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A mathematical analysis of the absorption of an inert  gas by a 
heterogeneous system of n phases, e.g., a limb consisting of n tissues, 
is presented. The total uptake of gas, r  up to time t is given in terms 
of arterial  concentration, cardiac delivery, blood volume, and the volume, 
permeabil.ity, and partit ion coefficient of each tissue. The theory pre- 
dicts how the uptake curve should change in shape under a variety of 
physiological conditions, and how from the numerical values of the con- 
stants the values of certain tissue constants, e.g. permeabilities, may be 
obtained. 

Introduction. Many problems in the physiology of intact  ani- 
mals involve the absorption by the tissues of some substance wl~ich 
has entered the blood elsewhere. While experimental  work along 
such lines can be and has been done with great  care, the result ing 
data  are not of the type tha t  can be readily interpreted. Consequent- 
ly, a need has arisen for a theoretical t r ea tment  of this subject. The 
present note is intended to submit  such a consideration. 

We will a t t empt  here to t rea t  the absorption of an inert  gas in 
the blood by the tissues of a limb, and will use a vocabulary spe- 
cific to this case. However, the mathematical  results obtained are in- 
dependent of vocabulary, and obviously could apply to anatomically 
different  but functionally similar situations. 

For  the purpose of the analysis, we regard the 1,imb to be con- 
st i tuted as follows: There exists a blood chamber of volume V~ cm ~ 
(the blood volume). Into this chamber there is an inflow of blood a t  
the rate  of R cm ~ sec-1 ; because blood and tissue fluid are practically 
incompressible, there is a liquid (blood + lymph) outflow also equal 
to R .  The enter ing blood contains the gas in question a t  concentra- 
t ion C gm cm -8. The (spatially) average concentration of gas in the 
blood chamber is Xo gm cm -3. In physiological contact wi th  the blood 
chamber are n dist inct  tissues. The average concentration of gas in 
the i-th tissue is x~ gin cm -~. 

* The material  in this article should be construed only as the personal opin- 
ion of the writers and not as representing the opinion of the Navy Department 
officially. 
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d ( V .  xo) 

dt 

d(V~ x~) 

The mat te r  of penetrat ion constants of the tissues deserves some 
at tent ion here, even though the general aspects are thoroughly treat-  
ed by Rashevsky (1938) to whose work the reader is referred.  When 
the intracellular "solvent" is the same as the extracellular "solvent",  
then we wri te  by Fick's L a w ,  

Si p'i 
Penetra t ion Rate K (Xo - x~) -- hi Si (Xo - x i ) ,  (1) 

(gm cm -~ sec -1) 

where K is a constant  of proportionality,  Si is the absorbing surface 
area  in cm ~ , ~ is the th i ckne~  of the cell membrane,  and p'~ is the 
par t i t ion coefficient of the gas between water  and "membrane  sub- 
stance".  The constants, KlY~/(} are lumped together  into a single h~ 
cm sec -1, which is then t h e  permeabil i ty  of the membrane.  On t h e  
other hand, when the  "solvents" of the two sides are different, then 
for  the penetrat ion ra te  we obtain: 

KS~p'~ ( p"~ ) 
P e n e t r a t i o n R a t e - - - - O  x o p, X~ -- h ~ S ~ ( x o - a ~  x~) , (2) 

where  a~ is the par t i t ion coefficient of the gas between the external  
medium and the intracellular  solvent. For  some of the tissues, e.g. 
adipose, which we will consider, it  is necessary to use equation ( 2 )  
ra the r  than  equation (1). I t  is perhaps superfluous to point out t h a t  
in r first case, the s teady state will be at tained for  x~ -~ x , ,  while 
in our case it is a t ta ined when xo -~ a ix i ,  and generally speaking, the  
s teady state concentration within the tissue will be different  f rom the 
steady state  concentration in the blood. 

Derivation. The set t ing up of our differential equations follows 
easily f rom the principle of material  balance, which holds for  the 
blood chamber and each tissue independently. Thus: 

i - -a  

- -  R C - R Xo - ~: h~ S i  ( x o  - a i  x ~ )  
i = l  

- -  h~ S.,', ( x o  - a~ x i )  i - ~ 1 , 2 , - . . n .  
dt 

The substitution, yo ~ C - Xo and yi -~ Ci/a~ - xi (i - -  1 ,  2 ,  ... n) 
renders the equations homogeneous and somewhat  simplifies the solu- 
tion. We have then instead the set: 

d y  0 i=~ 
- -  Vo - -  R Yo + Z h~ S~ (Yo - a~ y~)  ( 3 )  



