of phage 
would, therefore, be due to the act of localizing electrolytes inside the 
host cell, hence giving rise to an increasing charge density in that volume. 

V I I I .  Morphology. As previously mentioned, a number of investigators 
have found some correlation between shape of mitochondria and varia- 
tions in metabolism. For this reason it is of interest to see whether any 
simple conclusions follow from our kinetic analysis concerning relation be- 
tween shape of these cell particles and steady-state rates. 

Unfortunately the limitation of the kinetic analysis to 2-step systems 
makes any general deduction rather dubious. Also, there are many other 
factors in addition to simple steady-state rates which play significant roles 
in this relation and which are not considered here. 

Considering rate only, then, we see that the rate in a certain region will 
be very much determined by the amount of ~tiffusion possible, and this, in 
turn, will depend on the total surface area available for outward diffusion. 
The sphere having the smallest surface for a given volume will have mini- 
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mum diffusion. In the case of a 1-step open system with one diffusible inter- 
mediate, this becomes the only significant effect and therefore the rate of 
the sphere will be minimum, as compared, for example, to the rate in a 
cylinder of equal volume. 

Consider now a 2-step system with two diffusible intermediates of the 
form 

~ C ~ C 2 .  
K _  1 K_~ 

Here the situation is somewhat different. If the surface area is too great, 
all of the first intermediate C1 diffuses out of the system and the second 
step never occurs. Hence there exists an optimum surface area for a given 
volume, as distinct from the previous case where the optimum was the 
maximum surface area possible. 

This can be seen more concretely by using Landahl's (1953) approxima- 
tion method. The rate of appearance of C2 in a sphere is given by (Appen- 
dix VIII)  

16 K1K2~r DR 5 
WI= 144D2+ I2DR~(K_I+ K~+ K_2 ) + K_IK_~R 4, (76) 

where D is the diffusion coefficient and R the radius of the sphere. In the 
case of a cylinder of volume V = ~vR 3 = zrh~zo, the rate of appearance of 
C~ is given by (Appendix VIII) 

67rDV6n2 o (4hoS + V ~) 
W2 = p , (77) 

where 

p = [124DhoS+ 6 D V 2 +  K_~V2h2 o] [24DhoS+ 6 D V 2 +  K _ I +  K2V2h2 o] 

- -  K 2K2h4o V 4 . 

Clearly W2 is zero for both ho = 0 and very large ho. Hence an optimum 
value of h0 exists, as expected. Further, there will exist at least two ranges 
of h0 for which the rate of the sphere is larger than that in the cylinder. I t  
is also possible that the rate in the sphere is greater than that in the cylin- 
der for any value of h0. It  is clear, therefore, that the conclusions drawn 
from a 1-step system are not applicable to higher order systems. 

I X ,  Discussion and conclusions. I t  has been the purpose of this paper 
to examine the significance of structure of enzyme systems. The biological 
importance of this problem can hardly be overestimated. It  is becoming 
more and more apparent as a result of biological research that life means 
organization and pat tern--not  only chemically, not only in terms of a 
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given set of reactions, but also in terms of spatial and geometric relation, 
linking together chemical reactions, bioelectric potentials, mechanical 
forces, and all the many processes characteristic of living things. 

I t  is becoming apparent that these structures must be studied not only 
statically, although this is of undeniable importance, but dynamically, in 
their relation to the ongoing activities of the cell. This sentiment is well 
known today and needs little discussion. But it is not too clear how this 
problem should best be attacked, and most of our knowledge concerning 
the relation of organization to function is still on a far too vague level. 

This paper was conceived as an attempt at a particular approach to- 
ward this basic problem. In all cases attention was focused on how to re- 
late a specific biological, chemical, and physical process or property to a 
given structure, or changes in structure. The purpose is frankly explora- 
tory; the author does not believe that biology is at the stage where pene- 
trating theoretical developments can occur apart from an integrated oper- 
ation involving experimental and theoretical work. 

