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Dominance relations and their structures have been studied in the context of animal sociology 
(Rapoport, 1949a, b; Landau, 1951a, b), and occur in many other theoretical models of the 
social and biological sciences. When Rapoport and Landau wrote, there was no method known 
for determining the number of dominance structures which could be defined on a set of n ele- 
ments, for n > 4. The answer to this question can be important in certain further investiga- 
tions of the structural properties of dominance. Using a general method developed elsewhere 
(Davis, 1953), this paper derives a formula to answer the question for any n, and gives an 
application of the method to treat a case not previously analyzed. 

1. Definitions and examples. A series of papers in this journal (Rapo- 
port, 1949a, b; Landau, 1951a, b) called attention to the importance in 
social science and elsewhere of a kind of relation seldom previously recog- 
nized, viz., one which was asymmetric and "connected" [in Russell's 
(1919) sense] but  not necessarily transitive. These were aptly termed 
dominance relations. 

To be definite, let N = { 1 , . . .  , n} be any set of n elements. Then we 
can describe any dyadic relation on N (to itself) in terms of a matrix 
A = (a~i), where ao' = 1 just when i stands in the given relation to j ,  and 
otherwise a~j = 0. 

DefinitionA. The dyadic relation A is a dominance relation if, and only 
if, (i) all a ,  = 0, and (ii) for all i # j ,  either a~i = 1 or else ai~ = 1, but  
not both. 

Rapoport and Landau examined these relations in a model for the 
"peck-right" among barnyard fowl, also mentioning their applicability to 
other situations commonly obtaining in small groups. Any tournament, 
for instance, in which each participant meets another just once (no 
draws) gives rise to a dominance relation; this example drives home the 
point that the relation may, or may not, be transitive. The "Method of 
Paired Comparisons" in psychological scaling gives rise (in the modern 
view, where intransitivities are not simply thrown out as "error") precise- 
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ly to the structure of some dominance relation. And in genetics; the as- 
sumption of "dominance" in the one-locus diploid case amounts to assert- 
ing that there is some dominance relation defined on the set of alleles. 
Under the usual Hardy-Weinberg hypotheses, then, the relations between 
gene frequencies and phenotype frequencies are determined by the domi- 
nance structure ..... 

2. The structure problem. In such questions an investigator is seldom 
concerned with the particular assignment of names to the objects or indi- 
viduals being examined, but rather with the nature of some underlying 
structure. By structure is meant just what is left of the relation after the 
names are forgotten: the "map" (Russell, loc. cit.), or graph, of the rela- 
tion. For a precise definition of structure, it is simplest to start with what 
it means for two relations to have the same structure. 

We want to say that two relations A and B defined on the set N have 
the same structure, or are isomorphic, whenever there is some permuta- 
tion 7r of N such that A has the same matrix with respect to N as has B 
with respect to 7r(N). Technically, it is convenient to define, correspond- 
ing to each permutation 7r of the symmetric group S~ on n letters, a trans- 
formation t, which operates on our relations 

t~ ( A )  = (a~(i)~(j)) , w h e r e  A = ( a l j )  �9 1) 

(Note that if P= is the permutation matrix corresponding to ~r, then 
t . (A)  can be thought of as P.APv1.)  

Definition B. Two relations A and B defined on N are isomorphic if, and 
only if, there is a permutation ~r in Sn such that t . (A)  = B. 

Definition C, The structure of the relation A is the class of all relations 
with which it is isomorphic. 

This is what Landau (195 la) called the dominance structure; he inserted 
the qualifier because Rapoport had used the word "structure" differently. 
To obtain a manageable set of invariants the latter (Rapoport, 1949a) had 
defined as "structure'! something we may call the structure sequence of a re- 
lation A: this is just the set of row-sums of the entries of A. (These are 
usually written down as a sequence, in non-increasing order; this amounts 
to disregarding their original order.) From its definition, it is clear that 
this structure sequence is invariant under the group of transformations 
t., i.e., that isomorphic relations will always have the same structure se- 
quence. That the various such sequences do not form a "complete set" of 
invariants--in other words, that different structures may have the same 
structure sequence--can be seen already when n = 5 (Landau, 1951a). 

Now it is an immediate consequence of the definition that the number 
of dominance relations on a set of n elements is 2 n(~-1)/2. But how many of 
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these are "essentially different" relations? That is, how many dominance 
structures can be defined on N? 

