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The weak connectivity ~' of a random net is defined and computed 
by an approximation method as a function of a ,  the axone density. I t  
is shown that  T rises rapidly with a ,  a t ta ining 0.8 of its asymptotic 
value (unity) for a ~-  2 ,  where the number of neurons in the net is 
arbi t rar i ly  large. The significance of this parameter  is interpreted also 
in terms of the maximum expected spread of an epidemic under certain 
conditions. 

Numerous  problems in various branches of mathematical  biology 
lead to the consideration of certain s t ruc tures  which we shall call 
" random nets." Consider an aggregate  of points, f rom each of which 
issues some number  of outwardly  directed lines (axones) .  Each 
axone terminates  upon some point  of the aggregate,  and the prob- 
abili ty tha t  an axone f rom one point te rminates  on another  point  is 
the same for  every pai r  of points in the aggregate.  The result ing 
configuration consti tutes a random net. 

The existence of a path in a random net  f rom a point A to 
a point B implies the possibili ty of t racing directed lines f rom A 
through any number  of intermediate  points, on which these lines 
terminate,  to B .  

We shall say that  B is t axones removed f rom A ,  if  t is the  
smallest  number  of axones contained in any of the paths  f rom A to 
B. Point  A itself  is zero axones removed f rom A .  All the other  
points upon which the axones of A te rminate  are  one axone removed. 
The points upon which the axones f rom these la t ter  points terminate ,  
and which are not one or zero axones removed, a re  two axones re- 
moved, etc. 

The notion of a random net  may  be generalized, i f  it  is no t  
assumed tha t  the probabil i ty  of  direct  connection between every  pa i r  
of points in the net  is the same. In that  case it is necessary to define 
this probabi l i ty  for  every pa i r  of points. This can be done, for  ex- 
ample, in te rms of  the distance between them or in some other  way.  

107 



108 CONNECTIVITY OF RANDOM NETS 

If  the connections are  not equiprobable, we shall speak of a net  wi th  
a bias. 

The following examples i l lustrate problems in which the con- 
cept of a net, defined by  the probabi l i ty  of the  connections among 
its points, seems useful. 

1. A p~oblem in the theory of neural nets. Suppose the  points 
of a net  are  neurons. What  is the probabil i ty  tha t  there  exists  a path  
between an a rb i t r a ry  pair  of neurons in the net  ? I f  the net  has bias, 
wha t  is the probabil i ty  tha t  there  exists a path be tween a specified 
pai r  ? In part icular ,  wha t  is the probabil i ty  tha t  a neuron is a mem- 
ber of a cycle (i.e., there  exists  a pa th  f rom the neuron to itself 
through any positive number  of in te rnuncia ls )?  Or, one may  ask, 
wha t  is the probabil i ty  tha t  there  exists a path f rom a given neuron 
to every other  neuron in the  net  ? 

2. A problem in the theory of epidemics. Suppose a number  
of individuals in a closed population contract  a contagious disease, 
which lasts a finite t ime and then either kills them or makes  them 
immune. I f  the  probabil i ty  of t ransmiss ion is defined for  each pai r  
of individuals, wha t  is the expected number  of  individuals which will 
contract  the disease at a specified t ime? In part icular ,  wha t  is the 

FIGURE 1. 
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expected number of individuals which will eventually (after an in- 
finite time) contract the disease? Or else, what is the probability 
that  the entire population will succumb ? Note that  if the probability 
of transmission is the same for each pair of individuals, we are deal- 
ing with a random net. 

3. A problem in mathematical genetics. Given the probability 
of mating between each pair of individuals in a population (as a 
function of their distance, or kinship, or the like), what is the ex- 
pected number of ancestors of a given order for each individual? 
Clearly, the less the expected number of ancestors, the greater  the 
genetic homogeneity of the population. 

Each of these problems can be formalized by constructing a 
"probability tree." As an example, a tree for the genetic problem 
is illustrated in Figure 1. 