On the other hand, such theoretical work can open up lines of thought 
and indicate relations which otherwise might be missed. I t  also offers op- 
portunity for collecting diverse data and arranging them in a semblance of 
order. Further, it develops models and their consequences which can be 
of significance to the field. 
�9 This paper was devoted to a series of questions, all focusing on the prob- 

lem of the relation of structure to activity. The first question concerned 
itself with the effect of enzyme compartmentalization on the steady state 
of rate of reactions. It  appears that for the particular kinetic system 
studied, the delaying effect of diffusion is dominant, and therefore that the 
steady-state rate is decreased as a result of this kind of compartmentali- 
zation. This result led quite naturally to an examination of the validity of 
the kinetic scheme used. I t  then appeared that the conclusion was perhaps 
of dubious validity because the basic model was biologically inadequate. 
I t  was suggested that perhaps the more fitting model for reactions inside 
of cells, in particular inside of particles, would be surfaces immersed in 
solution. A very  simple examination of this model indicated that here 
compartmentalization does lead to an increase in the steady-state rate. 

Another significant problem dealt with was that of access of substrate 
to enzyme. I t  was shown that a simple localization of enzymes with respect 
to the enzyme source can give rise to important effects on the competitive 
situation, and assist the channelization of reactions one way or the other. 
The effect of enzyme localization was also studied with respect to the 
steady-state concentration of intermediate, and it was shown that in gen- 
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eral the non-uniform concentration will be larger than the uniform, hence 

also assisting competition. 
We also dealt with the question of possible periodicities. I t  was estab- 

lished that the simple kind of kinetic systems, both uniform and non- 
uniform, do not satisfy the sufficient criterion for periodicity. Further, in 
the case of autocatalytic reactions, diffusion which enters as a factor in the 
compartmentalized system seems to reduce the probability of periodicity. 

The phenomenon of overshoot was also examined and it was shown that 
structural features, if involved in reaction systems, provide additional 
parameters which can lead to overshoot. Furthermore, it was shown that 
the conditions for overshoot in terms of variations in the system parame- 
ters are different for uniform and non-uniform systems. 

Some space was devoted to multiple steady states, a subject of biologi- 
cal interest which has been insufficiently investigated. I t  was shown that 
a number of systems which commonly occur do not possess this property, 
but  that a combined surface and autocatalytic system does. A possible 
mechanism whereby such multiple steady states could give rise to gene 
position effects was postulated. 

The problem of pH was then investigated, again with particular focus 
on the relation between pH and structure. I t  was shown that the local pH 
in the neighborhood of amphoteric enzyme systems is affected by the ex- 
tent of enzyme aggregation. The nature of this effect depends on whether 
the enzymes are spread on the inside or outside surface of the particle. 
Specific relations between changes in aggregation and local pH were 
established. 

Another well known problem which was investigated with reference to 
structure was the relation of reaction rate to pH and the nature of the op- 
timum pH. In particular, a 2-step surface system was studied in which the 
reactions were assumed to occur via differently charged groups. It  was 
shown that the reaction rate, when plotted against the pH, showed the 
characteristic curve, and that the optimum pH was not at the isoelectric 
point, but determined by the parameters of the whole system. 

The problem of osmotic pressure effects resulting from charged surfaces 
was also examined. The expression for the osmotic pressure inside of a 
sphere of uniform charge density was deduced; it was shown that the os- 
motic pressure has an optimum radius, i.e., it has a maximum for a par- 
ticular value and decreases on both sides of this optimum. Some possible 
relations to biological phenomena were postulated. 

Finally, a short examination was made of the relation of the shape of the 
particle (reaction volume) to the reaction rate. It  was shown that for the 
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1-step system the sphere has the slowest rate, but that in 2-step systems 
the sphere can have larger rates than the cylinder. 

On the basis of these considerations it may be concluded that structure 
as studied has significant effects on important biological properties. 

I wish to thank the Committee on Mathematical Biology and, in par- 
ticular, Professor H, D. Landahl and Dr. C. S. Patlak for their help and 
criticism. 

(Note: Appendices IA, IB, IVA, IVB, etc. following are elaborations of 
Sections I, IV, etc. in text.) 

APPENDIX IA 

If X = 0 in (7), vl becomes ql. We want to determine the ratio ql/vl. 