1~. E, SMITH AND 51. F. MORALES 127 

dyi  
V~ - - h ~ S ~ ( y o  - a~y~) ( i :  1 , 2 , - . . n ) .  (4) 

d t  

We proceed to solve the set by  the method of undetermined coeffici- 
ents. The:ser ies:  

j=n 

y~ =-- ~ Cij e -k'~ (5) 

will be a solution of equations (3) and (4) provided we can find ap- 
propr ia te  expressions for  the  Cij and the k , .  This can be done as fol- 
lows. The solut ions  (5) must,  by  hypothesis,  sa t isfy  equations (3) 
and (4 ) iden t i ca l ly ,  which means that  a f te r  subst i tut ion is marie the 
coefficients of e-kP must  vanish. Thus f rom put t ing  relation (5) into 
relation (4) we obtain the solutions: 

hi S~ 
C~ = Coj (i = 1 , 2 , - - -  n). (6) 

a~ h i  S~  - Vi kj 

On the other  hand, we have ye t  to impose boundary  conditions on 
equation (5) .  The two cases which concern the physiologist  a re  ab- 
sorption (when t ---- 0 ,  Y0 ---- C ,  and yi  - -  C/a~)  and desaturation,  (when 
t -~ 0 ,  Yo ~ 0 ,  and y~ ~ 0) .  Since our personal interest  is in absorp- 
tion, we will develop the equations for  tha t  case; however,  i t  is clear 
t h a t  no mathematical  difficulty is involved in the al ternate conditions. 
For  our case, then, when t ~ 0 relation (5) becomes: 

j=n 

E C o j = C  
5-o 

and by (6) ,  

~-~ C~j C 

j=o ~i hi Si - V~ ks a~ hi Si 
i = 1 , 2 , . . .  n. (7) 

Equat ion (7) is therefore  a l inear set o f  ( n + l )  equations which can 
be solved for  the Coj by the usual methods. Then from equation (6) 
all the  o the r  C,~ are obta inable .  Determinantal  solution for  Coj gives: 

Coj = C(k~  kl . . .  k,~) (V1 V:  . . .  V , , ) A i j  A~j . . .  A , , i / k j  ((~i ~ " "  ~,,) 

• (hi  h 2 . . .  h , )  (S1 S ~ . . .  S , )  (ko - k j )  ( k l  - k j )  . . .  (8) 

(kn - ks)  =-- A o j C .  

where  there is no factor,  ks - ks ,  in the denominator ,  and where,  
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(s,) 
a function which we will have occasion to re fer  to later.  Finally, put- 
t ing equation (5) into equation (3), noting relations (6) and (8), 
we obtain the characCeristic equation whose ( n + l )  roots are  the kj: 

Vo k~ + .Y - (R + ~ hs S~) - -  O. (9) 
s:l a~ h~ Ss - Vs kj s:l 

t~y the use of s tandard approximation methods, all the roots of equa- 
tion (9) can be found once we have numerical  values for  V~, R ,  a~, 
hs ,  V~, and Ss.  However, we may  prove two useful facts about the 
roots of relation (9) wi thout  recourse to numerical  methods. 

I. A l l  the roots are posi t ive.  This follows because ~f any one of 
them, say z ,  were negative, we could wri te  the left  hand member  of 
equa.tion (9) as: 

F ( z ) - -  - Vo[zI + R + Y . h ~ S ,  �9 
�9 = as hi Ss + V~iz [ 

The greatest  value which the left-hand bracket could ever have would 
be, ( for  [z I = 0) ,  Y. h~ S~ , whence the greatest  value F (z)  could have 
would be -(Volz[  + R) ; thus F ( z )  could never be 0 ,  and therefore,  
contralT to our hypothesis ]r must  'always be positive. 

II. I f  the n + 1 roots are, in  descending order, r (n), r (--1), ... r (~ 
Si 

and i f  the produv ts ,  ai h~ - - -  are ,  in  descending order ,  p(n), p(--~), 
V~ 

. . .  p(l~, then  these quanti t ies  fal l  into the sequence, r (') > p(~) > r< ~-*) 
> p(n-~) . . .  r(~) > p(~) > r(O). For  suppose tha t  r" and r '  are  roots such 
tha t  r" > ~/. By hypothesis they both sat isfy  equation (9). On sub- 
t rac t ing  F ( r ' )  = 0 f rom F ( r " )  = O, we obtain, 

s=. ( S~y 1 
0 - -  Vo + Y a~ hs V~ 

as h~ - -  - ~ hs 
v, y, 

I t  must  therefore be tha t  some of the terms in the summation are 
negative, i.e., there is at  least  one tissue for  which, 

S 
k " > a h ~ > k ' .  

V 
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Now imagine the roots kj a r ranged in descending order, r~") > r c~-1) > 
--. > r (~ By the reasoning jus t  given, there  mus t  be  a product ,  
a h S / V ,  between every two successive roots, bu t  the  number  of such 
positions, n ,  is exactly equal to the number  of t issues;  thus if  we  
adopt  the notation, p(") > p("-l) > ... > p(l) for  the  descending se- 
quence of products,  we see tha t  the two sequences mus t  fall into the  
combined sequence, r (~) > p(") > ... > p(1) > r(0), and our theorem is 
proved. 

