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Simple chemical reactions of Ca ++ and K + ions with a P- ion in a 
membrane are assumed to be causes of changes in permeability of that  
membrane to K§ ions. On the basis of such a mechanism a quanta- 
t i re  concept of membrane permeability to K+ ions is defined. The dif- 
fusion of K + ions through such a membrane is studied mathematically 
in a simplified version. An applied electrical field as well as the diffu- 
sion potential of the K* ions are considered to effect the chemical equi- 
librium constants of the proposed reactions. It  is shown that  such a 
system, which can be described by a set of nonlinear differential equa- 
tions, may have two stable states of equilibrium which are separated by 
an unstable equilibrium state. As a consequence, such a system may 
possess a threshold. Estimations of resting potential, threshold---electri- 
cal as well as chemical--and of permeability increase, together with that  
of the corresponding electrical field strength are shown to have the cor- 
rect order of magnitude. A possible way to derive the one-factor theory 
from a physical mechanism as considered here is outlined. I t  is pointed 
out that  the dependence of the thresholds and the permeability changes 
on several parameters might be calculated on the basis of such a mech- 
anism. As an example it is shown how in principle some of these rela- 
tions are derived. Furthermore,  the time course of excitatory disturb- 
ance for different intensities of the initial disturbance are derived theo- 
retically for the case of chemical stimulation. The curves so obtained 
show a striking similarity in all the characteristic features with the cor- 
responding ones which are obtained experimentally for the case of elec- 
trical stimulation of nerve. These results suggest that  response to elec- 
trical and chemical stimulation is based on a common threshold phenom- 
enon such as considered here. Finally, a more detailed mathematical de- 
scription, which takes into account explicitly the diffusion of K+ ions 
through the membrane for a finite thickness of the membrane is out- 
lined. The equations obtained, which seem to be infeasible of solution 
at the present time, suggest that  it is plausible that  relaxation oscil- 
lations with a threshold can be derived on the basis of such a mech- 
anism as proposed here. Qualitative agreement wi~h experimental evi- 
dence is indicated. 

T h e  c o n c e p t  o f  t h r e s h o l d  is  a t y p i c a l  b i o - m a t h e m a t i c a l  c o n c e p t  

a n d  p l a y s  a b a s i c  r o l e  in  e l e c t r o p h y s i o l o g y  (see ,  e.g.,  S c h a e f e r ,  1940)  

a n d  t h e  m a t h e m a t i c a l  b i o l o g y  o f  t h e  ( c e n t r a l )  n e r v o u s  s y s t e m  ( R a -  

s h e v s k y ,  1 9 4 8 ) .  S o m e  s u g g e s t i o n s  as  t o  t h e  q u a n t u m - p h y s i c a l  n a t u r e  

o f  t h i s  c o n c e p t  w e r e  m a d e  by  A.  B e t h e  ( 1 9 3 7 )  a n d  P .  J o r d a n  ( 1 9 4 4 ) .  
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An attempt to derive the all-or-none law on a probabilistic basis was 
made by H. von Schelling (1944). A formal attempt in connection 
with subthreshold potentials based on an electrical model of a mem- 
brane-element, the resistance of which is assumed to be a nonlinear 
function of the potential difference across the membrane, was made 
by B. Katz (1947). Another mechanism which exhibits threshold 
effects was derived by A. Rapoport (1950) from a probabilistic treat- 
ment of neural nets. 

I. Tasaki and T. Takeuchi (1941) obtained an action curve from 
one node. As an estimate of the length of one node we might take 
(cf., e.g., EngstrSm and Liitky, 1950) as high a value as 3 • 10 -8 cm, 
while the liminal length is of the order of 10 -1 cm (Rushton, 1937). 
From these estimates we may infer that propagation along one node 
is not very likely. The result mentioned above of Tasaki and Takeu- 
chi would then be an example of local excitation without propagation, 
which still gives an action curve. Furthermore, according to Tasaki 
(1940), the all-or-none law holds, in general, for excitation of a sin- 
gle node. 

One of the postulates of the formal theory of W.A.H. Rushton 
(1937) underlying much recent experimental work (e.g., Katz, 1937; 
1939) corresponds to a local threshold. It is, in fact, assumed in this 
theory that the local condition of the membrane suddenly changes 
after  the resting charge of the membrane has been altered by a criti- 
cal amount 01. From equation (8) of Rushton's paper (loc. cir.), it 
follows that  the Iiminal length is greater than zero only if the criti- 
cal value ~1 is greater than zero. The latter would correspond to a 
local threshold. 

In the formal theory of Katz (loc. cit.) a threshold mechanism 
is discussed for one membrane-element only. This would, therefore, 
also correspond to a local threshold. 

A. M. Weinberg (1942) has pointed out that  the only thing which 
can be concluded from the experimental curves describing the sub- 
liminal responses of nerve (Katz, 1937, and others mentioned in Wein- 
berg's paper) is that the subsidence of the excitatory state s is not 
described by the usual linear differential equations of the one- or two- 
factor theories, but should be described by a nonlinear differential 
equation, in which the time-constant is itself a function of s .  Fur- 
thermore, he has pointed out that an interpretation of the deviations 
from linearity in terms of a "local response" in accordance with Rush- 
ton's notion of liminal length (loc. tit. ; Katz, 1939) is somewhat irrel- 
evant from the strictly phenomenological viewpoint, a physical in- 
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terpretation of such a nonlinearity being outside the scope of a for- 
mal theory. A local threshold is postulated also in the two-factor 
theory of nerve conduction (Rashevsky, 1948). 

In the light of what has been mentioned above, one might believe 
that it is plausible that a local threshold exists. It is also conceivable 
that a threshold for the longitudinal gradient of the "polarization" 
exists (cf. Eichler, 1933; also Katz, 1937, 1939). And it may very 
well be that  those thresholds, if they both exist, are not independent 
of each other; it is conceivable that the latter threshold might be 
derived from the former one. We realize that  the phenomenon of 
excitation and propagation is probably described by one, or several, 
(very difficult) partial differential equations or integrodifferential 
equations. It would then seem to be artificial to concentrate too much 
on either the "local" or the "longitudinal" aspect of the problem. How- 
ever, these exact equations are still unknown at the present time. 
Therefore we will focus attention here on the local aspect of the pro- 
cess. After  what has been said above in relation to work of Tasaki 
and Takeuchi, Tasaki, Rushton, Katz, and Weinberg, we feel justi- 
fied in doing this. We would like to remark here, however, that  it 
is conceivable that  even if the local response process is essentially 
a threshold phenomenon, it may appear to be graded (for a differ- 
ent suggestion, see Katz, 1937). This may be due to a combination 
of several factors. Namely, the stimulation may be "parametric," by 
which we mean that as a result of the stimulation the conditions are 
changed with, as a consequence, a change in threshold of the response 
process. These changes and their consequences may very well be 
graded. Or, due to experimental techniques, the threshold of local 
stimulation may be masked either by stimulating too large an area 
(e.g., by electrical spread or leakage) or by large gradients at the 
borders of the stimulated area. In this relation the method used by 
Tasaki, Tasaki and Takeuchi in the papers mentioned above might be 
preferable. As a matter  of fact, as stated above, they obtained an 
action current in this way from an excited region much shorter than 
the liminal length, while Tasaki concluded that the all-or-none law 
holds for such a process. 

The importance of relaxation oscillations in relation to the re- 
sponse of tissues to stimuli has been realized for some time. B. van 
der Pol and J. M. van der Mark (1928) have compared the rhythmic 
heartbeat with a relaxation oscillation and have pointed out several 
similarities between the two (e.g., heart  block and demultiplication of 
frequency). A. Fessard (1981) also emphasized the similarity be- 
tween relaxation oscillations and neural rhythms. Later work of Fes- 
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sard (1936) and A. Arvanitaki (1938a, b; 1939)also points in the 
direction of the occurrence of relaxation oscillations in the case of 
stimulated nerves and myocardium. At this point it might also be of 
some interest to mention the model experiments of Bethe (1943), O. 
Sch~ifer (1943), Bethe and H. Schaefer (1947). D. Auger (1936) 
found many similarities in this respect between the response of ani- 
mal and plant cells to stimulation. N. Rashevsky's suggestion for de- 
riving a threshold for relaxation oscillations was elaborated by the 
author (Karreman, 1949), who was unaware that the theory of these 
so-called "hard oscillation" cases had already been developed to a 
certain extent previously (Andronow and Chaikin, 1937; 1949). 
The problem has been treated recently also by N. Minorsky (1947). 
These "hard oscillation" cases, with threshold properties, occur, 
mathematically speaking, if there are at least two limit cycles around 
a stable singular point, the first one being unstable, the second one 
stable (Fig. 1). 

oJ 

F- 

FIGURE 1. Phase  plane represen t ing  a "ha rd  oscil lat ion." S is a stable singu- 
la r  point,  1 and 2 are  l imit  cycles which a re  unstable  and stable respect ively.  

The theory of self-excited oscillations has been, to a large ex- 
tent, based on ideas and work of H. Poincar~ (1892). Analytical 
treatments have also been given by, e.g., van der Pol (1926) and N. 
Kryloff and N. Bogoliuboff (1937; 1949). It  has had many impor- 
tant applications in the case of oscillations of mechanical and elecJ 
trical systems. In the case of excited muscle and nerve fibers transi- 
tion through an unstable state or region has been observed (Rush- 
ton, 1932; cf. also R. S. Lillie, 1923). Some theoretical approaches 
in this direction have been made by K. F. Bonhoeffer et al. (1948a 
through f) ,  together with experimental investigations of the activa- 
tion of a passive iron wire as a model for the excitation of nerve. R. 
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S .  Lillie had made similar investigations previously (1923, 1924) to 
get a model for the transmission of nerve impulses. Weinberg (1942) 
has pointed out the analogy with nonlinear electrical and mechanical 
systems by constructing a "local phenomenological characteristic" 
from experimental data (Katz, 1937) on subliminal responses of 
nerve. In Weinberg's paper several other investigators are quoted 
who have suggested that the excitation equations are nonlinear. 

