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A mathematical analysis of the absorption of an inert gas by a
heterogeneous system of n phases, e.g., a limb consisting of n tissues,
is presented. The total uptake of gas, ¢ (), up to time t is given in terms
of arterial concentration, cardiac delivery, blood volume, and the volume,
permeability, and partition coefficient of each tissue. The theory pre-
dicts how the uptake curve should change in shape under a variety of
physiological conditions, and how from the numerical values of the con-

stants the values of certain tissue constants, e.g. permeabilities, may be
obtained.

Introduction. Many problems in the physiology of intact ani-
mals involve the absorption by the tissues of some substance which
has entered the blood elsewhere. While experimental work along
such lines can be and has been done with great care, the resulting
data are not of the type that can be readily interpreted. Consequent-
ly, a need has arisen for a theoretical treatment of this subject. The
present note is intended to submit such a consideration.

We will attempt here to treat the absorption of an inert gas in
the blood by the tissues of a limb, and will use a vocabulary spe-
cific to this case. However, the mathematical results obtained are in-
dependent of vocabulary, and obviously could apply to anatomically
different but functionally similar situations.

For the purpose of the analysis, we regard the limb to be con-
stituted as follows: There exists a blood chamber of volume V, cm?
(the blood volume). Into this chamber there is an inflow of blood at
the rate of E cm® sec; because blood and tissue fluid are practically
incompressible, there is a liquid (blood + lymph) outflow also equal
to R. The entering blood contains the gas in question at concentra-
tion C gm cm=3. The (spatially) average concentration of gas in the
blood chamber is x, gm ecm=3, In physiological contact with the blood
chamber are n distinct tissues. The average concentration of gas in
the i-th tissue is z; gm em=.

* The material in this article should be construed only as the personal opin-

i?;il _of1 1the writers and not as representing the opinion of the Navy Department
officially.
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126 THEORY OF BLQOD-TISSUE EXCHANGE

The matter of penetration constants of the tissues deserves some
attention here, even though the general aspects are thoroughly treat-
ed by Rashevsky (1938) to whose work the reader is referred. When
the intracellular “sclvent” is the same as the extracellular “solvent”,
then we write by Fick’s Law,

Penetration Rate g Sip's
(gm em2 sec™)

(%o — x:) = ki Si(20 — %), (1)

where K is a constant of proportionality, S; is the absorbing surface
area in cm?, 6 is the thickness of the cell membrane, and p'; is the
partition coefficient of the gas between water and ‘“membrane sub-
stance”. The constants, Kp/;/é are lumped together into a single %;
cm sec?, which is then the permeability of the membrane. On the
other hand, when the “solvents” of the two sides are different, then
for the penetration rate we obtain:

K Si p':;

Penetration Rate =

<x-o*p_,1-’l7i>zhi Si (2o — ai 1), (2)
Y
where a; is the partition coefficient of the gas between the external
medium and the intracellular solvent. For some of the tissues, e.g.
adipose, which we will consider, it is necessary to use equation (2)
rather than equation (1). It is perhaps superfluous to point out that
in the first case, the steady state will be attained for x, = «x,, while
in our case it is attained when %, = a;x; , and generally speaking, the
steady state concentration within the tissue will be different from the
steady state concentration in the blood.

Derivation. The setting up of our diffeérential equations follows
easily from the principle of material balance, which holds for the
blood chamber and each tissue independently. Thus:

d(Vox o
_S__o___o_)__—_RC—Rxo—zhiSi(xn—aixi)
dt =1

=h; Si(x, — s &; 1:21,2,...%.
dt (@ )

The substitution, yo =C — 2, and y; = Ci/a; — x; (¢ =1, 2, - n)
renders the equations homogeneocus and somewhat simplifies the solu-
tion. We have then instead the set:

d -
Yo — Ry + 3 hi Si (9o — i ) (3)
dt

—_ 'V0
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dy; .
Vigzhise(yo—‘aiya) (i=1,2,---n). (4)

We proceed to solve the set by the method of undetermined coeffici-
ents. The series:

j=n

yi =3 Cy; et ()

7=0
will be a solution of equations (3) and (4) provided we can find ap-
propriate expressions for the C;; and the k;. This can be done as fol-
lows. The solutions (5) must, by hypothesis, satisfy equations (3)
and (4) identically, which means that after substitution is made the
coeflicients of e*! must vanish. Thus from putting relation (5) into
relation (4) we obtain the solutions:

C i S C (=1,2,---n) (6)
ij = 0j t=1,4,---n)
! aihiSi—Vik,- ’

On the other hand, we have yet to impose boundary conditions on
equation (5). The two cases which concern the physiologist are ab-
sorption (whent =20, y,=C, and ;= C/o;) and desaturation, (when
t=20,y,= 0, and y; = 0). Since our personal interest is in absorp-
tion, we will develop the equations for that case; however, it is clear
that no mathematical difficulty is involved in the alternate conditions.
For our case, then, when ¢ == 0 relation (5) becomes:

i=n
2 Cy=C
j=0
and by (6),
jen C.; C
3 hl = i=1,2,..-n. 49

joa%hisi_V«;kj— UihiSi,

Bquation (7) is therefore a linear set of (n+1) equations which can
be solved for the C,; by the usual methods. Then from equation (6)
all the other C;; are obtainable. Determinantal solution for C,; gives:
Coj =C (ko k- k) (ViVy--o Vn)Aij Agj =+ Anj/kj (0, 02+ -+ 0ty)
X (h’l h2 hn) (Sl Sz Sn) (ko - kj) (kl - k,) R (8)
(kn - k]) EAojC .

where there is no factor, k; — %k, , in the denominator, and where,
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Si
Ai,- =0 hi I—/'i - ]0,-,

a function which we will have occasion to refer to later. Finally, put-
ting equation (5) into equation (3), noting relations (6) and (8),
we obtain the characteristic equation whose (n+1) roots are the k;:

Vol +3— 225k Shes) =0 9)
° i=1aihiSi—Vikj i=1 T

By the use of standard approximation methods, all the roots of equa-
tion (9) ean be found once we have numerical values for V,, R, a;,
ki, Vi, and S;. However, we may prove two useful facts about the
roots of relation (9) without recourse to numerical methods.

1. All the roots are positive. This follows because if any one of
them, say 7z, were negative, we could write the left hand member of
equation (9) as:

Py =( 3218 Vel + B+ 3 hs S
)= - Z i )
( <i=1 a; b S + Vijz| ol i=1 >

The greatest value which the left-hand bracket could ever have would
be, (for |2 =0), X h: S;, whence the greatest value F (z) could have
would be —(V,|z| + E); thus F(z) could never be 0, and therefore,
contrary to our hypothesis k; must ‘always be positive.

II. If the n + 1 roots are, in descending order, ™ ri-1 ... p®

S;
and if the products, o, h; — are, in descending order, p®, pte-b,
-+ pW, then these quantities fall into the sequence, r™ > p® > r@-b
> pm-V . p > p > ), For suppose that »” and 7 are roots such
that »” > /. By hypothesis they both satisfy equation (9). On sub-
tracting F (') = 0 from F (") = 0, we obtain,

0=V, +.-=,. mve S 2 !
— Vo Elai i Vi -‘71> S; S .
<ai h,; —_— ]C."‘)((lr; hi — k')

1% V;

K2 1

It must therefore be that some of the terms in the summation are
negative, i.e., there is at least one tissue for which,

S
E">ah—2>Fk.
|4
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Now imagine the roots &; arranged in descending order, r™ > rt~1 >
- > r©, By the reasoning just given, there must be a product,
a b S/V, between every two successive roots, but the number of such
positions, n, is exactly equal to the number of tissues; thus if we
adopt the notation, p™ > p=v > ... > p® for the descending se-
quence of products, we see that the two sequences must fall into the
combined sequence, 7™ > p™ > ... > p > r©®_ and our theorem is
proved. .

From I and II it follows immediately that all the A,; are posi-
tive, since all the k’s are positive and since, by 1I, there are, for any
k; as many 4;;’s > 0 as there are (k; — k;) > 0, and as many 4;,’s < 0
as there are (k; — k;) < 0. However, the coefficients, C;;/C , which
we may call A;;, need not be positive (see equation 6), nor must
linear combinations of the A;; necessarily be positive.