We note that the tree consists of "nodes" connected by lines. 
The nodes can be designated by "first order," "second order," etc., 
depending on their distance from the "root." The number at the node 
indicates a possible number of ancestors of a given order. The lines 
connecting the nodes are labeled with the corresponding probabilities. 
Thus p1(2) = 1, since it is certain that  an individual has exactly 
two ancestors of the first order (parents).  However, the parents 
may have been siblings or half-siblings. Therefore it is possible that 
the number of grandparents is 2, 3, or 4. The corresponding prob- 
abilities are ~ (2), p~ (3), a n d / h  (4). The probability of having a 
certain number of great-grandparents depends on how many grand- 
parents one has had. Consequently, those probabilities must be des- 
ignated by pg (i,]) where i - -  2,  . . . .  4 and ] - -  2,  .... 8.  In general, 
the probability of having a certain number of ancestors of order b 
will depend on how many ancestors of each of the smaller orders one 
has had. If, however, we simplify the problem by supposing that  the 
probability of having a certain number of ancestors of the k'th order 
depends only on how many ancestors of the (b - -  1)th order one has, 
then the probability that  an individual has exactly n ancestors of 
the ruth order will be given by 

2 m  8 4 

p~(n) =2: . . . .  2 :  E ~ ( 2 , i ) p 3 ( i j ) p , ( ] , k )  . . . .  p~ ( r ,n ) .  (1) 

The expected number of ancestors of the ruth order will then be 
2m 

E (m) =--- ~ nP (n).  (2) 
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Clearly, a similar tree can be constructed for  the neural  net 
problem. Here  the numbers  at  the nodes of the kth order  would des- 
ignate the possible number  of neurons  k axones removed f rom a given 
neuron. The p's would designate the  corresponding t ransi t ion prob- 
abilities f rom a certain number  of neurons (k - -  1) axones removed 
to a certain number  k axones removed, etc. I f  N is the number  of 
neurons in the aggregate,  clearly, a neuron B is at  most  N axones 
removed f rom a neuron A ,  or else there  exists no path  f rom A to B .  
Hence E (N) represents  the expected number  of neurons in the aggre- 
gate to which there exist paths  f rom an a rb i t r a ry  neuron, if  the 
neurons are not  in any way  dist inguished f rom each other. This 
expected number  we shall call the weak connectivity of a random net 
and will designate i t  by ~,. 

The contagion problem could be formula ted  in similar  terms.  
Here  weak connectivity would represent  the expected number  of in- 
dividuals which will contract  the disease eventually. I f  we de f ine / ' ,  
the strong vonnectivity as the probabil i ty  tha t  f rom an a rb i t r a ry  
point  in a random net there  exist paths to every other  point, then P 
will represent  the  probabil i ty  tha t  the entire population will suc- 
cumb in the epidemic described above. In this case, the number  of 
"axones" represents  the number  of individuals infected by  a carr ier  
before  he recovers or dies. 

The weak connectivity of a random net. We shall compute the  
weak connectivity of a neural  net in te rms of certain approximat ions  
whose justification will be given in subsequent  papers.  I t  will be 
assumed that :  

1. The number  of axones per  neuron a is constant  throughout  
the net. This constant  (the axone densi ty)  need not  be an integer, 
since it  may  equally well be taken as the average number  of  axones 
per neuron. 

2. Connections are equiprobable, i.e., an axone synapses upon 
one or another  neuron in the aggregate  wi th  equal probabili ty.  

A. Shimbel (1950) has formula ted  the  problem in te rms  of  the  
following differential-difference equation 

dx/d~-- IN-- x(~)] I x ( t )  - -  x ( t - - , ) ] .  (s) 

Here  x(t)  is a funct ion related to the  expected number  of  neurons t 
axones removed f rom an a rb i t ra ry  neuron,  and �9 is related to the  
axone density. Then the problem of finding ~, is equivalent to the  
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problem of finding x (oo). A somewhat generalized form of equation 
(3) is given also by M. Puma (1939). The solution of the equation 
is, however, not given. 

An approximate expression for ~, where N is large was derived 
by one of  the authors (Rapoport, 1948) where the number of axones 
per neuron is exactly one. This case will be generalized here to a 
axones per neuron, which are supposed constant through out the 
aggregate. 

The axone-tracing ~rocedure. Let us start  with an arbitrarily 
selected neuron A and consider the set of all neurons removed by 
not more than t axones from A .  Let x be the expected number of 
these neurons. Then evidently x - -  x (N ,  a ,  t) depends on the total 
number of neurons in the net, on the axone density, and on t .  More- 
over, the weak connectivity of the net can be expressed as 

? ( Y ,  a) --  x ( N ,  a ,  N ) / N .  (4) 

Since N and a are fixed, we shall refer to the expected number of 
points removed from A by not more than t axones by x ( t ) .  Note 
that  t is a positive integer. 