According to the Membrane Theory proposed by J. Bernstein 
(1902) the resting potential across the membrane of a nerve or mus- 
cle fiber is ascribed to the selective permeability to potassium ions 
which are present inside the fiber in a concentration which is higher 
than the normal concentration outside it. K. S. Cole and H. J. Curtis 
(1938) showed that during activity of Nitella the transverse resist- 
ance drops temporarily, suggesting a structural breakdown of the 
membrane and, as a result, a temporary loss of selective permeability 
to ions. They (loc. cir. ; 1939) have also been able to show a close 
relation between the change of the membrane electromotive force and 
that of the conductance of the membrane. They consider the sudden 
changes in those quantities to be connected with the activity which 
is responsible for the all-or-none law and the initiation and propaga- 
tion of the nerve impulse. Their results for the squid giant axon cor- 
respond to those previously found for Nitella (Cole and Curtis, 
1938). There are also suggestions (cf. Schaefer, 1940) that  potas- 
sium ions effect the structure of the membrane. Furthermore, A. L. 
Hodg~in (1947) has found that the conductance of the membrane is 
increased about three-fold when the external potassium concentration 
is trebled. In addition, there is some evidence that diffusion of potas- 
sium ions does play a role in the process of the development of the 
action potential of giant nerve fibers (Webb and Young, 1940) and 
that of the giant plant cell Nitella (Osterhout, 1934; Hill and Oster- 
hour, 1934). The latter investigators consider, as a good approxima- 
tion in the case of Nitella, the diffusion of potassium ions only.* 
Assuming with Cole and Curtis (1940) that  the membrane conduct- 
ance is a measure of its permeability to ions we see that potassium 
ions cause an increase of that permeability, presumably (Schaefer, 
1940) by causing a so-called "loosening-up" of the membrane; while 
calcium ions, in general, decrease the ion permeability of the mem- 
brane (cf. R. S. Lillie, 1923; Schaefer, 1940). The increase in perme- 

*Very recent investigations (Hodgkin, Huxley, and Katz, 1949), which, un- 
fortunately, came to our attention after the major par t  of this work had been 
done, indicate that the increase in the permeability to sodium precedes that  o f  the 
permeability to potassium in the case of the squid giant nerve fiber during action. 
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ability at the cathode and the decrease in permeability a t  the anode 
might be due (cf. Schaefer, 1940) to this effect of K and Ca if we 
keep in mind that  the concentration of K in the inside of the fiber is 
greater (and relatively more than that  of Ca) than in the outside 
(Webb and Young, toc. cit; von Muralt, 1945) and both ions travel 
to the cathode from the anode. The importance of structural changes 
of surface membranes in relation to stimulation had already been 
stressed by R. S. Lillie (1923). It  has been suggested (Heilbrunn, 
1943) that during stimulation Ca ions are released from a compound 
in t he  cell surface by, e.g., potassium ions. Heilbrunn considers as 
essential for stimulation a colloid chemical reaction produced by cal- 
cium, similar to blood clotting. He and his coworkers have given evi- 
dence to that effect in the case of stimulation of lower organisms (for 
example, Amoeba proteus). In our opinion this scheme is not very 
likely to account for fast reactions such as occur, e.g., during the 
stimulation of nerve fibers, since the duration of the action poten- 
tial is only of the order of milliseconds. We will, therefore, consider 
a membrane with only one or more layers composed of a calcium com- 
pound and will investigate here the diffusion of potassium ions 
through such a membrane, assuming that the latter are able to react 
with the calcium compound. According to R. HSber (1945) excita- 
tion is a reversible increase of permeability to ions. True enough, 
HSber considers, with many others, the latter brought about by a 
transitory dispersion of the colloidal structure of the plasma mem- 
brane. These colloidal changes are still hard to t reat  theoretically, 
though recent advances in this field (cf. Verwey and Overbeek, 1948) 
might be very helpful. 

rr  

p _ ~  JK+ 

p- D, Ca++ 

FIGURE 2. Model of a membrane which changes its permeability in accor- 
dance with the chemical reaction (1). The numerals I and II represent the inner 
and outer boundaries of the membrane. 

Model of a membrane.  We will assume that  a compound of Ca, 
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CaP~, in which P may represent a fat ty acid ion or a lipoid constitu- 
ent, forms a layer in the membrane. The latter may be mono- or 
bimolecular (HSber, 1945; Danielli and Davson, 1935) as shown in 
Figure 2. Potassium ions are supposed to react with this compound 
(Heilbrunn, 1943) in the following way: 

CaP= + 2K § ~- Ca ++ + 2KP. (1) 

The KP formed by this reaction might be said to produce a 
"hole" (cf. HSber, 1945; Fleckenstein, 1942), as shown in Figure 2. 
This concept of hole is, of course, much too simple and much too 
crude. Instead, the interactions of the Ca *+, P- and K § ions should be 
taken into account in much more detail. Yet it is interesting to see 
what consequences, particularly quantitative ones, can be drawn 
from it. 

Instead of using the highly oversimplified reaction (1) we will 
investigate the more appropriate scheme: 

CaP= ~ CaP* + P-, (2) 

CaP + ~-- Ca ++ + P-, (3) 

P- + K § ~ KP, (4) 

which corresponds to Figure 3. 

I Tr 
p- 

p- 

p- >Ca++ 

P- K., r 
P- K+ p- 

Ca *+ p- 

p- >Ca++ 

FIGURE 3. Improved model of a membrane which changes its permeabil i ty  
in accordance with the chemical reactions (2) ,  (3),  and (4).  

We will call the equilibrium constants of these reactions K1, K~, 
and K~ -1 respectively. We assume here that  we may apply the laws 
of chemical equilibrium and use the concept of concentration even 
though we may be dealing with pauci-molecular layers in the mem- 
brane. Then we have: 
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(CaPD 

(CaP +) (P-) 

(CAP+) 
K~-- 

(Ca ++) (P+)'  

(K +) (P=) 
K3-1 - -  

( K P )  

, (5)  

(6) 

(7) 

where parenthesis denote molar concentrations. 
Denoting by Po the total concentration of P- we find: 

2(CaP~) + (CaP + ) + (KP) + ( P - ) : P o .  (8) 

We regard the P~ as determined by metabolic reactions. 
Elimination of (CaP~), (CaP +) and (KP) f rom (5), (6), (7) 

and (8) gives: 
2K1K~ (Ca *+) (e-)2 + {K2 (Ca ++) 

(9) 
+ K~(K § + 1}(P-) - - P o : 0 .  

This equation determines (P-).  The two roots of (9) have different 
signs as can be easily seen. Of course, only the positive root of this 
equation for (P+) has a physical meaning. 

The first basic assumption we will make is as follows. The per- 
meability h of the membrane to potassium ions is proportional to the 
number  of "holes." The latter number we assume to be proportional 
to (KP) + (P-).  Of course, more appropriate (better weighted) 
combinations of (KP),  (P-),  and (CaP +) might  have been chosen. 
However, a serious difficulty, due to lack of sufficient available data, 
is to decide at present which combination or function of these con- 
centrations should be taken as a measure of the permeability of the 
membrane to potassium ions. The different fields of force between 
the ions should be taken into account, as well as the different masses 
and, therefore, different moments of inertia, the latter being impor- 
tant  for the rotation of the molecules involved. 

On the basis of these assumptions we find: 

a h - - ( K P )  + (P-) ,  (10) 

a being a constant of proportionality. 
Through these assumptions, essentially described by equations 

(2), (3), (4), (8), and (10), the above-mentioned antagonistic in- 
fluences of Ca ++ and K § ions on the permeability of membranes is in- 
troduced. 
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El iminat ion of (KP)  f rom (7) and (10) gives: 

a h  - K s ( K  + ) ( P )  + ( P ) ,  (11) 

Solving (11) for  (P-) we find: 

ah 
(P- )  - -  (12)  

K3 (K +) + 1 

Introducing (12) into (9) and rear ranging  leads us to: 

2K1K2(Ca++) a ~ K=(Ca ++) + K3(K +) + 1 
h 2 + a h - -  Po = 0. (13) 

{Ka(K +) + 1 }  = K~(K +) + 1  

This quadratic equation in h determines h as a function of (K +) and 
of (Ca++). 

We now introduce the following notat ions:  

(K +) = c ,  

(14) 
2K1K~ (Ca++) a ~ = a ,  

K ~ =  b , 

K2 (Ca ++) a = d .  

We then can rewri te  (13) for  h = h(c) as follows: / }2 
a h(c)  + 

(be + 1) 2 bc + 1 
h(c) + ah(c) - -Po=O. (15) 

I t  is easy to see tha t  the function h(c) determined by (15) is 

Po 
o~ 

F-- 
0 C 

FIGLrRB 4. I l lustration of the relation between the permeability to potassium 
ions and the concentration of those ions in the membrane on the basis of a 
mechanism defined by equations (2), (3), (4), (8), and (10). 
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such that  h(0) > 0, while h(c) approaches --P~ if r approaches in- 
a 

finity (which is, of course, beyond the physiological limits). Similarly, 
Po 

h ~- - -  for (Ca ++) ---- 0, implying a - -  d --  0. Furthermore,  it can be 
a 

shown [most easily by differentiation of both sides of (15) with 
respect to v and using the fact that  physiologically h(c)  > 0] that 
h'(c) > 0 and h"(c) < 0 for all positive c [and h (c ) ] .  Therefore, 
plotting h (c) against c we obtain a curve like the one shown in Fig- 
ure 4. 

For later use we will only mention here the dependence of the 
slope of the curve shown in Figure 4 on the concentration c .  I t  is 
given by: 

{2ah(c) + dr(v)} bh(c) 

h'(c) -- (2ah(c) + dr(c) + a p ( e ) }  f ( v ) '  (16) 

f (c)  being an abbreviation for 

f ( c ) = l + b c .  

The di~fusion of potassium through the proposed membrane. We 
will now consider the diffusion of potassium through a membrane of 
the type outlined in Figure 3. We suppose, as is the case with sev- 
eral living membranes (HSber, 1945), that  at one side of the mem- 
brane the potassium has the concentration K~ and at the other side 
K= =/=/(1. As is mentioned above, the approximation which considers 
the diffusion of potassium alone through one or more membranes is 
the one actually considered by S. E. Hill and W. J. V. Osterhout in 

vr  ~i+X I 

K, / - - / -  

Y 
Z+K 2 

~ _  2 

~Kz  

LI I MEMBRANE~" '1 L2 
F mL~F. 5 

ZERO- LEVEL OF 
K+-ION CONC. 
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long series of papers on the action potentials of the giant plant cell 
Nitella (e.g., Osterhout, 1934; Hill and Osterhout, 1934; Osterhout 
and Hill, 1934; 1938). These action potentials have some features in 
common with those of nerve and muscle fibers.* They also share com- 
mon features with those of the heart. According to Webb and Young 
(1940) the diffusion of potassium ions appears to be a principal fac- 
tor responsible for the development of the action potential. In nerve 
and muscle fibers, as well as in Nitella cells, the inside concentration 
K1 of potassium ions is much greater than their outside concentra- 
tion K~ (HSber, 1945). Therefore, we will consider the situation 
shown in Figure 5. 

At both sides of the membrane there are two layers. The first 
layer, of thickness L1, is the one in which the diffusion of potassium 
ions from the high potassium ion concentration K1 to that  (x) just  
inside the membrane occurs. The other layer, of thickness L~, is the 
one in which the diffusion of potassium ions from the concentration 
(z) just outside the membrane to the low outside concentration K2 
takes place. We will consider the average concentrations in these 
layers 

Kl + x z + K~ 
and 

2 2 

respectively, use the approximation method developed by Rashevsky 
(1948) and take for the permeabilitiest of the inside layer I the 
value h(x)  ; for that  of the outside layer II the value h(y) .  Assum- 
ing the chemical reactions to be very fast compared with the diffu- 
sion processes, so that  they may be considered always to be in equi- 
librium, we may suppose h (x) and h (y) to be determined by the same 
type of mechanism as described by equations (2), (3), and (4). There- 
fore, h(x)  and h(y)  themselves are determined by an equation of 
the type (15) with c - -  x and c - -  y, respectively. Using the approxi- 
mation method we now find the equations describing the conserva- 
tion of K § ions in both diffusion layers and in the membrane: 

K1 -~- Z 
d ~  

2 K ~ - - x  
ALl  - -  AD1 - -  Ah (x )  ( x - - y ) ,  (17) 

dt LI 

*Very recently impor tant  differences have been pointed out (Hodgkin, 1949). 
tWhere  we speak of permeabil i ty  in the fu ture  we mean the permeabil i ty  

to potassium ions. 
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dy 
A 2 - - : A h ( x )  ( x - - y )  - - A h ( z )  ( y - - z ) ,  (18) 

dt 

z +  k= 
d - -  

2 z - - K s  
AL2 - -  - - A h ( z )  ( y - - z )  - - A D ~ ,  (19) 

dt L~ 

A being the cross-section. 
Equations (17), (18), and (19) form a set of three simultane- 

ous, nonlinear differential equations. Though the mathematical treat- 
ment of this problem in its most simple approximated form leads to 
this difficult set of differential equations, it is not too difficult to see 
that the situation might physically correspond to an oscillatory phe- 
nomenon occurring af ter  a threshold has been exceeded. Indeed, by 
raising the external concentration z in Figure 5 the permeability of 
II is increased since the function h (z) is a monotone increasing func- 
tion of z.  As a consequence, the diffusion of potassium ions through 
layer II is increased. Therefore, y decreases and z increases initially. 
With decreasing y the difference between x and y increases so that 
the diffusion through I increases, lagging behind the increase of dif- 
fusion through II. The increased diffusion through I reduces x .  
Therefore, the difference between K1 and x is increased. In this model 
K1 and K~ are supposed to be constant (the metabolic process keep- 
ing K1 constantly higher than K2 is not considered here).  The in- 
creased difference KI - -  x increases the diffusion in the inside layer 
which tends to restore the original value of x .  At the same time the 
increase of z increases the diffusion in the outside layer, which de- 
creases z again. Assuming the initial increase of z is large enough 
(corresponding to a threshold) and the time rates of the various dif- 
fusion processes are of the right order of magnitude, we see that  it 
might be possibIe for the original situation to be restored af ter  prac- 
tically the whole content of the membrane of potassium ions has been 
released. 