Since the problem of finding ratios will occur frequently, we shall simplify 
the operation as follows. Let 

A I + B 1  A I + B 2  
W1- C1+ D1 W2 - C l +  D~" (78) 

Hence, taking the ratio 

or  

WI_ (AI+B2--B2+B1) (CI+ DI - D I +  D2) 
W2 (CI+ D1) (AI+B2) 

(79) 

W2 ( C l - ~  D1) (A I+B2)  

it is infinite when 

We shall use formula (80) in all future calculations of ratios. 
In this particular case, setting ql = W1, vl = W2, we see that 

B1 = 0 = D1 , AI  = w l X o w 2 - w - l w - 2 X 2  , "[ 
(81) 

f B2 = X ( w l X o -  w - l X - l o ) ,  C1 = w2 + w - 1  , D2  = X �9 

Hence substitution of (81) into (80) results in 

q~---- 1 -~ W--IX [Xlo (w~+w-1) - -wlXo--w-2X2]  (82) 
vl (w~ + w - 3  [wlXo (w~ + X) -- W-lXXio-- w-lw-2X2] " 

Equation (82) is 1 when 

Xi0 - wlXo + w-~X~.  
202 + W--1 

wiXo (X + w2) - w-lw-2X2 
XlO -- 

w-iX 

Since the latter is larger than the former, the conclusions in the text 
follow. 

W1 B1 (C1+ D~) + A1 (D~ -- D1) --B2 (DI+ CI )  
= 1 -~ ( 8 O )  



THE BEHAVIOR OF ENZYME SYSTEMS 245 

APPENDIX IB 
The basic equation to be solved is 

d2B 
dx 2 = O, 

with boundary conditions 

_ D dB~ 
d-~ /o = k lA  -- k2B (O) , L 

= kaB (l) . 

The solution of (83) is given by 

B (x) = c1+ c~x . 

The coefficients cl and c2 are determined from (84). They are 

-- klk~A1 } 
c2 = D ( k~--'~ k-~8)- +-k2kal ' 

klA1 ( D +  kal) 
c1= D ( k s +  k3) + k2k31" 

Hence 
B (l) = DklA1  

D ( k 2 + k 3 )  + k 2 k J '  

(28) follows from (87) directly. 

APPENDIX IVA 
We have 

kl 
E1 + S I , ~  X l ,  e-1 

(83) 

(84) 

(85) 

(86) 

(87) 

with these two conditions 

Eoi = Xi + E l  , 

Hence 

~r L 

XI  ~- $2 WE1 

X~ ~ &+l +En,  
I r _ n  

K = 2 (S~ + Xi) + Sn+l. 
i~l  

i = l , 2 , . . . n  } 

$1 = K - X1 - ~ (Si + Xi) - S~+1. 
2 

(88) 

(89) 
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The basic equations describing (88) are 

dX1 _ klE~S~ -- Xa ( k - ~ +  al) + ~-1S2E1 
dt 

dS2 
dt 

- o'1X1 -- a-lS2 (Eol -- Xx) -- k~S2 (Eo~ - X2) + k:~X~ 

dSn+, - ~ . X . -  ~-.S,,+IEo,+ ~-,S~+IX,. 
dt 

Setting 

a l = X ~ - - J f ~ ,  i =  1 , 2 , . . . n ,  

(90) 

~ 1 = S i - S i ,  i = 2 , 3 , . . . n + I ,  

eliminating all terms in a~ or 3~ higher than first power, and using (89), 
results in 

dt = 0.1 kl 2~ + k t 2 1 -  k l K  + kl , ~ -  klEao 
1 2 

- -  ffl - -  k - 1  - -  o ' -132]  + /~2  [ k l X l  - -  k l E l O +  a-lElo- o-121] 

n+l n 

3 2 

d~, 
dt - al (~rl + o'-1S2) + ~ (o"-121 -- a-lEo1 -- k~Eo2 + k2f(2) 

+ ,x2 (k2S2 + k-,) 

d o ,  j _ ~ j k j  ( E o j  - -  X j )  - -  a j  ( f f - j g j + l - ~  k _ j +  o-j-q- k j g j )  
dt 

"31-- ~j+lO'-- j  ( E o j  - -  . f ~ j )  , 

dt 
- *'j-~ (ai-~ + ~-(i-~)S~) + ~i (~-6"- , ) f f i -~  -- a-(~-x)Eoj-~ 

-- k iEo j+  kjfCj) + a~ ( k j S i +  k - i ) .  