We seek a recursion formula for x (t) which will give us an ap- 
proximate determination of that  function. To give a rigorous .treat- 
ment of the problem, one would need to deal with distribution func- 
tions instead of expected values. For example, p (i,t), denoting the 
probability that there are exactly i neurons not more than t axones 
removed from A ,  would determine the distribution for t .  Succes- 
sive distributions (for t + 1, etc.) would then depend on previous 
distributions, instead of merely upon the first moments of these dis- 
tributions (expected values). The "probability tree" method does 
take these relations into account. An "exact" approach to the prob- 
lem will be given in a subsequent paper. Meanwhile, however, 
we shall develop an approximation method ~n which it will be as- 
sumed that the expected value x( t )  depends only upon previous ex- 
pected values, and, of course, upon the parameters of the net. 

The recursion formula. We now seek an expression for x ( t  + 1) 
- -  x( t ) .  This is evidently the expected number of neurons exactly 
(t + 1) axones removed from A .  We shall make use of the follow- 
ing formula, which may be readily verified. Let s marbles be placed 
independently and at random into N boxes. Then the expected num- 
ber of boxes occupied by one or more marbles will be given by 

N I l  - -  ( 1  - -  1 / N ) ~ ]  . (5) 
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In our axone-tracing procedure there  are a [x(~)  - -  x ( t  - -  1) ]  
axones of the newly contacted neurons to be t raced  on each step. 
Then the total number  of neurons contacted on the (t  + 1 ) th  t rac ing  
will be, according to formula  (5) ,  

N[I -- (1 -- l /N) "t'(')-'('-1)]] . (6) 

But of these neurons the fraction x (t)/N has already been contacted. 
Hence the expected number of newly contacted neurons will be given 
by 

x(t  + I) --x(t) = [N--x($)]  [ I - -  ( I - -  I /N) "E'(')-~('-m] , (7) 

which is our desired recursion formula. 

Determination of 7.  Let  us set  

y(t) - - N - - x ( t ) .  (8) 

Then equation (7) may  be wr i t ten  as 

y(~ + i) -~y(t) (I -- I /N) ~tv(t-1)-~(~)1, (9) 

o r  

Hence 

y(t + i) (i  -- l /N) a'(t) -- y (t) (1 -- l/N) "y('-I). (10) 

y(t  + 1) ( 1 -  l / N )  ~y(t) - - c o n s t a n t  ~ K .  (11) 

We proceed to evaluate K .  We have 

y(t  + 1) = K ( 1  - -  I /N) - " , ( " .  (12) 

But  y(t) represents  the expected number  of uncontacted points in 
the t th step. Since before the t racing began one point  const i tuted 
the set of contacted points, therefore  we have 

y (0 )  - - N - -  1,  (13) 

and using formula  (5) ,  

y (1 )  - "  (N - -  1) "+1N-'. (14) 

Let t ing t - -  0 in (12),  we  obtain 

K = N ( N  - -  ( 1 5 )  

Fur thermore ,  since y ( 1 )  _-< y ( 0 )  and (1 - -  I [N)"  > 1 ,  we  have 
y ( 2 )  - y ( 1 ) ,  etc., so tha t  y(t) is a non-increasing funct ion of  t 
( this is also intuit ively evident f rom the definition of  y ) .  Since y >_ 0 
for  all t ,  y (t) mus t  approach a limit as t grows wi thout  bound. Hence 
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Lim y ( t  + 1) = Lim y ( t )  --~ Y. (16) 

Note tha t  7 - -  x ( N )  may  also be considered as Lira x ( t ) / N .  This is 

so since contacting no new neurons on any t racing implies tha t  no 
new neurons will be contacted on any subsequent tracings.  I f  we 
continue to car ry  out t racings "symbolically," it is evident t ha t  a t  
some t racing not greater  than  the Nth  no new neurons will be con- 
tacted, and all subsequent t racings will be " d u m m y "  tracings.  