It has been found (Hodgkin and Huxley, 1947) that the charge 
carried by the potassium ions released in one impulse is about twice 
the charge on the resting membrane. If  one assumes that the latter 
charge is located in a layer with a thickness of comparable order to 
that of the membrane, then the above observation is compatible with 
the mechanism under consideration. 

Instead of treating here the set of equations (17), (18), and 
(19), we will consider first a simplified special case of it, which al- 
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ready shows some interesting features. We assume that the perme- 
ability of the membrane is determined by a similar type of mecha- 
nism. We again consider a CaP2 layer as an essential element of the 
membrane. This compound of CaPs is in equilibrium with two com- 
plex ions CaP + and P- according to: 

CaP2 ~-- CaP + + P-, (20) 

CaP+ ~2 Ca++ + p-. (21) 

The equilibrium constants are, as before, 

(CaP~) 
K~ --  (22) 

(CaP +) (P-) 
and 

(CaP + ) 
K2 = (Ca++) (P-)" (23) 

We will now consider also some electrical effects. An applied 
cathode (Fig. 6) will shift the equilibrium of reactions (20) and (21) 
toward the right-hand side, if we assume that the Ca++ ions are bound 
to relatively immobile P- ions. This effect is due to the positive charge 
of the CaP + and Ca++ ions. 

M 

p~ 

p -  

p -  

pb 

p -  

p~ 

p -  

p -  

> C a  + + 

C8~-+ 

Ca*" C, 
Ca§ 

Ca+~ - -  

Ca++ 

FIOURE 6. Membrane M in the neighborhood of an applied cathode C illus- 
t ra t ing the effect of the attraction of the cathode on the Ca +* ions. 

We may consider this effect as being due to the attraction of the 
Ca ++ ions by the negative electrode. This effect might be expressed 
by the equation: 

2s 
- - / V  

K ~ , v  - -  K~.o e kr (24) 

in which 
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V --  the electric potential difference across the CaP~ layer. 

K~,v --~ the equilibrium constant of the ith reaction (20) or (21) 
(i --  1, 2) when the electric potential difference across the CaP~ 
layer is V. Similarly for K~,o. 

~ the charge of a monovalent ion. 

k ---- the Boltzmann constant. 

T --  the absolute temperature. 

/ ~  a correction factor which expresses the fact that  the effec- 
tive charge of the Ca ++ ion might be less than 2 and the effective po- 
tential difference across the CaP~ layer might be less than the meas- 
ured potential difference. Therefore, f may describe the potential 
drop inside the membrane and across another layer. We will estimate 
the value of f later and expect it to be less than 1. 

We suppose that the electric potential difference V is composed 
of the applied one (A V) and the diffusion potential of potassium. 
The latter has been assumed here because Osterhout (1949) has shown 
that it is a good approximation for the resting potential in the case of 
l~itella (cf. also Fleckenstein, 1942). We then find: 

R T  
V - -  loge - -  + (A V ) ,  ( 2 5 )  

F c2 

c~ and c: representing the concentrations of K * ions at both sides of 
the layer. Furthermore, it is assumed that  the mobility of K § ions 
through the membrane is so much higher than that  of any anions (cf. 
Osterhout, 1949) that the diffusion of the latter does not need to be 
taken into account in the calculation of the diffusion potential. Intro- 
ducing (25) into (24) leads to: 

K I 

Y ~ 
1~2 ZERO-LEVEL 

. . . . .  -~D ~- . . . .  --~ OF K+ION CONC. 
L ~ L 

MEMBRANE 

FIQUI~ 7. Schematic illustration of the concentration levels on both sides of  
a membrane of negligible thickness. 
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28 
f (~v)  

K , , . - - K , , o (  Cl ) z{ ~" 
- -  e ( 2 6 )  
(:2 

As we see, the influence of the electric effects makes the reactions (20) 
and (21) of higher order. 

To simplify matters in another respect, we will t reat  here first 
the case of a membrane whose thickness 2 may be neglected. Then we 
have the situation shown in Figure 7. 

The thickness of the diffusion layers on both sides of the mem- 
brane will be assumed to be the same as well as the diffusion constants 
of potassium in them. It will be shown, in a more general t reatment  
below (cf. the last part  of this paper),  that these assumptions do not 
change anything significantly. 

In the same way as above, the diffusion in the two layers next to 
the membrane with thickness L is found to be described by the fol- 
lowing equations: 

K~ + x  
d ~  

2 K~ - -  x 
A L  --  A D  - -  A h  (x  ~ y ) ,  (27) 

dt L 

y + K 2  
d ~  

2 Y ~ K2 
A L  - -  A h ( x  ~ y )  ~ A D  ~ (28) 

dt L 

In these equations the permeability h is considered to be a func- 
tion of the potassium concentration inside the membrane. I t  will, 

I 
FLUX OF IX+IONS 
IN iNSIDE 

FLUX OF ANIONS IN INSIDE 

FLUX OF OTHER CATION~ 
IN INSIDE " 

I N S I D E  

1-r 

FLUX oFJ~I'IONS FLUX OFK+IONS IN OUTSIDE 

tN MEMI~CtA~IE FLUX OF N~§  IN OUTSIDE 
v 

FLUX OF ANIONS 
,el 

IN MEMBRANE 

FLUX OF ANIONS IN OUTSIDE ~ 

O U T  S J D E  CATHODE 

MEMBRANE 

FIGURE 8 
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therefore, in general, be a function of x and y .  However, because x 
is relatively high, the variations of x are relatively small. In addi- 
tion, under our assumption that the membrane is permeable only to 
potassium ions, more of the latter wilI arrive at the external side of 
the membrane than leave there. This is because of the continuity of 
the electric current which inside the membrane is carried by potas- 
sium ions and by anions. We have so far  neglected the latter for rea- 
sons of mathematical simplicity. In the outside layer, however, it is 
carried for the most part  by sodium ions and anions (Fig. 8). 

Therefore, the accumulation of K § ions will take place at the ex- 
ternal side II of the membrane. This is another reason why the per- 
meability is determined to a large extent by y in Figure 7. 

However it will be shown later on how the more general case, in 
which the permeability is also dependent on x ,  can be treated approxi- 
mately. 

Introducing h - ~  h ( y )  into the equations (27) and (28) and 
simplifying the latter equations, we get: 

d x  2 D  2 h  ( y ) 
- -  (K1 - -  x )  - -  ( x  - -  y ) ,  ( 2 9 )  

dt  L 2 L 

ely 2h  ( y ) 2 D  
- - - -  ( x - - y )  - - - -  ( y - - K f ) .  (30) 

d t  L L 2 

Because h is considered here to be a function of one of the dependent 
variables, this set of differential equations is also nonlinear. A set 
of this kind might be considered as a first extension of the usual equa- 
tions describing diffusion phenomena (including permeability fea- 
tures) with constant diffusion and permeability coefficients, as has 
been done in most cases up to the present time (Rashevsky, 1948; see 
also for discussion of some nonlinear diffusion cases). 

Addition of the two equations (29) and (30) gives 

d (x + y) 2D 2D 
- -  (K1 § K~)  - - - -  ( x  + y ) .  ( 8 1 )  

d t  L 2 L ~ 

The solution of (31) is: 
t 

fo - - *  - - t 2 D  
x + y - -  e ~' ( x  + y ) o  + e ~ - -  ( K l  + K ~ ) d t  

L ~ 

o r  
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2 D  
- - -  t 

x + y =  (K~ + K2) + e L, 

(x + Y)o being the initial value of (x + y) .  
Hence  in the s teady s tate  ( for  t -~ ~ ) we have: 

x + y = K I  + K~,  

as could have been obtained also directly f rom (31).  
Solving for  x f rom (33),  we get:  

x - -  (K1 + K2) - - y .  

Subtract ion of equation (30) f rom (29) gives: 

d ( x  - -  y )  2D 2D 4h(y )  
- -  - -  ( K 1  - -  K s )  - -  - -  ( x  - -  y )  

dt L 2 L 2 L 

{ (X + Y)o - -  (K1 + Ks) ) ,  

- -  ( x - -  v ) .  

(32) 

(33) 

(34) 

(35) 

(38) 

( 3 9 )  

(40) 

Then we find f rom 

K1 - -  K~ = 2 ~ .  

(36),  together  wi th  (37) and (38),  

2 5  
- -  ( A V )  

K~,v = 4K~,o 32 e kr y-2. 

y < < K I  + K2,  

therefore  we may wri te :  

x -~ K1 + K~. (37) 

Hence in this approximation,  x may  be taken as constant,  as could have 
been concluded f rom our above considerations in connection wi th  the 
relatively insignificant var ia t ions  of x .  