(91) 

I t  can be seen on inspection of (91) that  there is only one pair, a~., aj~, 
which may have opposite signs. This occurs for the coefficient of/~2 in the 
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first  equa t ion  and  for  the  coefficient of al in the  second equa t ion .  T h e y  are  

( E l o  -- )~7i) (o--i -- kl) and ~ 1 +  o--iS~ , 

r e spec t ive ly .  Clear ly  if kl > *_~, t hey  are  of opposi te  sign. 

APPENDIX IVB 

F r o m  (90), if n = 1, 

d X l  K = S 2 - q - S I J I  - X 1 , E l  = E l o  - X1 , 

dt -=  k l  (EOl -- X1) ( K  -- S~ --  X1) 

--  Xi ( k - i +  o-i) + O--1S2 (EOl -- X1) , 

dS2 _ {;rim i _ ~r_1S2 (Eol - -  X1) �9 

W e  set  
~I = Xl- XI , 

(92)  

~ = S ~  - ~q~ . 

H e n c e  

dal _ kl (Eoi -- ~11 -- 21) ( K: f12 -- $2 -- ai -- 21) 
dt- 

-- (a l - [ -  2 i )  ( k - l - { -  0"1) -[- 0"--i ( 3 2 + $ 2 )  (Eol -- al  -- 21) , 

d &  
dt - ~l  ( a 1 - ~ 2 1 )  - 0"-! (~2-~-$2) (Eo l - -  o,1-- X l )  �9 

Since 

kt ( E o l -  21)  ( K  - $2 -- 21)  - X1 ( k - x +  ~1) + ~-1S2 (Eol -- 21)  = 0 , 

we find 

d a l  

dt 

o-, 21 - o--iS~ (Eol - 2 , )  = 0 , 

klEol (~23v al)  -~ k l X l  (al-~- ~2) - -  k l a l  ( K -  $2 - -  .X1) 

- al ( k - l +  ~i) + ~-i~ (EOl - 20 - ~-iS2aL , 
dt~2 

- ~ 1 ~ 1  - a - 1 ~ 2  ( E o l  - -  2 1 )  + ~ - 1 S ~ 1  �9 
dt 

W e  now let  al =/s  -xt a n d  a2 =/s215 the  above  becomes  

/ s  + k - i +  o-1+ ~-1S~] } 

+/s (Eol--  21) (kl  - a - l )  = 0 , (93)  

- -  /s [0"1-t-  o ' - 1 3 2 ]  + l s  [ - -  ~k-[-  o ' -  1 (EOl - -  X 1 )  ] = 0 . 

E q u a t i o n  (44) resul ts  f r o m  se t t ing  the  d e t e r m i n a n t  of coefficients of (93) 

equa l  to  zero and  expanding .  
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We now calculate b 2 -- 4ac = G, as defined in the test. I t  is given by 

G= [a_l (/~I ..1_ $2) AF kl (E1._~S1) _t_al.~_k_l] 2 (94) 
-- 4El [ a - l k - : +  k w : +  a - i k l  ( E : + S : + S 2 )  ] , 

where we use the relations 

K = S I + S s +  21 , 

/~01 = E: + X1 �9 

Equation (94) can now be expanded and simplified. The resulting equa- 
tion is now written by grouping all terms in the powers of El. The follow- 
ing results: 

a =~ (a--1 -- ki) s-l- 21~i (a-i -- ki) [a-iS2 -- kiSi-~- 0"1 -- k-l] 

"JF (O'-lSS-{- klSl) 2-t- (al-~- k-l)  2-t- 2 (al-~ k-i) (a-lS2-~- kiN1) . 