The answer to this question may be useful in two ways: (1) The formu- 
la, though practically impossible to evaluate for sizeable n, may yet pro- 
vide a guide in, e.g., comparing proposed approximations or estimating the 
error consequent upon various assumptions; (2) Perhaps more important 
is that methods used here furnish tools for analyzing structural properties 
of dominance which could be applied, without really undue difficulty, to 
give a complete treatment of the cases, say, n < 12. The cases previously 
so treated---n < 4--were exceptional, while some of the more variegated 
aspects of dominance set in for n = 5 and n = 6. Finally, it is not unlikely 
that in certain theories where the number of "individuals" involved is 
small by hypothesis (as in some concerning social groups) these accessible 
cases n _< 12 would suffice for useful applications. 

3. Algebraic background. Derivation of this formula rests on the theory 
of permutation groups and on a method developed (Davis, loc. cir.) to an- 
swer the more general question: How many non-isomorphic m-adic rela- 
tions (of all kinds) are defined on a set of n elements? I t  would be bootless 
here to repeat the development of that paper. What can, perhaps, be 
profitably undertaken is: (1) to state those results in sufficient detail to 
show their application to the dominance question; (2) on that basis, to 
derive the main formula in such a way that anyone familiar with the other 
paper may verify it; (3) to illustrate the methods in an example; and 
(4) to give the more readily obtained numerical answers. 

Suppose, then, that D,  is the set of all dominance relations on N. The 
symmetric group S,  "acts on" Dn in the sense that any transformation t, 
corresponding to an element of S ,  maps members of D,  into other mem- 
bers of D,. Now, by an orbit in D,  we will mean a set consisting of some 
dominance relation, A, and all its images, t~(A), as ~r ranges over S~. 
Hence to count all structures in D,  we have simply to count the orbits 
under S,, since these orbits are precisely what Definition C says structures 
are. Further analysis now rests on the theorem that in any such case the 
number of orbits is equal to the average number (loosely speaking) of re- 
lations fixed per group element. More precisely, let st(n) denote the num- 
ber of dominance structures on n elements and for each 7r in S,, let f(Tr) 
be the number of dominance relations A such that t,(A) = A. Then it can 
be shown that 

1 f st (n) = ~ . ~  (Tr) . (2) 

We can further observe that if ~r and $ are conjugate elements of S,  
(i.e., r = X-~rX for some X), thenf(q~) = f(~r) ; this saysf  is what is known 



134 R O B E R T  L. DAVIS 

as a class f u n c t i o n .  Thus it is enough, for our purposes, to evaluate f on 
o n e  representative of each conjugate class, [~r], and then multiply by the 
number, c(Tr), of group elements in that class. The formula then becomes 

st (n) = ~.t c (Tr) / (Tr) (3) 

where the summation is now over all conjugate classes, [~r], in S,. 
In the symmetric group each conjugate class is determined by an n- 

tuple of non-negative integers (Pl, �9 �9 �9 , p,)--where Pk is the number of 
cycles of length k in the disjoint-cycle representation of any member of 
the class (consequently, lpl + 2p2 + . . .  + n p ,  = n ;  the pk's define a 
par t i t ion  of the integer n). And now, rather than the coefficient c(~r), we 
will prefer to take the constant term inside the sum and thus use 

n (~r) = . c (It) = 1, ,pl!2P2p2!. . .n,~p, ! (4) 

[making use of the formula for c(Tr)], so that the latest version of the for- 
mula we seek is 

st (n) = ~ n (~) f (~) . (5) 
in] 

Since for any n there is an explicit, though arduous, means of writing 
down all the partitions which determine our summands, and since we have 
determined n(~-) for each of these summands in (4), it remains only to find 
an expression for f(~r). This can be done by a method which is almost the 
same as those of theorems 4 and 5 (Davis, loc. cit .) ,  deriving the number of 
structures for symmetric and asymmetric relations. The sketch which fol- 
lows is to be taken as a proof only in conjunction with the other paper; 
readers more interested in application of the formula might well skip to 
the final section, pausing only to observe the results of section 4. 

4. Der iva t ion  o f  the f o r m u l a .  There is one new wrinkle in the dominance 
case which makes later computations much easier. 

L e m m a .  If the disjoint-cycle representation of 7r contains any cycle of 
even length, then f(~r) = 0. 

Proof .  There is no loss of generality in assuming the given cycle to be 
[123 . . .  (2k)]. Now by formula (1), t , ( A )  = A will require, among other 
things, that 

a l , k + l ~ a 2 , k + 2  ~ .  �9 . ~ a k , 2 k ~ a k + l , 1  ~ . . . .  