We now introduce the following notat ions:  

K1 + K ~ : 2 A ,  

y < < K 1 ,  

Since 

and hence 

To calculate h (y) we will first make the very  crude assumption 
tha t  f = 1 in (26).  Fo r  cl and c~ in (26) we take  x and y respectively 
as in F igure  7. Then we find f rom (26) : 

K~,v = K~,o - -  e ~r (~,v) (36) 
Y 
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From (22) and (23), in which we now take K~,v instead of K~, we 
obtain: 

(CaPD = K~,v(Cap*) (P-),  (41) 

(CAP*) - -  K2,v(Ca ~) (P*). (42) 

Introducing (42) into (41) we find 

(CaP~) - -  K~,~K~,v (Ca++) (e-)  2. (43) 

We now have the following expression for the reaction system (20) 
and (21), which is similar to equation (8) : 

2(CaPD + (CaP +) + ( P - ) - - P o .  (44) 

Introducing (40) into (41) and (43), and then the latter into 
(44) we obtain: 

32K~,oK~,~ A 4 e k~ (Ca *+) 
y~ 

2 8  
- (av) P -  

+ 4K2,o ~ e kT ( C a  +*) - -  + ( P - )  - -  P ~ :  0 .  y~ 

(45) 

Similar to assumption (10), we assume that  in the case of reactions 
(20)--(21) we have: 

a h =- (P*). (46) 

Elimination of (P-) from (45) and (46) yields the following equa- 
tion for h: 

32K1 oK2,o A~ e ~ (av) (Ca ++)a 2 _ �9 ~/,, 

28 
(AV) 

+ 4K2,o ,~ e ~r 

(47) 

~ 0 .  (Ca++)a -h § ah--P~) 
y2 

We will now first show that  the term a h may be neglected. To do this 
we have to find plausible estimates for the various parameters. F .C.  
McLean and A. B. Hastings (1935) find for body fluids: 

Kl,oK2,o ~ 103--104 . (48) 

Because we might expect Kl,o < <  K:,o (secondary ionizations usually 
being "weaker" than primary ones), we estimate 
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K 2 , o  ~ 102--108. ( 49 )  

According to Webb and Young (1940) and R. S. Bear and F. O. 
Schmidt (1939) we have the following orders of magnitude: 

(K1) : 3.10 -1 M / l ,  (50) 

(K~) : 10 -2 M/ I .  (51) 

Taking as an estimate of (Ca ++ ) the value of that  concentration 
in Ringer's solution we find that the order of magnitude is (Fulton- 
Howell, 1946) : 

(Ca ++) - 10 -3 M/1. (52) 

From (38), (50), and (51) we find: 

- KI+K2 
A - -  - -  0 .16 M / l ,  ( 5 3 )  

2 

Taking (A V) = 0 (no electric field applied), using (49) and (51) 
and keeping in mind that y is of the order of magnitude of K~, we 
find for the coefficient of h in the second term in (47) : 

4.102 (0.16) 2. 10 -3 (0.01)-2 a ~ 102 a ,  

which is large compared with the coefficient a of h in the third term. 
We will, therefore, neglect the third term in (47). Equation (47) 
now takes the form: 

a~ - -  + b~ - - P o = 0  (54 )  

with 

and 

o r  

4 8  
- -  ( A V )  

ch = 32Kl,oK2,~ A 4 e ~T (Ca *+) a 2 ( 5 5 )  

2 8  
- -  ( A V )  

bl - -  4K~,~ ~2 e~T (Ca++)a" (56) 

The solution of (54) is given by 

h - -  b l  + ~ /b l  �9 + 4a~Po 
- - =  , ( 5 7 )  
y2 2al 
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with 

= - -  + - - -  + .... . (59) 
46 2a~ 2a~ al 

I f  we again assume as above that  the conductance is a measure  of  
the ionic permeabi l i ty  we may  compare the theoretically derived re- 
sult  (58) with the  observat ion of Hodgkin (1947) who found tha t  the 
conductance was increased roughly three-fold when the external po- 
tass ium concentrat ion was trebled. However ,  Hodgkin states tha t  
there is much scat ter  in the experimental  results and he considers his 
est imate to be crude. The fac t  that  this invest igator  also found that  
the conductance was reduced to about  one-half by removal of potas- 
sium would suggest  that  a term ho, independent of  y ,  should be added 
to the r ight-hand side of (58).  This term has been omitted in our con- 
siderations for  reasons of mathematical  simplicity. In addition, our  
formulae (58) and (62) predict  a definite dependence of this relation 
o f  the conductance and the external  potassium concentration on the 
Ca § ion concentrat ion and on an applied external  electrical field. It  
would be interest ing to compare these predictions with experimental  
da ta  as soon as they are available to obtain some additional ideas for  
the improvement  of  this very  crude theory. 

F rom (55) and (56) we have 

b~ 1 
- -  , ( 6 0 )  

- -  ( 4 ] ' )  

16K~.o/]~ e kr a 

Po Po 

~1. 48 
- -  ( A V )  

32Kl,oK2,o ~4 e~r (Ca++) a ~ 

Subst i tut ion of (60) and (61) into (59) leads us to: 

( 6 1 )  

28 
- -  ( A V )  [ /; 8K1Po~, 1 e ~r 

f l - -  - - 1 +  + K ~ ( C a  *+ ) / 16Kla  A~ , (62) 

in which the index 0 has been omitted f rom the K's. F rom (58) we 
see that  h plotted as a function of the potassium concentration y gives 
a parabola (Fig. 9).  F rom (58) and (62) we see that  the perme- 
abil i ty h decreases wi th  increasing positive applied potential  differ- 
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ence (A V), while h increases with increasing negative applied po- 
tential difference (A V). Furthermore, h decreases with increasing 
(Ca+*), while h increases with increasing y, the potassium ion con- 
centration just outside the membrane. All these qualitative conclu- 
sions are in agreement with experimental evidence (R. S. Lillie, 1924; 
HSber, 1945). 

Y 

FIGURE 9. Permeabi l i ty  to potass ium ions as a funct ion  of the  potass ium 
concentra t ion  j u s t  outside the membrane  according to equat ion (58). 

Substitution of (39) and (58) into (35) gives 

d(x - -y )  4~ 
- - k 2 ~ - - k ( x - - y )  - - - - y 2 ( x  y) ,  

dt L 

where 

2D 
k - - -  . 

L ~ 

For simplification of notation let us write 

4~ 

L 

and introduce as new variables 

x + y  
- - - - ' - U ,  

2 

(63) 

(64) 

(65) 

(66) 

so that  

and 

x w y  

2 

X - - - U  -~- V 

y - - U ~ .  

From (66), (33) and (38) we then have: 

(67) 

(68) 

(69) 
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u =  ] .  (70) 

Introduct ion of (65), (67), (69) and (70) into (63) yields: 

- -  k 8 - -  k v  - -  7 ( A  - -  v ) ~ v .  (71) 
d t  

Rear rang ing  (71) and put t ing 

we find: 

where  

V 
- -  - -  E,  ( 7 2 )  

7 
~ - - ' - -  Z p 

Z 
(73) 

d ~  
- - : k ( z - -  (i + 6)5 § 2 8 5~--~ ~}, (74) 
dt 

7 A2 
- -  ( 7 5 )  

k 

is a dimensionless constant,  and z now has a new meaning.  
Denoting the  r ight-hand side of (74) by k F  (E), so tha t  

F ( ~ )  = z - -  (1 + 8)~ + 2 ~ ~ - - ~  ~3, (76) 

we have:  

d ~  
�9 - :  kF  (~) .  (77) 

dt 

Because x > 0 and y > 0 ,  we see f rom (33), (66) and (67) t ha t  v 
and, therefore,  according to (72), ~,  is as g rea t  as possible if  x is as 
large as possible and y as small as possible. Physiologically this oc- 
curs [ (x § y ) / 2  ~ u being constant  according to (33) ] when 

y - -  o .  (78) 

Accordingly, using (66), (70), and (78) we find 

x - -  2 Ll. (79) 

This means, according to (38), x ~ K1 § K2 > K1. 
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Therefore,  we see f rom (67),  (78),  and (79) tha t  the m a x i -  

m u m  value of v is 

v = h- ,  ( 8o )  

and tha t  of 5 ,  according to (72),  is 

5 = 1.  (81) 

We now find f rom (76) tha t  

F ( 0 )  - - z  > 0 ,  
F ( 1 )  = z - - l < 0 .  

FIGURE 10. I l lustration of the relation between ~-  and ~ for  K 1 ~-  5{)and 

K 2 - -  1 raM J1 and for several values of 8.  The permeabili ty is given by (58) 

and (62). 

A plausible value of z is 0.96. According to (50) and (51),  we have 
z - -  0.94,  while in exper iments  on NiteUa z ~ 0.96 (Osterhout,  1949). 
The function F ( 5 )  has been plotted against  5 for  z ~ 0.96 and for  
several  values of the paramete r  ~ in F igure  10. I f  

3.65 _< ~ _< 6.85,  (82) 

then F (5) has three  roots in the interval  0 _< 5 -< 1 .  Therefore,  we 
see tha t  there  are  three  equilibrium values of  ~ and hence of x and y 
also. As it can easily be seen f rom (74) or f rom Figure  10, the small- 
est  root  of F ( 5 )  corresponds to a stable equilibrium, the next  larger  
one to an unstable equilibrium, and the largest  one again to a stable 
equilibrium. As an illustration, we find that  for  ~ - -  5 ,  K1 - -  0.050 
M / l ,  and K~ - -  0.001 M/1 (Osterhout,  1949), these roots are 
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~1 -~ 0.254 corresponding to yl - -  0.019 and xl --  0.032, (83) 

~ --  0.800 " " Y2-- 0.005 " x~ ~ 0.046, (84) 

5~ ~ 0.946 " " Ya z 0.0014 " x~ - -  0.050. (85) 

The value y3 gives the potassium ion concentration in M/1 jus t  out- 
side the membrane in the original state. Adding slightly more potas- 
sium than y~ - -  yz - -  0.0036 (M/l)  jus t  outside the membrane does 
change the equilibrium state into yl - -  0.019 (M/ l ) .  As we see here, 
Y2 --  Y3 corresponds to a threshold of chemical st imulation through the 
local addition of potassium outside the membrane. We find here a 
value of the r ight  order of magni tude (Hill and Osterhout, 1937). 
Because of the very crude assumptions which we have made, particu- 
larly the assumption of f ---- 1 in (26), we can hardly  expect more 
than agreement  of the orders of magnitude,  and it is not w o r t h w h i l e  
to go into the details here. However, a t  this stage we can estimate the 
value of f .  As we have seen above, increasing the (Ca ~+) decreases 
fl according to (62) and, therefore,  also, according to (65) and (75), 

. As we see f rom Figure  10 decreasing ~ moves the two smaller roots 
toward each other until they coincide. At  the same t ime the distance 
between the two larger roots, corresponding to the threshold, increas- 
es. For  still smaller values of ~ than  tha t  one which corresponds to 
the coincidence of the two smallest roots, there remains only the 
largest root corresponding to the original state. This dependence of 
the threshold on the (Ca ++ ) might  correspond to the experimentally 
observed increase of threshold (or decreased irr i tabi l i ty)  upon add- 
ing Ca ++ ions (R. S. Lillie, 1923; HSber, 1945). Also, the original 
state might  be restored (cf. Osterhout, 1933 for  a restorat ion of ir- 
r i tabi l i ty by adding CaC12 solution). Adding more Ca ++ than  corre- 
sponds to the smallest value of ~, for  which there are still three roots, 
might  also lead to Ca narcosis. The quant i ty  fl increases with increas- 
ing applied negative potential difference, as is seen f rom (62). There- 
fore, according to (65) and (75), ~ also increases. Hence this mech- 
anism also gives parametr ic  electrical s t imulation by an applied cath- 
ode. To est imate f we will consider the case in which $ is changed in 
such a way tha t  s ta r t ing  with the si tuation $ - -  3.65 in which the two 
smaller roots coincide we arr ive at  the si tuation 8 ~ 6.85 in which the 
two larger roots coincide. The lat ter  corresponds to zero threshold. 
We have then, f rom (62), 

2~  

- - 1,~v) 6.85 
e kr --  . (86) 

3.65 
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From the known values of 8 and k, taking T - -  300~ we find: 

I(A v ) ~ - - - -  8.  

Assuming that (A V)~v ~ - -  10, which is experimentally of the right 
order of magnitude (Cole and Curtis, 1940), we find 

f---- 0.8. (87) 

Though higher than we might have expected, we find a value of f 
which is less than 1 for a reasonable value of the electrical thresh- 
old. 

Using this value of f we find for the "resting potential" which 
corresponds to the original state, according to (85), a potential 
difference of the order 

50 X 10 -~ 
58 (0.8) log --~ 72 (mV),  (88) 

14 X 10 -4 

which is of the right order of magnitude (Osterhout, 1949). 
Similarly, we may make an estimate of the "action potential." 