Inspection discloses that  G is greater or equal to F, where F is given by 

F = [El (r - kl) JF a-iS2 -- klSl-t- 0-1 - -  k-i] 2 

Since F > 0, G can never be negative. 

APPENDIX IVC 

This system is described by the following set of differential equations 

d A n  
- d r - =  k A n - -  ri ( A i i -  A12) -- a l l a n '  

dAis  
dt = rl ( A l l  - -  A12) -- klA12A22-- a:2AI2 

dAi ,  i+: 
dt - r s ( A s s -  As, s+1) -- k jAs,  i+:As+:,s+:-- ai, s+lAs, s+:' 

dAj+l, j+l 
dt - k iA i ,  i+lAs+l,S+l-- ri+i (As+:,s+I-- Ai+l, s+2) 

-- ai+l, i+lA i+l, i+1 

dAn,n 
dt - k~-lAn-i ,  ~A~'~- rnA~" 

(95) 
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Following the usual procedure, we set a~j = A~j - -  A~., where A~s is the 
steady-state value. Hence, ignoring all but terms a~j to the first power, 
(95) becomes 

da l l  
dt  - a n ( K - r  1 - a  n)  + r l a l ~  , 

dal2 
dt -- f l a i l  - -  a12 ( r l ~ -  k l A 2 2 - ~  q12) - k l A i 2 a 2 2 "  

da j ,  j+l 
dt - r s a j ] - - a i , ~ + ~ ( r i + k ] A i + l , i + ~ + ( ~ i ' i + ~ )  

--  ai+i,  i + l k i A i ,  i+1 

daj+i ,  3+1 
dt - -  ai, i+lk i  2{ i+1, i+1 - -  aS+l, i+1 ( ri+l - -  (r i+l ,  i+ t  

--  k iz{ i, i+1) -t- r i+ l a i+ l, i+~ 

d(•n,n 
dt - a  i, kn_ lAn ,  ~ - a , , ~ ( r  - - k _ i A _ l ,  ~) . 

(96) 

Further, since K~Z[ll - -  r l @ i l l  - -  2{12) - -  gnA~v= 0 in the first line in (95), 

- -  t iN12  
K- rl- o'ii- /il i -QI. 

Continuing for the second line in (95) gives us 

rid11 = (72. 
r l  -Jr- k12122 -[- 0"i2 --  J12  

In general, there are 2~_1Q~ such that 

rjAji , } 
Q~J- ~'~+1 

g2~-i - r j A j ,  ~+1 
A i  ~ " 

(97) 

Hence using (96) in (97) we find that the coefficient of V n-2 is given by 

2n--1 

ai = ~ Q i ,  
1 
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and the coefficient of k 2"-a is given by 

1 2 n - -1  Q Q 2 n ~ l  n - - 1  n - - 1  

�9 . , .  ~ i + 1  " 
i ,  i = 1  " 1 i 

Therefore 

2n--1 n--1 n--1 (98) 

1 1 1 

Equation (98) must be less than or equal to zero to satisfy the sufficient 
condition for periodicity. 

In particular, we can substitute (97) into (98). This gives 

A~.j r~ " r~ a 12-2a2= r~A~ . -  + ~ --=~ + 2  
~, 1+1 A ii "/ i 

n - - 1  

-- 2 ~  k~Ai, i + l A i + l , i + t ,  
1 

n--1 - 2  - 2  - 4  - 4  

= ~1 r i [  ( A i i + i A i i ) 2  ' " i + 1 A i + 1 ' i + 1  " 

Clearly, a~ -- 2a2 ~ 0 if each term in the series obeys this inequality. This 
requires the inequality of (47). 

APPENDIX IVD 

The differential equations describing the system become, in X1 and X2, 

dxl _ 
d~ (~ ~- W-l) XI '~- ~kX2 ' 

(99) 
dx2 
dt  "= XXl--X2 (X+w~) . 