But one of the entries al,k+l or ak+l,1 must be zero and the other must be 
one for A to be a dominance relation, so they could not thus be equated. 
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We now may as well banish these even-cycle cases altogether, replacing 
the coefficient n(Tr) defined in (4) by 

0, if ~r has any cycle of even length 
s (Tr) = n (It) , otherwise . (6) 

As in several theorems of the former paper, the approach to evaluating 
f(~r) is through a concept that may roughly be described as "the number 
of degrees of freedom in a matrix scheme if the matrix is to be fixed under 
t.." That is, for each permutation Tr we define a number d(lr) with the 
property that if you want to write down an arbitrary matrix with t.(A) 
= A ,  d(~r) is the number of places in the matrix at which you can freely 
choose to write either a zero or a one. From this description of d0r), it is 
evident that our f@) = U ~'~. This gives us the final reduction 

st (n) = ~ s (~-) 2'~c"~. (7) 

Now it only remains to evaluate d(Tr). 
Theorem. The number of dominance structures on a set of n elements is 

given by formula (7) with 

~ ] p l  d (Tr) = -~ (ipi - 1) + ~ 2  p~p~ (i, j )  
i~1  i < i  

(8) 

where (i, j )  is the greatest common divisor. 
Proof. The argument here--we are only dealing with r whose cycles are 

all of odd length--parallels those of the theorems mentioned above. Its 
formulation rests on our choice, in each conjugate class, of a representative 
~r for which it will be specially easy to compute d(Tr), and further on our 
then splitting the matrix into "blocks" whose rows and columns will be 
permuted among themselves by individual cycles of It. 

The right-hand sum in (8), then, is precisely the same as that part of 
the corresponding formulas in the theorems about symmetric and asym- 
metric relations: in all three cases this part arises from those blocks whose 
rows and columns are acted on by cycles of different lengths. 

As for the left side: there are, for each i from 1 to n, Pi(P~ -- 1) blocks 
(previously called "near-diagonal") whose rows and columns are gov- 
erned by different cycles of the same length. In each of these, when we 
write out the requirement that t . (A)  = A ,  we get i strings of equated 
entries (i entries per string), all of which can here be freely chosen so that 
A remains a dominance relation. But having made this set of choices for 
one such block, we have completely determined the choices in the "trails- 
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pose block" (the reflection across the diagonal). Thus, from such blocks 
we get altogether (ipi/2)(p~ -- 1) degrees of freedom. 

Finally, the "diagonal blocks" are those whose rows and columns are 
acted on by the same cycle. Here am for instance, is zero, while of the re- 
maining entries in the first row we can freely choose just half before we 
completely determine the whole block. For t.(A) = A again gives i strings 
of equated entries, one consisting of diagonal terms and so permitting no 
choice, while of the remaining strings choice for any one determines that 
of its "transpose string." Thus for these blocks we have pi(i -- 1)/2 de- 
grees of freedom; the sum of these expressions for near-diagonal and diago- 
nal blocks then gives the left side of (8). A briefer and clearer form of (8) 
is easily seen to be 

1 n 

d(Tr) =~l  ~ p i p ~ ( i ,  j)  -- ~ p ~  t .  (9) 
i ,  ]=1 i = 1  

5. An example. Actual counting can be systematized in a tabular set- 
ting. Since conjugate classes in S~ correspond one-one to partitions of the 
integer n, we may list all these partitions in the first column [using the 
standard notation: e.g., (312) stands for the partition of 5 into three parts 
given by 5 = 3 + 1 + 1]. The second column repeats this information in 
terms of the non-zero cycle numbers. We next compute the denominator 
of the coefficient s(~r) as given by formula (4), while the fourth column 
gives s(~r) itself. The last column gives d(~r) ; this is computed on the basis 
of (8) in the lines beneath Table I. Below these we then write down the 
sum giving st(n), as read off from formula (7) and this table. Note that 
the lemma above says we can discard all those partitions containing any 
even parts. 

To compromise between complete transparency and sheer tedium, we 
cite in illustration the case n = 5; this is the first which was not previous- 
ly analyzed by other means. 

Granted there are 12 dominance structures on a set of five elements, can 
we say what they are like? Now while the methods above provide the only 
way known to the author of finding st(n), they are not well adapted to 
determining which relations lie in what orbits. However, the theorem ex- 
pressed in formula (2) rests on two hitherto unmentioned facts which 
simplify the task: (i) the set of all permutations leaving any relation, A, 
fixed is a group; (ii) the number of relations in the orbit of A is then given 
by the index of this subgroup in S~. 

Thus when n = 5 there are just three kinds of fix-groups, as we may 
call them: (i) those generated by 5-cycles, (ii) those generated by 3-cycles, 
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and (iii) the group consisting of the identity permutation alone. Here, 
then, all orbits are of size 24, 40, or 120. (Note that members of the same 
orbit all have Conjugate--but not identical---fix-groups, and also that the 
same group may fix relations in different orbits.) 