From equations (83) and (85) we find the value 

32 X 10 -~ 50 X 10 -~ \ 
58 (0.8) log log ) - - - -  59 (mV) ,  (89) 

19 X 10 -3 14 • 10-* 

which is also of the correct order of magnitude (Hill and Osterhout, 
1934). This would correspond to the depolarization of the mem- 
brane. 

Furthermore, the permeability increase corresponding to the 
transition from the original state to the final state is, according to 
(58), (83), and (85), 

( 1 9 •  ~ ~ 2 0 0 " 1 4 X 1 0 - *  (90) 

This is also the right order of magnitude (Cole and Curtis, 1938). 
However, it should be realized here that this is only a very crude re- 
sult; the range of validity of our approximation should be investi- 
gated. Particularly, the neglect of the third term in (47) is no longer 
justified; however, the order of magnitude probably does not change 
significantly due to this approximation. 

It  might be interesting to show here a possible way in which the 
one-factor theory may be obtained from the above considerations. 

We shall show this also as an example for the particular case 
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- -  5 .  F rom the curve in Figure 10, corresponding to this value, we 
have the equation 

~ - -  k (0 .96- -  6 ~ +10  52--5  ~ )  
o r  

~ ~ - -  5k(~ - -  0.254) (~ --0.800)  (~ - -  0.946). (91) 

We then have for  the slope at  the value $ --  0.946, corresponding to 
the original equilibrium state, 

( 
Therefore, approximating the curve given by (91) by its tangent  at 
the point (0.946, 0), we have f rom Taylor's theorem, keeping only 
terms linear in ~: 

-'-- ~ i n i t . -  0 . 5k  (~ - -  0 . 9 4 6 ) .  ( 9 2 )  

The initial value of ~,  ~lnit., due to stimulus or "impulse," is 

t 

=.to_ = c, (93) 
where C is a constant, which, however, depends on the time course of 
the stimulus. 

Subst i tut ing into (92) for 5 its value from (72) and (67), using 

x - - y  

2A 

and keeping in mind that  according to our approximation (33) 

we find: 

x + y ~ O ,  

y --  C~ --  0.5k ( y -  0.0014), (94) 

where C1 is proportional to C and 0.0014 M/1 is the value of y in the 
original equilibrium state. F rom (94) we see that  our k turns  out to 
have the order of magnitude of the time factor of the one-factor 
theory. 
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i * 

i 
FIGURE 11. Chemical threshold of (K +) in raM/1 as a function of the para- 

meter $ for the case K 1 - -  50 and K~ - -  1 raM/1. 

T h e  t h r e s h o l d  can  be d e t e r m i n e d  as  a f u n c t i o n  of  ~ f r o m  t h e  
cu rves  in  F i g u r e  10. T h e  : r e la t ion  o b t a i n e d  is p l o t t e d  in  F i g u r e  11. 
F r o m  th i s  c u r v e  a n d  equa t ions  (62 ) ,  (65 ) ,  a n d  (75)  w e  can  o b t a i n  
t h e  dependence  of  th i s  ( chemica l )  t h r e s h o l d  on the  Ca  ++ ion concen-  
t r a t i o n  a n d  on  the  app l i ed  (A V ) .  A s s u m i n g  (A V) ~- 0 a n d  ~ - -  3.65 
we  ob t a in  in  t he  above  out l ined  w a y :  

(Ca++) 
in fractions of Chem. Threshold 

(Ca++) n in mM]l (K +) 

0.285 0.00 
0.300 0.50 
0.333 1.20 
0.400 2.25 
0.500 3.50 
0.600 4.50 
0.667 5.20 
0.833 7.20 
0.900 8.00 
1.000 10.00 

T h i s  r e l a t i o n  b e t w e e n  the  chemica l  t h r e s h o l d  a n d  ( C a  ~ )  is s h o w n  in 
F i g u r e  12 in w h i c h  t h e  c u r v e  f o r  ~ - -  5 h a s  a lso  been  d r a w n .  

I n  a s i m i l a r  w a y ,  w h i c h  h a s  also been  ou t l ined  above,  w e  can  
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FIOUI~ 12. Chemical threshold of (K +) in raM/1 as a function of 
(Ca++) / (Ca~+) ~ for  K 1 --- 50 and K~ - -  1 m M J l .  

Two curves are shown, one for the initial value 3.65 for the parameter  8 (cor- 
responding to Ca++ "narcosis") and the  other for  the initial value 5 of that  para-  
meter. (Ca*+) n is the value of (Ca ++) corresponding to those values of 8.  To 
simplify the calculations we have chosen for 8K~Po ~ ~ K~ .  

calculate the dependence of the threshold of chemical stimulation on 
the applied field (/t V) which gives us the following table i f  we  as- 
sume the electrical threshold to b e - - 5  mV: 

~e 

3A 

J ~  

i 

iLo 

e.e , ' ' ' 

FIGUR~ 13. Chemical threshold of (K § in raM/1 as a function of an applied 
voltage for K~ -~  50, K~ --- 1 mM/1,  8~ ~ 5.  The symbol 8~ denotes the value 
of the parameter  8 when (~ V) --- 0.  The electrical threshold is taken to be 
~ S m V .  
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(AV) Chem.  T h r e s h o l d  

( in  m Y )  in  mM./ l  K + 

0 3.80 
- - 1  3.15 
- - 2  2.42 
- - 3  1.66 
---4 0.86 
---5 0.00 

This relation between the threshold and (A V) is shown in Fig-  
ure  13. 

I t  would be interest ing to compare these results  wi th  experi- 
mental  data. As f a r  as we know these are  not yet  available. The elec- 
tr ical  threshold can be expressed as a funct ion of the Ca ++ ion con- 
centration. F rom (62),  (65),  and (75),  we find, a f te r  some simple 
rear rangements :  

--I+~i+-- 
2 e 2 8 (Ca ++) 
- - f ( A  V) thr ~ - ~ - - f ( A  V) t.hr -]- logo , (95) 
k T  (r247 k T  " C 

- - 1  + 1 + (Ca++)n 

in which (A V)thr is the electrical threshold corresponding to the 
( C a + + )  

par t icular  (Ca ++) ion concentration, while (A V)tar and (Ca ++) ~ are  
n 

the  corresponding normal  (or, as  we  may  assume, initial) values, and 
C is a constant  equal to 

( 8K~Po 

We can then determine (A V)thr f rom:  
11 

2 6  
- --  t (AV) thr 

6.85 = ~o e ~r n , (96) 

~o being the initial value of 8.  
Taking as a plausible value of 3o - -  5 we find, with f - -  0 .8 ,  

(A  V)t~r - -  - -  5 mY. 
11 

We then obtain f rom (95) the  rat io 
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(A V) thr 
(Oa+§ 

(A V) thr 
n 

as a function of  (Ca+§ The graph of this function (Fig. 14) may  
be compared wi th  the corresponding one of F. Br ink  and others 
(1946).  Though the t rend  is correct, our  range of  (Ca ++ ) values in 

which the threshold changes f rom 0 to i ts  normal  value is much 
smaller than the one found experimentally.  This might  perhaps  be 
explained by  the fact  tha t  local st imulation may  be more  sensit ive 
than general  st imulation or  tha t  we have not considered any accom- 
modation effects. The discrepancy is, however,  probably due to the  
crudeness of  the theory  e.g., the  neglect of permeabil i ty  of Ca ++ ions 
and of diffusion potential  of Ca +* ions. 

i.o 

1o, 

o.: 

a$' 

ol / 

oJ o 2  o 3  o ~  ~ oJs ~ 7  o ~  a g  Lo 

F m ~  14. Electrical threshold expressed in fractions of its in i t ia l  value as 
a function of the ratio (Ca++) / (Ca~) n for the ini t ia l  value ~o ~ 5, K;  ~ 50 m)/1/l 
and K 2 ~-- 1 raM/1. The initial or normal value (Ca++) n of (Ca~) corresponds 
to 8.0 and the normal threshold. In the same graph the experimental values, 
indicated by x and an experimental curve (Brink and others, 1946) are shown. 

Unfor tunate ly ,  the durat ion of the "action potential"  given by 
the integral 

f o  ~  d 
5k~ - -  (97) 

8 (~ - -  0.254) (~ - -  0.800) (~ - -  0.946) 

for  the case ~ - -  5 is much too large. A slight overshoot of  the  un- 
stable root  0.8 had to be taken to keep t finite. However ,  the integral  
in (97) remains  infinite as long as 0.254 is taken as the  upper  limit. 
Therefore,  the la t ter  also must  be slightly shifted. P resumab ly  a 
recovery process takes place which is superimposed on the considered 
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process and keeps t finite. The infinite value of t ,  as ob ta ined  f rom 

(97),  is due to the  fac t  tha t  ~ ~- 0 at  the roots. A similar  phenome- 
non is discussed by Rashevsky (1948, p. 847) in the two-fac tor  the- 
ory of conduction. 

Another  interest ing dependence of the threshold is tha t  on K~, 
the level of the external  potassium concentration. This, however,  will 
be postponed until  a f te r  a more  general analytical t rea tment  is given 
below. Qualitatively it can be seen already, however,  tha t  an increase 
of Ks ,  which decreases the quant i ty  

K1--  K2 
Z - -  - -  

K1 + K~' 

shif ts  all the  curves in F igure  10 toward  smaller values of the ordi- 
nates. It, also, therefore,  decreases the difference of the two largest  
roots of F ( ~ ) ,  ( the threshold) ,  which is in agreement  with experi-  
mental  evidence (HSber,  1945). 

On the basis of the value 0.8 for  f we can est imate the  electrical 
field s t rength  corresponding to an applied electrical potential  differ- 
ence of - -  10 mV. Even if we assume the lat ter  across a distance of 
1 .& we find 8 • 10 ~ V / c m  for  the field strength.  This does not  com- 
pare too unfavorably  with an est imate of Osterhout  (1934) of 
2 • V / m m  or more. I t  would be only slightly worse  in this respect  
for  f z 1 .  We see tha t  this model gives some results which are in 
agreement  wi th  experimental  facts,  a t  least  as f a r  as the  order  of 
magni tude is concerned. I t  is interest ing to point  out  tha t  these re- 
sults, which give absolute values, were obtained by using the abso- 
lute value of the unit  electric charge and the Boltzmann constant.  
However,  the fac t  tha t  the value of f is found to be different f rom 
uni ty indicates tha t  a more  general t rea tment  is necessary.  The pow- 
er of y in (58) should be made equal to n f  ---  p instead of 2 where  
n is the charge of  the ion bound to the P- ion. We have hi therto iden- 
tified this ion wi th  Ca +* . To i l lustrate this more  general  t r ea tmen t  and 
to make  some use of it, we proceed as follows. Taking, instead of 
(58),  

h ---- p ~ ,  (98) 

we obtain, instead of (74),  in the  same way  as before: 

~ = ~ ( z - - ~ - - p ( 1 - - ~ ) P ~ } ,  (99)  

where the parameters k, z,  and ~ have the same meaning as above, 
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cf. (64), (73), and (62) respectively. 
Putting, as before, 

G(~) = - - : z - -  ~ - - / ~ ( 1 - - ~ ) ~ ,  
k 

(100) 

we will determine here as functions of p the critical values Pl and 
P2 of ~ for which the two smaller roots in Figure 15 and the two larger 

1.0 

0.9 

0.8 

0.7 

0.6 

0,5 

0,4 

0.3 

0.2 

0.1 

0 

-0.1 

-0.2 ! 

a! 
f i i 

F m ~  15 

roots respectively coincide. These values of /~ have given us before, 
for the case p --- 2,  the order of magnitude of the electrical threshold. 