The characteristic equation of (99) is (X + w-17)(k + w2 -- 7) -- X2 = 0; 
hence, solving this quadratic equation in 3'1 results in (49). 
Setting 

from (48), and substituting in (99) gives us 

(100) 
J - "~ (Xl0- ~1)  = - ( X + w - 1 )  ( x l o  - ~1 )  + X (x2o  - ~1)  �9 

We can solve (100) for m and ~1. In particular, equations (50) result. 
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Further, --(/~1)/(~) from (50) is equal to 

- - / z l  Xlo ( ~ 1  - -  72) - 1  (101) 
#t2 ••20 - -  X10 (~k "~-W--  1 - -  "Y1) " 

Since, by assumption, 71 > 75, (101) is only greater than 1 if 

XX~0 X +w-1 -- ~'1 > 
XlO 

We can now use (49) in the above inequality, remembering that 71 is 
the larger of the two roots. Equation (51) follows immediately. Hence, 
(x20)/(XlO) must be less than zero. 

A P P E N D I X  VA 

The basic equations of this system are 

dx klx k~xy 
dt 1 + *lX 1 + ~2xy 

dy k2xy 
dt l + a2xy k ,y .  

k3X 

(102) 

We now proceed to find the curves yl = y l ( x )  and Y2 = y~(x) for which 
dx/dt and dy/dt are zero. I t  can be seen immediately that for x = 0 = y 
this condition is satisfied. Hence the origin is one of the steady-state 
points of the system. 

Setting each equation of (102) equal to zero and solving for y results in 
the following two equations: 

If dx/dt = O, then 

k l -  k 3 -  k3~lx 
Y - -  k30"l~2x2-~ - ks-{-  x ( k ~ a 2 - t -  k20"1 - klcr2) " (103) 

If dy/dt = 0, then 

k2x - k4 
Y -  k,a2x " (104) 

Now consider the case where kl < k3. Therefore the denominator is posi- 
tive and the numerator negative in (103). The resulting curve and its in- 
tersection with the curve (104) is shown in Figure 4. Hence there is only 
one steady state, the origin. This is also stable, as can be seen by examin- 
ing (102). 

If k3 < kl < k8 + k2~1/-2, the numerator is positive for sm~ll values of 
x, and the denominator is still positive. The resulting graph is shown in 
Figure 5. As can be seen from (104), the origin is no longer stable. 
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If kl > k3 q- k2~/~2, the numerator is positive for small values of x and 
the denominator is now a quadratic equation in x with two changes in 
sign. Hence it can have two roots, i.e., it can be zero for two values of x. 
The resulting graph is given in Figure 6. As can be seen, four steady states 
are now possible, two of which are stable, two unstable. 

APPENDIX VIA 

We see from (56) that  

( - -d~b)  r  l) 4zc 
- - J r  a a~ 

(105) 

and, from (55) and (58), 

- _ a l  r er ( a )  ] 
~ = e I a 2 X o e x p [  e~ (a ) ]  ~0 exp [~_k~__j 1 kT 

We now approximate each exponential by the first two terms of its Taylor 
expansion. Equation (105) therefore becomes 

41re(  al)  
- ~ 2 X 0  - -  

~oe -K~ _ ~ ~o (106) 
a (aK+l)x~ ~ a2xO+~oo)" 

Since 
e ~l,o e_Ka ) (H +) = x = x 0 e x p  kT a ' 

(59) follows directly from (106). 

The Debye-Htickel 
given by 

APPENDIX VIB 

theory for a spherically symmetrical system is 

d 2 r~ 
- K2r~b. dr 2 

In the case of the sphere, one boundary condition is given by the require- 
ment that  6 remain finite at the origin. This is fulfilled only if 

_-60 sinh Kr  (107) 
r 

We now use (107) to solve for 
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and set this equal to 4~ra/e. This becomes 

4~- a2~ 
~0 = - -  (108) 

e ( a K  cosh K a - -  sinh Ka)  " 

Proceeding as before we find ~1 and expand the exponentials in a Taylor 
series, ignoring all but the first two terms. Equation (64) then follows. 