Next we turn to a consideration of the derivatives of k; with re-
spect to V,, R, and the constants of the s-th tissue, a,, h;, V, and
S, . These follow from equations (8) and (9). If by w; we denote the
function:

1

>0,
i=n Si 2
Vo+ X bV, < ?/— > Ai?

i=1 %

then we may write the various partial derivatives compactly as:

ok,
—=w; >0 (10)
oR
o k;
=y k2 47> 0 (11)
o(he Ss)
ok, S, \
= k; V, >0 (12)
0 a, .
ok;
J:’—O)jkj<0 (13)
2V,
ok; S, \?
L= —wjkihe [ — ) 4,2<0. (14)
oV, V,

The signs of these derivatives are evident enough. In connect.;ion
with their numerical magnitudes it may be noted that all the denYa-
tives are proportional to w;, a quantity which diminishes with in-
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creasing blood volume. The quantity, S/V, figures prominently in
these functions, both by itself and where it appears in 4;;. Its pres-
ence stresses the physiological importance of the shape in which the
tissue is disposed with respect to its blood supply.

The derivatives of the A;;, are complicated expressions whose
signs and magnitudes cannot be ascertained from our work so far;
consequently we have omitted them from this section.

We are now in a position to discuss the general solutions of the
problem. Combining equations (5), (6), and (8) we obtain the con-
centrations of the gas in the blood and tissues as:

To==C {1 — (Ago " + Ay eFt + ... 4 A,, e¥t)}

x]_ == C {']; - (Alo e'k"t + A11 e—klt + oo + Aln e-k"t)

Oy

(15)

n

Ty — C {‘a}' - (A"O e‘kﬂt + Anl e-—k1t 4+ eee + Ann e——knt)} .

Multiplying each concentration by the corresponding volume, we ob-
tain the total amount of gas in the limb:

Voxo+le1+"'+vnxn:C [Vo+£+"'+z"l—
| @

1 Ol
— (A Vo+ Ay Vi + -+ Ay Vo) etot
—(An Vo +Au V4o + Ay Va)ett
— (A Vot AV + o + 4y, Vn)e*nt} :

To expedite further discussion, we will adopt certain symbols for the
quantities in this equation: We shall denote by

¢ = total amount of gas in the limb =’§ Vix;

i=0

i=n Vi,
9 = effective volume of the limb =V, + 2 o
Q; = the coeflicient of the j-th exponential = é AV

j=n
y = the variable sum =3 Q; e+,
§=0
Our equation then becomes simply:

$=C(6— Que™ —QeMt —... — Q,e™) =C(§—vy). (16)
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The solutions, ¢ (%), the total uptake, and z;(t) the uptake of the i-th
tissue, are characterized by the following properties:

(1) They contain a number of exponential terms, e¢*?, equal to the
number of tissues plus one.

(2) These exponential terms are all decaying terms, ie., k; > 0.
The curves, ¢ (t) and x;(f) both approach asymptotes, C and C/a;
respectively.

(38) The coefficients of e*?, @, and A;;, depend in general upon all
the quantities, V,, R, V;, a;, h; S;, and also on the shapes in which
the tissue masses are disposed. Nothing is asserted about the signs of
these coefficients.

(4) If the physical properties of the tissues are not radically differ-
ent, then the mean value of the %’s should be roughly equal to the
mean value of a A S/V for the tissues. (The exact relationship is
Theorem II.)

(5) The change in shape of ¢(£) or z;(t) as Vo, R, Vi, ai, 0r b; S;
is changed is governed mainly by the changes induced in the %;’s;
therefor by equations (10) to (14), the curve approaches its asymp-
tote more rapidly with increases in R, h; S;, or a; , but it approaches
it more slowly with increasesin Voor V; .

(6) Both ordinates ¢(f) and z;(t) are proportional to the delivery
concentration, C.

This concludes the purely mathematical considerations. The ap-
plication to experimental data is considered elsewhere (Smith and
Morales, 1944).

Incorporated throughout this work is the generous counsel of
Professors N. Rashevsky and A. S. Householder of the University of
Chicago, and of Cmdr. A. R. Behnke, (MC), USN, and Lieut. I. Gersh,
H-V (S), USNR, of this Institute, to all of whom the authors are
gratefully indebted.

The authors further wish to acknowledge the valuable assistance
of the enlisted personnel of the Physiology Facility, in the perform-
ance of experimental work and the preparation of the manuseript.

LITERATURE
Rashevsky, N. 1938. Mathematical Biophysics. University of Chicago Press,
Chicago.
Smith, R. E., and Morales, M. F. 1944. (In press.) “On the Theory of Blood-
Tissue Exchanges: II. Applications.” Bull. Math. Biophysics, 6, 133.