Introducing as a new independent variable 

we have 

in which 

~'- - i - -6,  (i01) 

G(~) -~H(~) = z - - l + ~ - - ~ , ( 1 - - ~ )  

- - - = - - e  + ~ P  + ~ ~ 
(lO2) 

e - -"  1 - -  z .  ( 1 0 3 )  

The curves 
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= k G  (~)  

or 

= -  k H ( 7  ) 

are tangent to the ~ or 7 axis respectively, if: 

H (7) = 0 (104) 
and 

H' (7) ~- 1 - -  :~/3 7 p-1 -~ (p + 1)f l  ~ :  0.  (105) 

The latter leads to: 
1 

~ - -  P 7 p-I _ (P + 1)7p. (106) 

Substitution of (106) into (104) yields the following quadratic equa- 
tion in 7 using (102) : 

p 72 --  7 {e (p + l )  + ( p - - 1 ) } + e ~ : 0  (107) 
the solution of which is: 

e (p-l-1) + (~'--i) +-- V {e (p-i-l) + (:p--i) }~--4e~ 
71,2 - -  (108) 

2p 

It can easily be seen that  the expression under the sign of the radical, 

(~ + 1 ) ~ e - - 2 ( ~  + 1) e +  ( ~ - - 1 )  ~ > 0 

if 

( p -  i)~ 
e ~ . (109) 

(P + 1) 2 

From (106) and (108) we find the critical values/3~ and/32 for which 
we are looking. 

In this way the quantities/31 and/32 and, therefore, of 

can be expressed as functions of e and p .  Because, according to 
(103), (73), (39), and (38), 

2K, 
e - - l - - z - -  
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FIaURE 16. The negative of the electrical threshold as a function of 
( K ~ + ) / ( K ~ + )  n . For reasons of mathematical simplicity it is assumed that the 
original state c o r r e s p o n d s  to  "narcosis." K~ ~--- 50 raM~1 (K~+) n was actually 
taken in this illustration equal to 1 raM/1. ( K 2 + ) / ( K / )  n has been plotted on a 
logarithmic scale. 
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FmURE 17. Applied potential (A V) vs. membrane current intensity I .  In 
order to make these calculations it was necessary to assume that the perme- 
ability approached 1/7 of its normal value [wken (A V) :-- 0] for small K§ ion 
concentration and that in series with the membrane there is an additional re- 
sistance 1/12 of that due to the resistance of the normal membrane. 
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we can calculate in this  way - -  and ,  therefore  (A V) as a function of 
81 

Ks for  a fixed value of p, e.g., p - -  2 ,  and for  a fixed value of K1, using 
the relat ion 

2e 
- - n ~ v )  _ _  

e ~ ----, (110) 
31 

obtained from (62) together with (65) and (75). The result of this 
calculation for  K~ - -  0.050 M/I  is shown in the following table: The 
calculations were made for  a Ca ++ concentration which corresponds to 
calcium "narcosis ."  This par t icular  case was chosen only as an illus- 
t rat ion.  

Ks(in M/l) --(AV) (in mV) 

0.0005 20.1 
0.0010 1 0 . 4  

0.0015 5.3 
0.0020 1.7 
0.0025 0.6 
0.0028 0.0 

where f is again taken as 0.8. 
This relation is shown in Figure 16.* 
Furthermore, we can derive from (62) and (58) the permeabil- 

ity k and, therefore, the resistance for negative as well as positive 
(A V) (Fig. 17). This may be compared with Figure 5 of K. S. Cole 
and H. J. Curtis (1940). The difference may be explained by the fact 
that we have neglected accommodation effects. On the other hand, it 
might be interesting to point out here that in principle our formulae 
predict influences of (Ca ~) and Ks on these rectification curves. 

We shall show here how in principle the so-called time-course of 
the excitatory disturbance and "local non-conducted response" (Katz, 
1937) can be obtained from our mechanism. To illustrate this let us 
again take, only as an example, the curve in Figure 10 for 8 -- 5, 
which is given by equation (91). 

Denoting by 

---- (q -- 0.946) (ill) 

we find f rom (91) 

*The linear relation between the electrical threshold and the external po- 
tassium ion concentration for low K s has recently been observed by Howard 
Jenerick (personal communication). 
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- -  ~--- + 5k(0.692 - -  ~) (0.146 - -  ~)~.  (112) 

The graph of,:~ + given b y  (112) against~ ~ as shown in= Figure 18a. 
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FIGURE 18a. The  "local phenomenolog ica l  charac ter i s t i c"  for  Kx --- 50 m M / l ,  

K~ --- 1 m M / l  and 8 ~ 5 .  

This corresponds to the "local phenomenological characteristic" 
of Weinberg (1942). Weinberg's instantaneous time constant, k ,  is 
plotted in Figure 18b: 

;+8 

22 

ZO 

IS 

f e  

; 2  

10 

- 4  

- 6  

\ 
\ 

F I a U l ~  18b. The  " ins tantaneous  t ime  cons tant"  for  K t 
and  8 - -  5 .  

"-- 5 0 ,  K 2 --" 1 m M / l  
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d 

�9 - L 

0 k t  4 0 5 ~0 kt 

FIQURE 19. a. G r a p h  of s t a n d a r d i z e d  exc i t ab i l i ty  p - -  ~ a s  a f u n c t i o n  
0.146 

of  kt, b. "Loca l  r e s p o n s e "  f o r  pos i t ive  in i t i a l  d i s t u r b a n c e  Po as  a f u n c t i o n  of k t .  
c. "Loca l  r e s p o n s e "  f o r  n e g a t i v e  in i t i a l  d i s t u r b a n c e  Po as  a f u n c t i o n  of  k t .  d. 
M a x i m u m  h e i g h t  of t he  "local  r e s p o n s e "  as a f u n c t i o n  of Po. Th i s  f igure  is ba sed  
on K z ~ 5 0 m M / 1 , K u - - 1  raM/1 a n d  $ ~ -  5 .  

k - - - - - -  ~ 5k(0,146 - -  C) (0.692 - -  C). (113) 
C 

Integrat ion of  (112) leads us to: 

4 . 7 4 - - 0  1 " ~  / 
k t  - -  - -  0.46 9.9 log ~ -  2.65 log 12.5 log ~ , (114) 

po 4.74 - -  po 1 - -  po 

where  

- -  - -  - - .  (115) 
P -  0.146 ; po 0.146 

I t  may  be well to point  out tha t  for  a fixed value of the coefficients 
K: 

in (114) are  determined by  only one paramete r  8 which was  assigned 
the value 5 in this example. 

Fo r  several  values of ~o the relation between p and ( k t )  given 
by equation (114) is plotted in F igure  19a. These curves show a 
s t r iking similar i ty in all their  character is t ic  fea tures  wi th  the  curves 
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Of Katz (1937, p. 252), which were obtained by electrical shock stimu- 
lation of nerve. In Figures  19b, c and d the time-course of the  so- 
called "local response" and the maximum height  of the "local re- 
sponse" respectively are plotted, the lat ter  as a function of the stimu- 
lus. This should hold for  chemical stimulation. Exper iments  wi th  
which these curves could be checked do not seem to  exist ye t ;  a t  least 
they  are unknown to this author.  I t  would, therefore,  be very inter- 
est ing to a t tempt  to obtain these curves by chemical st imulation of 
nerve or Nitella, which may  be easier experimental ly due to smaller 
speed of response. However, in Figure 20 the theoretical curves for  
K1 

- -  30 and S - -  4 describing the t ime course of the chemical excit- 
K= 
ability are compared with  the corresponding curves of Katz (1937) 
which describe the t ime course of the electrical excitability. F igure  
19c indicates the presence of a "local response" for  values of y which 

2o I / 

~  kt ~ 

-~ . . . .  _~ . . . . . . . . .  ,o , '~ 

FIGURE 20. Comparison of experimental results (Katz, 1937) with theo- 

retical curves, which were obtained for --Kx ~_ 30 and 6 ~ 4 and are described 
K2 

by the equation: 

k t  ~ ~ 5.32 loglo ~ -F 8.45 loglo l l c  p 3.13 loglo 2.7 - -  p 
Po Po 2.7 - -  ~o " 

are  lower than  the concentration of potassium in the rest ing state. 
These lower concentrations correspond in the case of electrical stimu- 
lation to anodal shocks for  which no local response is supposed to 
occur (Katz 1937). Exper imental  results of Katz ( l o c .  c i r . )  indicate 
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the same thing. This corroborates a remark made by Weinberg 
(1942). As Weinberg (1942) has pointed out so aptly, the only thing 
which can be concluded from the experimental results is that  the 
phenomenon cannot be described by linear equations. The so-called 
"local response" which is found for cathodal as well as anodal stim- 
uli is nothing but this deviation from linearity and cannot be  inter- 
preted, strictly speaking, on the basis of a phenomenological (Katz, 
1937; Rushton, 1937; Weinberg, 1942) theory as had already been 
pointed out by Weinberg (1942). The theory proposed here, based 
on a physical mechanism of diffusing potassium ions reacting chemi- 
cally with a CaP~ layer, crude as it is, explains these deviations in a 
plausible way. It predicts that  the time constant should be propor- 
tional to the square of the intensity of large anodic stimuli. This 
has not been considered by Weinberg (1942). Actually, the instan- 
taneous time constant of the experimental curves for anodic stimuli 
(Katz, 1937) do depend on the intensity of those stimuli. However, 
we have not been able to verify the above-mentioned predicted asymp- 
totic dependence. The reason might be that  the experimentally used 
intensities of the anodic stimuli are not large enough for that purpose. 

If  the response of the  nerve is due to a mechanism such as dis- 
cussed above, then the so-called "threshold" in Figure 5 of Katz (Ioc. 
cir.) is no threshold at all. This is seen from our Figure 19b, which is 
probably more accurate than Katz's figure. Our figure is based on 
equation (114). The "local response" for ~o ~ 0.5 may not be so 
slight at all, as shown in our Figure 19b. Therefore, for this phe- 
nomenon; relation between maxium height of "local response" and 
intensity of initial stimulus, there seems to be no threshold. On the 
basis of our theory the real threshold phenomenon would be more 
hidden; the "local response" derived from it only appears "graded." 
If  experimental results for chemical stimulation confirmed these pre- 
dictions, it seems to us that  those results, together with those of Katz 
(1937), would suggest a common underlying physical mechanism for 
excitation by chemical and electrical stimulation. The physical mech- 
anism proposed here, crude as it is, might then be a plausible one, 
since it is based on the flow of ions which must occur in some way or 
another in electrical stimulation and may also occur in chemical stim- 
ulation, as shown in this work. 

It  might be interesting to point out here that  from the formulae 
above a dependence of the curves in Figures 19a, b, c and d on, e.g., 
Ca *+ and K~ may be derived in principle. As soon as experimental 
data are available it would be useful to derive those dependences and 
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compare them with the experimental results to obtain some more 
clues for improving the theory proposed here. There are  obviously 
several possibilities for this. 

Thus what may appear to be a graded local response may ac- 
tually be due to a "local threshold." 

Therefore, we would like to end this part  of our work with the 
conclusion that  we do not necessarily have to assume that  a threshold 
for a longitudinal gradient [e.g., the longitudinal polarization, cf. 
Eichler (1933; Katz, 1939)] is the only part of the threshold essential 
for excitation, but that  the latter may very well be due to a local 
threshold phenomenon as has been assumed in this work. 