Using equations (12) and (15), we see t ha t  Y satisfies the t ran-  
scendental equation 

Y = (N - -  1) (1 - -  l / N )  a(~-r). (17) 

For  large N ,  this  can be approximated by 

Y ~ N Exp { a ( Y / N - -  1) }.  (18) 

Hence, for  large N ,  

Y / N  ~ Exp ( a ( Y / N - -  1) }. (19) 

But  7 - -  x ( oo ) / I V  = 1 - -  Y / N .  Subst i tut ing this  value into (19), 
we obtain the t ranscendental  equation which defines r implicitly as 
a function of a ,  namely, 

7 = 1 - -  e-~. ( 2 0 )  

We note tha t  for  7 - -  0 ,  every a is a solution of  (20). I f  7 @ 0 ,  
then equation (20) can be solved explicitly for  a giving 

l o g ( 1  - -  7 )  
a = (21) 
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FIGURE 2. W e a k  connec t iv i ty  as  a f unc t i on  of axone  dens i ty .  
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The r ight  side of (21) is analytic in every neighborhood of the 
origin and tends to uni ty  as ~, approaches 0 .  Expanding  tha t  func- 
tion in powers  of 7 ,  we have 

a - -  1 + ~,/2 + ~,*/3 . . . .  , (22) 

which allows us to plot a against  ~, (cf. Fig. 2) .  This graph consists 
of two branches,  namely, the entire a-axis and the funct ion (21).  
Negat ive values of ~,, being physically meaningless,  mus t  be dis- 
carded. Thus in the region 0 -< a _-_ 1 ,  we have 7 -= 0 ,  as is intuitively 
evident. We must  show, however,  tha t  for  a > 1 ,  r follows the non- 
zero branch of the graph, otherwise we get the  unlikely result  tha t  
for  sufficiently large N the fract ion of  individuals eventually infected 
in an epidemic will be negligible, regardless  of the number  of indi- 
viduals infected by each carr ier  of  the disease. Actually, the solu- 
tion ~, --= 0 is extraneous fo r  a > 1 and appears  in our  equation be- 
cause we have let N increase wi thout  bound b e f o r e  determining the 
relation between a and ~,. In any physical si tuation N is finite. Hence 
a physically meaningful  procedure  is to determine r as a funct ion 
of a and N and t h e n  allow N to increase wi thout  bound. Such a func- 
tion is given by  equation (17).  Proceeding f rom tha t  equation we 
obtain 

Y / ( N - -  1) - -  (1 - -  l / N )  "(~-~), (23) 

log Y - -  log (N - -  1) = a (N  - -  Y) log (1 - -  l / N ) ,  (24) 

log Y - - l o g ( N - -  1) 
a e - -  

( N - -  Y) [ l o g ( N - -  1) - -  l o g ( N ) ] "  
(25)  

Let  us w r i t e  Y --- N - -  , ~ ( N )  - -  N [ 1 - - ~ ( N ) / N ]  . Then equa- 
tion (25) may  be wr i t t en  as 

log N - -  l og (N  - -  1) + log[1 - -  ~ ( N ) / N ]  
(26) 

"-  a ~ (N) [log (N  - -  1) - -  log N ] .  

Since ~ (N) < N for  all N ,  we may  expand the last  t e rm of the  lef t  
side of (26) and obtain 

log  N - -  log  ( N  - -  1) - -  + ( N ) / N  - -  �89 [+ ( N ) / N ]  ~ 

(27) 
- -  1/3 [,~ ( N )  i N ]  3 . . . .  - -  a ~, ( N )  [ l o g  ( N  - -  1 )  - -  l o g  N ] .  

We now expand l o g ( N  - -  1) - -  log N which appears  in the r ight  side 
of  (27) and a f t e r  rea r rangements  obtain 
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log N - -  l og (N  - -  i )  

- -  4'(N) [ 1 - a  + q'(N)-a [4'(N)]2-a 2N + 3N= + . . . .  (28) 

< q'(N) [ l - -a+ (I--q,(N)/N)-I ] 
N 

Now if a is fixed and grea te r  than unity, the limit of ~ (N)~IV can- 
not be zero as N increases wi thout  bound, because otherwise for  N 
sufficiently large the r ight  side of (28) becomes negative, while the 
left  side is a lways positive, a contradiction of inequality (28).  There- 
fore, the limit of Y/N, as N increases wi thout  bound, cannot be 
uni ty f o r a  > 1 .  But  this means that  7 # 0 i f  a > 1 .  Hence, fo r  
a > 1 ,  the non-zero branch of our curve is the only meaningful  one. 