From I and II it follows immediately tha t  all the  Aoj are  posi- 
tive, since all the  k's are  positive and since, by  II, there  are, for  any  
ks as many  A~/s > 0 as there  are  (k~ - ks) > 0 ,  and as many  A~'s < 0 
as there  are  (k~ - ks) < 0 .  However ,  the coefficients, C , f f C ,  which 
we may  call A~s, need not be positive (see equation 6),  nor  mus t  
l inear combinations of the A,i necessarily be positive. 

Nex t  we turn  to a consideration of the derivat ives of kj wi th  re- 
spect  to V~, R ,  and the constants of the  s-th tissue, a , ,  h , ,  ]7, and 
S , .  These follow f rom equations (8) and (9) .  I f  by co~ we d e n o t e t h e  
function:  

1 
> 0 ,  

Vo + ~ a~ hi V~ - -  A , f  ~ 
i-'~ Y i 

then we may wri te  the various part ial  derivat ives compactly as: 

~R  

coi kj 2 A~j -~ > 0 
~ ( h , S , )  

- -  o-)s ks V ,  > 0 

~ks 
- - = - w s k j < O  

Vo 

--  --  co~ kj h~ 2 A,j -~ < 0 
V~ -~, " 

( 1 0 )  

(11) 

(12) 

(13) 

(14) 

The signs of these derivat ives are evident enough. In connection 
wi th  thei r  numerical  magnitudes ,it may  be noted tha t  all the deriva-  
t ives are proport ional  to coj, a quant i ty  which diminishes with in- 
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creasing blood volume. The quanti ty,  S/V,  figures prominent ly  in 
these functions, both by  itself and where  it appears  in d,s �9 I ts  pres- 
ence s tresses  the physiological importance of the shape in which the 
t issue is disposed wi th  respect  to its blood supply. 

The derivat ives of  the  A~s are  complicated expressions whose 
signs and magni tudes  cannot  be ascertained f rom our  work  so f a r ;  
consequently we have omitted them f rom this section�9 

We are  now in a position to discuss the general  solutions of the 
problem�9 Combining equations (5) ,  (6) ,  and (8) we obtain the  con- 
centrat ions of  the  gas in the  blood and tissues as: 

xo - -  C {1 - (Aoo e -k~ + A o~ e -k't + ... + Ao. e -k=t) } 

x I : C { 1 -  (A~oe-~t+Ane-ka+. . .+A~ne-k.~)}  

(15) 

V~ Xo + V1 xl + ..- + Vn x, - -  C I Vo + mVlal + "'" + V,an 

-- (A~o Vo + A~o V, + . . .  + Ano Vn)e -~~ 

- -  (A~ol Vo + At1 V~ + . . .  + An~ Vn)e -ka 

- (Ao, Vo + Aln V1 + . - .  + An,, Vn)e ~-t t Q 

To expedite fu r the r  discussion, we will adopt  certain symbols for  the 
quanti t ies in this equation: We shall denote by 

i=n 
= total amount  of  gas in the limb = X V, x, 

i~0 
i--n Y~ 

0 - -  effective volume of the iimb = V0 + X - -  
';=1 (~  

Qs = the coefficient of the ]-th exponential = ~ A~s V, 
i=O 

- -  the variable  sum = ~ Qs e-~Jt. 
]=0 

Our equation then becomes simply: 

q > = C ( O - O o e - ~ t - Q , e  -sa . . . . .  O,,e - k - ~ ) - - - C ( O - v ) .  (16) 

Mult iplying each concentrat ion by the corresponding volume, we ob- 
tain the total amount of gas in the limb: 
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The solutions, .6 ( t ) ,  the total uptake, and x~ (t) the uptake of the i-th 
tissue, are characterized by the following properties:  
(1) They contain a number  of exponential terms, e -~ ,  equal to the  
number  of tissues plus one. 
(2) These exponential terms are all decaying terms, i.e., ki > 0 .  
The curves, ~ (t) and x~ (t) both approach asymptotes, C6 and C/a~ 
respectively. 
(3) The coefficients of e -sit, Q~ and A u ,  depend in general upon a// 
the quantities, Vo, R ,  V~, a~, h~ S~, and also on the shapes in which 
the tissue masses are disposed. Nothing is asserted about the signs of 
these coefficients. 
(4) If  the physical properties of the tissues are not radically differ- 
ent, then the mean value of the k's should be roughly equal to the 
mean value of a h S / V  for the tissues. (The exact relationship is 
Theorem II.) 
(5) The change in shape of ~ (t) orx~( t )  as V ~ , R ,  V ~ , a t , o r h ~ S ~  
is changed is governed mainly by the changes induced in the k~'s; 
therefor  by equations (10) to (14), the curve approaches its asymp- 
tote mo~'e rapidly with increases in R ,  h~ S~, or a~, but  it approaches 
it "more slowly with increases in Vo or V~. 
(6) Both ordinates ~( t )  and x~(t) are proportional to the delivery 
concentration, C.  

This concludes the purely mathematical considerations. The ap- 
plication to experimental data is considered elsewhere (Smith and 
Morales, 1944). 
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