Outline of an approximate method for treating the diffusion of 
ions through the membrane. We will in the remaining part  of this 
paper consider a membrane with a finite thickness 2. However, with 
a rather  good approximation, this may be considered to be small com- 
pared with L ,  if we take the plausible value 10 -" cm for L ,  since 
is of the order of 10 -6 cm (Davson and Danielli, 1943). (See Figure 
21.) 

Z+K 2 

, 
~ K  z �9 ~ a,. ~ ~_~l.,~.~Ro~ LEVEL OFf-,ON cone. 

FIGURE 21. I l lustration of approximate t reatment  o~ the diffusion of K + ions 
through the membrane. The numerals I and II correspond to the vertical "bound- 
ar ies"  in this figure. 

To simplify matters we will assume that  we may take an average 
concentration y of the potassium ion in the membrane. Actually we 
should, of course, consider a gradient of the potassium concentration 
inside the membrane corresponding to the slanted dotted line between 
I and II in Figure 21. 

Denoting by x and z respectively the concentration of potassium 
ions at I and II, we find in a similar way as above a description of 
the system by the following set of differential equations: 
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L 1 �9 D 1 
- -  x - -  ( K 1  - -  x )  - -  h'  ( x  - -  y ) ,  ( 1 1 6 )  
2 L~ 

~ - -  h '  (x  - -  y )  - -  h" (V - -  z ) ,  ( 117 )  

L 2 .  D~  
z = h" ( y - -  z )  - -  . .  ( z  - -  K 2 ) ,  (118) 

2 L~ 

in which h ' and h" are the permeability to potassium ions of I and II 
respectively. 

We are particularly interested in seeing if it is now possible to 
get  a relaxation oscillation with threshold property if we take a 
linear dependence of the permeability on the potassium ion concen- 
tration. The reason for our interest in relaxation oscillations will be 
clear from the first part  of this  paper. The linear dependence of the 
permeability upon the potassium concentration follows, for suffici- 
ently small potassium ion concentrations, from the mechanism illus- 
trated in Figure 3 and described by the corresponding equations 
(2)- - (16) ,  as shown by Figure 4. The above mentioned experimen- 
tal relation between the conductance of the membrane and the ex- 
ternal potassium ion concentration found by Hodgkin (1947) is also 
more in line with such a dependence than (58). In addition, it would 
be of some interest if it could be shown that  it might be possible to 
get a threshold phenomenon with such a linear dependence leading to 
a concave curve as in Figure 4. In other words, to show that a con- 
vex curve is not necessary. 

Therefore we will now assume 

h' - -  C l x  , (119) 

h" = C~z .  (120) 

However, before introducing (119) and (120) into (116), (117), 
and (118) we will reduce the latter system to two first-order non- 
linear differential equations. It would be very advantageous if it were 
possible to solve the set (116), (117), and (118) using such simple 
assumptions as in (119) and (120), but we have not been able to do 
so. The main difficulty is that  the set (116), (117), and (118) con- 
sists of three nonlinear equations. Such third order systems have 
been solved, as far  as we know, only in a few special cases (Fried- 
richs, 1946; Rauch, 1950). The reduction to a second-order set men- 
tioned above is done in the following way, using our assumption about 
the smallness of ~ relative to L1 and L~. Solving (117) for y gives: 
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h'x + h " z - - 2  y 
y -- (121) 

h ' + h "  

Substitution of (121) into (116) and (118) yields, af ter  some ele- 
mentary  rearrangements,  

L1 �9 D1 h'h" h' 
- - x =  ( K , - - x )  h" h" ( x - - z )  h' + h" 2 y  (122) 
2 Li + 

and 

L ~ .  h"h' D~ h" 

7-- --2 z = h' + h" ( x  - -  z )  - -  ( z  - -  K~)  h ' +  h" 2 y .  (123) 

It  is interest ing to note tha t  in the lat ter  system the harmonic aver- 
ages of the permeabilities h' and h" of the two layers I and II  occurs 
essentially as effective "all-over" permeability of the whole membrane,  

if we neglect the terms with y because of the smallness of 

2 2 
and - -  

Now introducing (119) and (120) into (122) and (123) we find 

La �9 D1 C1C2xz Clx 
- -  x = - -  ( K 1  - -  x )  ( x  - -  z )  - -  2 (124) 
2 I_~ Clx + C~z C~x + C~z y 

and 
I_~ �9 C1C~xz D~ C~z 

- -  z - -  ( x  - -  z )  - -  ~ -  ( z  - -  K ~ )  - -  2 y .  ( 1 2 5 )  
2 C~x + C~z I_~ CIx + C~z 

Adding (124) and (125) leads us to: 

La �9 1-,2 �9 D1KI 
�9 " X + ~ Z =  ~ 

2 2 La L~ L1 

Subtraction of (125) f rom (124) leads to 

- = - - - - K ~  - -  z " X ~  X ~  

2 2 Li /-,2 L2 
(127) 

2C~C~xz Cl:r, - -  C~z . 
Y. ( x - - z )  - - 2  

Clx + C~z Clx ~+ C~z 

D~) x+--~z --2y. (126) 
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We now introduce the following new variables: 

x -i- z 

2 
(128) 

so that  

m - - ~ ) ,  

2 

X = ~ + V  

y - - 6 - - V .  

We now find, instead of (126) and (127), 

( 1 2 9 )  

(i3o) 

(i3i) 

2 ++ ~ ~= K ~ + - ~ -  a§ 
( i 3 9 . )  

2 + +  2 ~ =  K1-- ~ ~ 

+ - -  + - -  v ( i 3 3 )  
L, (el + C~),~ +(Ci--C~)~ 

(C~--C~)+ + ( c ~  + c~)~ �9 
--I Y. 

(C, + C~)r + (C, -- C~)V 

Although unnecessary, we will make the following simplifying as- 
sumptions in the remainder of this paper: 

L 1 - -  I ~  - -  L , (134) 

C1 ----- (::2 --  C.  (135) 

Furthermore, for simplification, we shall introduce the following 
notations: 

D~ D~ 
K I + -  K s = 2 A 1 ,  (136) 

L 2 L ~ 

D1 D~ 
K1 - -  - -  K~ - -  2 e l ,  ( 1 3 7 )  

L 2 L ~ 
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Introduction of 

DI 
= k l ,  (138)  

L ~ 

D~ 
- -  k~, ( 1 3 9 )  

L ~ 

kl + kr - -  a ,  (140) 

k~ -- kr : / 3 ,  (141) 

2 
- - : ~ - ,  (142) 
L 

2C 
- -  7 .  ( 1 4 3 )  

L 

(134)--  (143) yields the equations: 

" - - 2 A 1 - - a ~ p - - f l V , - - T y ,  (144) 

,p - -  2 81- -  ~ St - -  a ~o - -  7 ( ~pz - -  v,f ) - -  - -  r - -  I~ ' f  y .  (145) 

For the special case considered above--(134) and (135)--we obtain 
from (121), after introducing into the latter (119) and (120) and 
differentiating, 

~(+~-~) +~2~ 
2 y -- ~ , (146) 

if we neglect powers of ~ higher than the first one. 

From (144), (145), and (146) we obtain the following equations 

linear in ~ and V: 

+~- v___~ ~ ) v �9 
l + z  ~2 r  f l y ,  (147) 

r 

(+2 _ V~) 
- -7  

(148) 
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These equations can be solved for ~ and ~ .  The solutions are of the 
form: 

~ - - - F ( 6  , ,~ , ~ ' , a , p  , 7 , A1 ,  8 0 ,  (149) 

~----- G(+,  9 , 7 ,  a , /~,  7, A1,81). (150) 

I n  principle we can obtain from the set (149) and (150) a sec- 
ond-order equation e.g. in V by elimination of +.  To make use of that  
equation we must introduce drastic approximations. Explicit calcu- 
lation of F in (149) leads to: 

2 A1 a /~ 
~-- L L ~ - - L  V+T( . . . .  )" (151) 

Neglecting as a zero approximation the terms in �9 in this equation, T 
being small according to our assumptions, we obtain: 

2 A1 a 
(152) 

L L + - - L  V" 

Assuming ~/a << 1we have 
2 AI a 

+ - - - -  ~, (153) 
L L 

which is similar to (31). 
As in (31) we find as the steady state value for ~: 

2 A1 
+ - -  - -  - -  A~,  (154) 

a 

which we will keep as our first approximation for ~s. 
Introducing 

- - - - y ,  (155) 

- - - -  ~, (156) 
A~ 

we find from (154) 

~ = 1 .  (157) 
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We obtain for 5 an equation of the form: 

P~ (~, ~) 
: k , ( 1 5 8 )  

in which P~ ( 7 , 5 )  and P~ (~, 5) are polynomials of the order 5 and 3 
in 5 respectively. 

By differentiating both sides of (158) we obtain 

0P5 oP8 0P. oP8 
- - P a  --P5 - -  - -  P8 --P5 

- - k  ~ - - k  ~ / : 0 .  ( 1 5 9 )  
Pa 2 P3 ~ 

Substituting in this equation (157) and an approximation for ~ high- 
er than that  corresponding to (157), we finally obtain: 

+ o(~)~ + ~(~) = 0 .  (160) 

At the present stage of development, both experimental and theo- 
retical, it is hardly worthwhile to derive explicitly the expressions 
for v(~) and ~ (~ ) .  Though this field of mathematics is momentarily 
in a rapid rate of progress, as shown by recent work (Andronow and 
Chaikin, 1937; Minorsky, 1947; Stoker, 1950; Lefshetz, 1950; Kry- 
loft and Bogoliuboff, 1934), the theory for the case in which 0(5)  
and ~ (~) are both of higher order in ~ than the first does not seem 
to be in a form that is ready for application. In a former paper 
(Karreman, 1949) the author showed (as mentioned in the first part  
of this paper it had been shown earlier) that in the case in which 

(~) is proportional to ~, a relaxation oscillation with threshold can 
be obtained when �9 (~) is at least of the fourth degree and �9 (~) = 0 
has at least two appropriate positive and two appropriate negative 
roots. Although in our present case ~ = ~(~)  is much more compli- 
cated, even in the lowest approximation, we still believe (although we 
have no proof) that  for a self-sustained oscillation it is necessary, in 
general, for the function �9 = �9 (~) to be negative for sufficiently long 
intervals of positive values of ~ and also negative values of ~. I t  is 
interesting now to note that  for the special case treated above [see 
eqs. (134) and (135)] o(~) can be shown to have for small ~ the fol- 
lowing form: 

o(~) = k { ( 1  + # )  (1 + 2 , )  + 2 r ( z - - 3 n )  
- -  [3~ + 2T(2 + 5 /0 ]  ~2 + 4 r n 5 8  (161) 
+ 4 ~, ~ ~} /{1  ,+ ~-(1 + ~ )  }~. 
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The dimensionless constants are given by 

7 A~ ~ - - -  

a 
(162) 

81 
z = - - ,  (163) 

A1 

P 
~=- - ,  (164) 

a 

k = a ,  (165) 

together with (136), (137), (140), and (141). 
It is easy to see that  r  = 0 has for small 7 two positive and 

two negative roots and has a form similar to that  shown in Figure 22, 
if ~ is sufficiently large (z and ~, being both less than 1, the latter only 
in absolute value). 

Depending on the relative position of the four roots ~1, ~2, 5~, 
and ~4 the situation shown in Figure 22 may lead to the following 
two cases: 

FIGURE 22 

1. Only a damped oscillation occurs below a certain "critical" 
finite disturbance (corresponding to a threshold), if none of the re- 
gions of negative damping is reached by it from the original equilib- 
rium state. 