APPENDIX VII 

The average number of molecules of type i per unit volume of the sphere 
is given by (72). Now 

e_[,,,~(,)i/kT_ [ ! ezi~b(r)  1 / e z ~ \  ~ ] 
- kT  ~ _ ~ ( ; f ) ~ 2 _ + . . .  ; 

hence, since 

n 

P = k T ~  ( n i -  nio) , 
4 = 1  

n 

P = k T ~  r2n~o 
i = l  

• ez i~  (r )  1 / e z i \  2 2 

(109) 

O r  

P =  kT  -- r 2 d r  -- 
i=1 \ kT  L-kTA " 

(110) 

We can see that the first and last term cancel. Also, from the condition of 
electroneutrality, 

Zn~oz~ = 0 ; 

hence the linear term under the integral sign vanishes. The result is 

a 

p _  3 e 2 n,oz,f r (111) 
2 kTa  ~ ~=1 ~o 

We integrate (111), using 

where 

~b = ~bo sinh K r ,  /, 

K X x /  ~ ! ~4zr  e 2 

= (z~n~o) , X =  ; F T  ; 

the result is equation (73). 
Further, let A-  be the anion surface charge of the enzyme, B + the cation 
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surface charge. Let C+~ be the ith cation in solution C_~ the ith anion in 
solution. Hence 

K1 
A - + C+I~--oAC+I 

A -  + c + . K ~ A c .  , 

B+C_Ig~-~BC_I 

(112) 

B + 2r C_,f-:~'BC_,,. 

If AT = the total anionic surface concentration and B + = the total cat- 
ionic surface concentration, then 

A~ 
A -  = 1 + Z K i C ~  

B + (113) 
B + = 

1 + Z~2iC-i ' 

Further, the total surface charge ~ = B + -- A-. Since 

C+1 = n + i e  -(e~)/(kT) , C - i  ~- n - r  (er T) , 

the surface charge can be written approximately as 

Since 

B+ e--[~(a)]/kT A~eI~(,,)l/~r (114) 
Y,f]in-i Y, Kin+~ 

d ~ )  _ 4 ~  
a E ' 

we can solve for the unknown coefficient ~b0. Approximating ~b(a) in (114) 
by the first two terms of the Taylor expansion results in (74). 

We assume that 

A P P E N D I X  V I I I  
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where ~1 and ?s are the concentrations at the center of the sphere of radius 
R. We now equate the total production of each substance to its outflow. 
Hence 

41r f0 R{K1 - (K-I~- K2)~  ( l - - R )  

-b K ' ~ s  ( 1 - - R )  I r2d r = 47rR ~l D 

and 

4~rf0 R l K~01 (1 - -R)  - K - 2 C 2 ( 1 - - R ) I r S d r = 4 z r R C 2 D .  

We use (115) to evaluate C1 and 0s. We find that 

(115) 

4 K 1 R  2 ( K - 2 R  2 -4- 12 D)  

144D2+ 12DR 2 ( K - l ' k  Ks'-k K-2) "k K-1K-2R* ' 
(116) 

4 K1 K2R * 
144D~+ 12DR S ( K - z +  Ks-4- K-s )  + K-iK-~R*" 

Since the total rate of production of Cs is given by 4~rRCsD1, (76) follows. 
A very similar calculation can be made for a cylinder of radius h0 and 

length z0. We again assume that 

(117) 

Equating the total rate of production of C1 and Cs with their outflows 
gives us 

fzo/2 f h o /  2 j_ o/2d.jo (KI+ [K- ,02- -  ( K - l +  K2)O~] 

(118) 
X [1--~o] [1 +_ 2Z-[zoj hdh = 41r Dh~OClzo t- ~1~1 z~ 

and 

(119) 
_ 4~rDh~C2 

-k Tr O s z o D . 
ZO 



256 ARTHUR BIERMAN 

From (118) and (119) C1 and C2 can be determined. Since 

W2 = 7r02D (4h~ z~) 
go 

(77) follows from the determination of 02. 
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NOTE: It was called to the author's attention during proofreading that 
there is only one stable point in Figure 6. However, if the following sets 
of numbers are used, there are two stable and two unstable points (the 
graphs are very similar): kl = 21, k~ = 20, k3 = 1, k~ = 6, al = 0.6, and 
O'1~ 1. 