The quick way now to a complete analysis of the structures is to use 
every available tool. In particular, the structure sequences described in sec- 
tion 2 afford valuable guideposts. Whenever we know that there is only 

TABLE I 

Partition 

(s) 

(41) 

(32) 
(319 

Cycle-numbers 

ps=l  (5 i) 1 ! 

s(r) 

2 

p3=l, p,=2 (31)1!(12)2! 1/6 4 

(221) * * 0 * 

d , )  * �9 o 

(15 ) p~=5 (15)5[ ' 1/120 10 

[The sum is 

d(5)  - ~ ( 5 - 1 )  + 0 = 2  

d(31~) = � 8 9  + ~ ( 2 -  1) + 2 = 4 ,  

d(l~) = ~ - ( 5 -  1) + 0 = 1 0 ,  

st(5) = �89  + ~ ( 1 6 )  --k-r~2~ (1024) = 12.1 

one orbit with a certain structure sequence, we will know all about the 
orbit: just write down a relation (or graph) with that sequence to repre- 
sent the orbit and describe its structure. Now for n = 5 there are only 
nine structure sequences as against twelve orbits. However, combining 
structure-sequence arguments with those on fix-groups and orbits, we can 
derive Table II. 

Thus the structure sequences are sufficient to determine seven of our 
twelve orbits unambiguously, and our description will be complete upon 
examination of the remaining cases. (Of course, this is the reverse of the 
investigating process; there you must first determine which are the am- 
biguous cases.) 
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Now, let 

AT= 

0 1 1 1 0  
0 0 1 1 1  
0 0 0 1 0  
0 0 0 0 1  
1 0 1 0 0  

and A 8 = 
~ 0 0 1 1  
0 0 0 1  . 

0 0 0 0  
1 0 0 0  

Inspection shows both these matrices have structure sequence (3, 3, 2, 
1, 1); further, since neither is fixed under any nontrivial permutation, 
both lie in 120-element orbits. That these must be different orbits is seen 
from the fact that a "man" dominating only one other dominates a "lead- 
er" in As, while this is not so for AT. Hence we can take A7 and As to rep- 
resent the seventh and eighth orbits. 

If we further define 

0 0 1 1 1 )  
1 0 1 0 0  

Ag~ 0 0 0 1 1  
0 1 0 0 1  
0 1 0 0 0  

, A l o  -~  

0 1 1 0 1  
0 0 1 1 0  
0 0 0 1 1  
1 0 0 0 1  
0 1 0 0 0  

, A l l  = 

0 0 1 1 0  
1 0 0 1 0  
0 1 0 1 0  
0 0 0 0 1  
1 1 1 0 0  

we are faced with three relations whose sequence is (3, 2, 2, 2, 1). I t  can 
be argued as above that A9 and A10 belong to 120-element orbits; An, on 

TABLE I I  

Orbit No. of Rela- 
tions 

120 

Structure 
Sequence 

(4,3, 2, 1,0) 

2 40 (4, 3, 1, 1, 1) 

3 40 (4,2, 2, 2,0) 

4 120 (4,2,2,1,1)  

5 40 (3,3, 3, 1,0) 

6 120 (3, 3, 2, 2, 0) 

7 120 

120 

9 120 

10 120 

11 40 

(3, 3, 2, 1, 1) 

(3,2,2 2 1) 

12 24 (2, 2, 2, 2, 2) 
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the other hand, is fixed under the group {I, (123), (132)} and so belongs 
to a 40-element orbit. (Thus An is more symmetric than the others in that 
all the "middle men" in A n  play similar roles.) That  A9 and A10 are further 
not isomorphic to each other is clearest, again, in simple combinatorial 
terms. In both the leader is dominated by one middle man; but  in A9 that 
middle man picks up his other domination at the expense of a second 
middle man, whereas in A~0 the middle man dominating the leader also 
dominates the subordinate, and does not dominate either of the other 
middle men. These three relations, then, can be taken to represent the 
orbits 9, 10, and 11. 

Finally, Table I I I  compares the number, Dora(n), of dominance rela- 

TABLE I I I  

n Dom(n) st(n) 

2 
8 

64 
1,024 

32,768 
2,097,152 

268,435,456 

1 
2 
4 

12 
56 

456 
6,880 

tions with st(n) for n < 8. These were quite easy pencil-and-paper com- 
putations, and despite the rapid increase of the number of partitions I be- 
lieve their number could easily be doubled with a desk computer. 

Landau's inequality (1951a), 
2n(n-1)/2 

st(n) /> n! ' 

gives not only a lower bound but a very good approximation as soon as 
n is moderately large. For example, for n -- 8, st(8) -- 6860, while 2288! 
is 6658 to the nearest integer. From the viewpoint of this paper, this 
approximation means using only the partition (1"). If to this is added the 
term for the partition (31"-s), we have a much better approximation, 
namely, 

2 (n~-n)/2 2 (n~--~n+8)/2 

nl (n--  3!3) " 
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