An examinat ion of the meaningful  par t  of the graph of equa- 
tion (20) shows tha t  as long as the axone densi ty does not exceed 
one axone per  neuron, 7 - -  0 ,  i.e., for  very  large N ,  the number  of 
neurons to which there  exist  paths  f rom an a rb i t r a ry  neuron is neg- 
ligible compared wi th  the total  number  of neurons in the net. On 
the other  hand, as the axone densi ty increases f rom unity, 7 increases 
ra ther  rapidly, s tar t ing  with slope 2. Already for  a - -  2 ,  7 reaches 
about  0.8 of  its asymptot ic  value (uni ty)  and is within a f ract ion 
of  one per  cent of  uni ty  for  quite modera te  a (say  > 6).  This means  ~ 
that  no ma t t e r  how large the net is, i t  is practically certain tha t  there  
will exist  a path between two neurons picked at random, provided 
only the axone densi ty is a few times grea te r  than unity. The in- 
terpre ta t ion in te rms of an epidemic wi th  equiprobable contacts is 
entirely analogous. 

The case a ~-- 1 .  This case was t rea ted  by  one of  the authors  
(Rapoport ,  1948) by a different  method. I t  was shown tha t  for  large 
h v , the probabi l i ty  tha t  a neuron was member  of a cycle was  given 

by X/~,/2N. This gives the  probabi l i ty  of the  existence of a path  
f rom a neuron over any number  of internuncials g rea te r  than  one to 
itself. But  under  the assumption of equiprobable connections, this 
may  well represent  the probabi l i ty  of  the existence of  a path  f rom the 
given neuron to any other neuron in the  net. Therefore  we should 
have for  large N ,  in the  case a - -  1 ,  

~, ~ X/=-72-~. (29)  

For  N ---- oo, 7 reduces to zero, as  i t  should according to equation 
(20).  We shall, however,  examine  the asymptot ic  behavior  of v f o r  
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large N deduced f rom our approximate  method, in order  to c o m p a r e  
it wi th  the asymptot ic  behavior  (29) deduced f r o m  an exact t rea t -  
ment  of the special case. Dividing both sides of ( 17 )  by  N ,  we may 
wr i te  for  a ~-- 1 

Y/N -- [ (g -- I)/N] TM, (30) 

whence, since Y/N -- I -- 7, 

1 -- 7 = [(N-- I)/N]~ § 

(31) 
-- Exp{In (I -- 1/N) + N 7 In(1 -- I/N) }. 

We let z = N -~ and examine the behavior of 7 for small values 

of z. Expanding the right side of (31) by power series and retain- 

ing only terms of the second order (note that z and 7 vanish to- 

gether), we obtain 

1 - - 7 - - 1  + [ - - z - - z 2 ~ 2  . . . .  ] + [ - - 7 - - 7 z / 2  . . . . .  ] 

Hence, 

+ z2/2 + 72/2 + 7z + . . . .  . 
(32) 

Thus 

72 ~ 2 z  - -  2 / N  , 

7 - ~ ' 2 - ~ - -  1 .41%/N.  

The "exact"  resul t  as expressed by  (22) gives 

(33) 

(39) 

0 ~ - - z  + 72/2 + 7 z / 2  + . . . .  �9 (33) 

Different iat ing wi th  respect  to 7 ,  we get  

d z / d 7  ~- 7 + 7 / 2 .  d z / d 7  + z / 2  + . . . .  , (34)  

d z / d 7  - (7 + z / 2 )  / (1 - -  7 /2) .  (35) 

Therefore  d z / d  7 vanishes a t  z - -  0 ,  7 - -  0 .  Differentiat ing once 
again wi th  respect  to 7 ,  we obtain 

= i .  

d721 ~=~ 
T=0 

Hence the power  series represent ing  z as a funct ion of  7 begins 
as follows: 

2: - - -  72/2-I- . . . .  . (37) 
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~, ~ 1 .2  / V N . 

Thus the approximate method applied to the case a ---- 1 implies an 
asymptotic behavior of Z for  large N which does not depart  too 
sharply f rom tha t  deduced by the exact method. The l imiting value 
for  ~, is zero in both eases. The question of how well the l imit ing 
values of y are approached by the approximate method for  a > 1 
remains open. 

This investigation is par t  of the work done under  Contract  No. 
A F  19(122)-161 between the U. S. Air  Force Cambridge Research 
Laboratories and The Univers i ty  of Chicago. 
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