2. If  the disturbance, above a certain threshold, f rom the origi- 
nal equilibrium state is such that  at least one of the regions has been 
reached, two things may happen depending upon the circumstances: 

a. The regions of negative damping are so f a r  apart  that  even 
if self-excited in one of such regions the 5 is damped so much in the 
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intermediate region that it does not reach the other region (cf. Karre- 
man, 1949, where it was shown that in a similar situation; namely, 
of one region of negative damping, the oscillation was always damped). 
This would correspond to one spike. 

b. The regions of negative damping are sufficiently close so that  
an undamped threshold oscillation occurs, corresponding to repetitive 
discharges. 

In this way we see that  a mechanism such as proposed here might 
account for a spike as well as an oscillation, both with threshold 
properties. It is interesting to note that the parameter ]~, the relative 
order of magnitude of which was found to be important above, is 
determined by the Ca +* ion concentration. Rough estimations, tak- 
ing into account the order of magnitude of the values of a ,  Po and 
the equilibrium constants K1 and K~ in (16) and (14) show that  C~ 
in (119), (120), and (135) is approximately inversely proportional 

to X/(Ca*+). Because of (143) and (162) the same holds true for/~.  
We noticed above that /~ has to be sufficiently large, particularly if 
we realize that  the four roots discussed above have to be within the 
physiological limits, which cannot be so easily obtained any longer. 
Therefore, theoretically we might be led to expect relaxation oscil- 
lations for a sufficiently small value of Ca ~, which is in agreement 
with experimental evidence (Brink and others, 1946) in the case of 
nerve fibers. 

Discussion. In a very simple way an attempt has been made to 
investigate quantitatively the consequences of structural changes in 
a membrane due to chemical reactions of K § ions and a layer consist- 
ing of CaP~ compound through which K § ions diffuse. On the basis of 
these chemical reactions and a "hole" concept, a quantitative defim- 
tion of the permeability of the membrane, which is supposed to have 
as an essential element such a CaP: layer, to K § ions is given. Several 
possibilities for this have been indicated. One, namely that  the per- 
meability of the membrane is proportional to the sum of the concen- 
trations of the formed KP and of the P-, is elaborated. Equations 
describing the diffusion of K § ions are given with the aid of the ap- 
proximation method for the case in which the membrane is supposed 
to have finite thickness and at one or both sides such a CaP~2 layer. 
In the last part  of this paper we have indicated that this explicit con- 
sideration of the finite thickness of the membrane leads to nonlinear 
differential equations which are not amenable to solution at the pres- 
ent time. However there seems to be some indication that  they may 
lead to equations describing relaxation oscillations with threshold 
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propert ies  in quali tat ive agreement  with experimental  f ac t s ,  for  in- 
stance, as fa r  as the dependence of (Ca ++ ) is concerned. If  it is pos- 
sible in the fu tu re  to determine the frequency dependence it may  be 
tha t  theoretically observed proper t ies  such as f requency demultipli- 
cation and dependence of the f requency on (Ca ++ ) can be determined.  
However  since this is a p rogram for  the future,  a s imilar  mechanism 
based on the ionization of a CaP2 layer has been assumed in the cen- 
t ra l  pa r t  of this paper  as responsible for  the  determinat ion of the  
permeabil i ty  of a membrane  whose thickness has been neglected fo r  
reasons of mathematical  simplicity in the equations describing the dif-  
fusion of K + ions through it. At  the  same t ime some electrical effects 
due to an applied external  electrical field and a " res t ing  potential, '  
across the membrane,  using for  the la t ter  a diffusion potential of K * 
ions, on the chemical reactions of  the CaPs layer are  taken into ac- 
count. Fo r  mathematical  simplicity other  electrical effects such as 
electrical forces on the diffusing K § ions, the effects of other  ions (e.g., 
Ca ++ ) on the potential  across the membrane,  as well as the diffusion of 
other  ions (e.g., Ca w and anions) have been neglected. These omis- 
sions, par t icular ly  the first two, are  thought  to be serious shortcom- 
ings. On the basis of such a mechanism the permeabi l i ty  of the  mem- 
brane to K § ions is determined. Explici t  relations for  the dependence 
of the membrane  permeabil i ty  on an externally applied electrical field, 
on the Ca ++ ion concentration, on the average K § ion concentrat ion level 
have been derived in principle. The dependence of the permeabi l i ty  to 
potassium ions on the K § ion concentration is used in the differential 
equations describing the diffusion of the  K § ions through the mem- 
brane. The la t ter  equations are  solved under  the assumption that  the 
average K § ion concentrat ion has its s teady state value. The solution 
shows threshold propert ies  under  certain circumstances.  Es t imat ions  
of " res t ing  potential ," threshold (chemical as  well as electrical) ,  "ac- 
tion potential ," permeabi l i ty  increase, and electrical field across the  
CaP~ layer  are made and shown to have the correct  order  of magni-  
tude. A possible way  to derive the  one-factor  theory  is outlined. Also, 
the t ime course of the  exci ta tory  state for  various intensit ies of an 
initial chemical st imulus has been derived theoretically f rom the pro- 
posed physical mechanism. The curves obtained show all the char- 
acterist ic  fea tures  of the corresponding ones for  electrical st imula- 
tion. I t  is pointed out, therefore,  tha t  these results  suggest  tha t  re- 
sponse to both electrical and chemical st imulation is based on a com- 
mon threshold phenomenon as proposed here, which may  very  well 
be a local process. Fu r the rmore  it  is pointed out  tha t  the  dependence 
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of the latter curves on external parameters such as the Ca +* ion and  
the external K* ion concentration may be determined" in principle. A 
more general treatment based on a more general dependence of the 
permeability to K § ions on the local K § ion concentration is given and 
applied to derive the relation between the electrical threshold and the 
K § ion concentration on the outside. Other applications to derive rela- 
tions between the chemical threshold, the  Ca b ion concentration, and 
the applied electrical potential are made. The dependence of the elec- 
trical threshold on the Ca ++ ion concentrations has been derived theo- 
retically. Comparison of the  result obtained with the corresponding 
experimental result shows that the former gives a more sensitive de- 
pendence of the threshold on the Ca++ ion concentration. This may 
be due to the fact  that  no accommodation effects have been consid- 
ered theoretically, that the theoretical result refers to local stimula- 
tion, and that the threshold derivation neglects the diffusion of Ca *+ 
itself as well as the influence of Ca** on the potential difference across 
the CaP~ layer considered. Also a current-voltage characteristic has 
been derived and is compared with the one experimentally obtained. 
The differences are ascribed to accommodation effects. The possibil- 
ity of obtaining the dependence of these curves  on Ca** ion and ex- 
ternal K § ion concentration is mentioned. Additional relations which 
may be predicted on the basis of this theory are the increase in per- 
meability to K § ions during activity as a function of the external K § 
ion concentration, of the Ca ++ ion concentration and of the applied 
electrical potential (A V) (cathodic as well as anodic). These pos- 
sible extensions all call for more experimentation along these lines. 

Though there is a possible manner in which metabolic reactions 
may be taken into account, namely, through a change in Po in equa- 
tions (8) and (44), they have been neglected above because it was 
supposed that the metabolic reactions may be assumed to be relatively 
slow compared with the ionic reactions. Therefore, recovery processes 
have not been taken into account. It  may be worth mentioning here 
that  a mechanism as proposed by E. Eriksson (1949) might perhaps 
be applied here, the breakdown of the CaP2 layer as obtained here giv- 
ing an increase in the P- anion concentration. 

The duration of the development of the action potential could 
not be determined theoretically on the basis of this mechanism. It 
seems plausible that the mechanism outlined for obtaining relaxation 
oscillations might be better in this respect. However, it should be 
stressed here that  the considerations about the relaxation oscillations 
in the latter part  of this paper are only suggestive and might be a 
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starting point for more detailed investigations, complicated as they 
are. However, they are by no means conclusive and, as will be obvi- 
ous f rom the outline given above, they constitute no proof whatso- 
ever. Particularly this holds as long as the physiological limits and, 
especially, the range of validity of the approximations made have not 
been determined yet. 

Finally, we would like to point out that while we have tried to 
give an underlying physical picture for changes in permeability to K § 
ions, formally similar mathematical considerations may describe other 
dependences of the permeability on the K § ion concentration or the 
same, or similar, dependence based on another picture. Furthermore, 
it might be that  similar considerations may apply to ions other than 
the ion we called the K § ion. 

Summary. 

1. On the basis of the assumption that an essential element of 
a membrane is a CaPs layer, an expression for the permeability of the 
membrane to K § ions diffusing through it and reacting chemically 
with it has been derived theoretically, taking into account some elec- 
trical effects due to the diffusion potential of the K § ions and an ex- 
ternally applied electrical potential difference on the chemical reac- 
tions. 

2. A relation between the permeability to K § ions and the con- 
centration of the K § ions outside the membrane has been derived, 
which shows the influence of some factors [Ca ++ ion concentration, 
externally applied electrical field (,t V)] on the former. 

3. A threshold of the right order of magnitude is shown to 
exist for the amount of K § ions locally applied to the membrane in 
order to excite. Also a threshold for parametric electrical stimula- 
tion is shown to exist and to have the correct order of magnitude. A 
way to derive the dependence of the chemical threshold on the Ca w 
ion concentration has been given. The degree of depolarization of the 
membrane as calculated here is adequate. 

4. Correct orders of magnitude are found on this basis for the 
resting potential, thresholds, permeability increase, and intensity of 
the electric field strength across the CaPs layer. 

5. A possible way to derive the one-factor theory of excitation 
is indicated. 

6. A method is outlined to obtain in principle the time course 
of the excitatory disturbance and of the local response. 
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7. A w a y  to ob ta in  r e l a x a t i o n  osc i l la t ions  on t h e  bas i s  o f  a s imi -  
l a r  m e c h a n i s m  is out l ined.  

8. D e r i v a t i o n s  of  o t h e r  poss ib le  r e l a t i o n s h i p s  a r e  ind ica ted .  

I t  i s  a g r e a t  p l e a s u r e  f o r  the  a u t h o r  to  e x p r e s s  his  i n d e b t e d n e s s  
to  all m e m b e r s  of  the  C o m m i t t e e  on M a t h e m a t i c a l  B i o l o g y  f o r  t h e i r  
i n t e r e s t  and  he lp  d u r i n g  the  y e a r s  he  h a s  been  s t u d y i n g  u n d e r  t h e i r  
gu idance .  H e  w a n t s  to  t h a n k  P r o f e s s o r  N. R a s h e v s k y  a n d  P r o f .  H.  G. 
L a n d a u .  P r o f e s s o r  H.  D. L a n d a h l ' s  c o n t i n u e d  in t e re s t ,  h i s  m a n y  he lp-  
ful ,  s t i m u l a t i n g  a n d  e n c o u r a g i n g  s u g g e s t i o n s  d u r i n g  the  course  of  
p r e p a r a t i o n  of  th i s  t h e s i s  a r e  g r a t e f u l l y  a p p r e c i a t e d  b y  the  au tho r :  
T h e  a u t h o r  also w i s hes  to  e x p r e s s  his  g r e a t  i ndeb t ednes s  to Mrs .  Car l -  
ton  S m i t h  f o r  the  v e r y  p a i n s t a k i n g  t a s k  of  the  p r e p a r a t i o n  o f  th i s  
m a n u s c r i p t .  
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