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A "generic" problem amenable to matr ix  algebraic t reatment  is 
outlined. Several examples are given and one, a communication system, 
is studied in some detail. 

A typical structure matr ix  is used to describe the channels of com- 
munication and a "s ta tus"  matr ix  is used to describe the distribution of 
information in the system at any time. 

A theorem is proved relating the status matr ix  at any time t to the 
tth power of the structure matrix. 

The elements of the communication system are interpreted as indi- 
viduals who can send messages to each other. For  the individuals at- 
tempting to  solve a "group l~roblem" certain relations are derived be- 
tween the structure and status matrices and time of solution. 

The structure of the communication system is permitted to vary  
with time. A general theorem is proved relat ing the status matr ix  to the 
matr ix  product of the series of structure matrices representing the 
changing structure of the system. 

Some suggestions are made for fur ther  generalizations. In particu- 
lar, i t  is suggested that  so-called "higher order" information transmis- 
sion can be similarly treated. 

Introduction. A variety of problems which have been (or could 
be) studied by the use of matr ix  representations have some interest- 
ing properties in common. The kinds of problems which we refer to 
are exemplified by: the mathematics  of radiat ion and cosmic ray 
counters, the theory of neutron production and absorption, mathe- 
matical genetics, experimental design, the mathematics of peck right, 
epidemiology, the ontogeny of neural nets, stereochemistry, commu- 
nication systems, and a host of others. 

This wide range of problems (or significant aspects of them) 
may be regarded as special cases of the following "generic" problem: 

A certain number  (n) of essentially "equivalent" objects are 
the elements of a system. Associated with every ordered pair of ele- 
ments (which may be regarded as distinguishable) is the affirmation 
or negation of k relations. We may symbolize the affirmation of the 
pth  relation between the ith and ]th elements by the expression 
iR~i. This, of course, need not imply that  ]Rpi, that  is, the relation 
Rp need not be symmetric. 
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166 COMMUNICATION NETS 

The negation of the p th  relation between the i th and j th  elements 
may  be wr i t t en  as i R i l j .  

In addition to the relations associated with the ordered pairs  of  
the system each element may be associated wi th  one or more  of. m 
intrinsic properties.  Thus the affirmation (of  possession) of  intrinsic 
p roper ty  q by element i can be symbolized by the expression iPq, and 
its negation by iPq -~. 

The relations and intrinsic proper t ies  of the  system may, in gen- 
eral, imply a dynamics  which is reflected by  a quantized temporal  
shif t  of relational and intrinsic proper ty  affirmations to negations 
or vice versa. 

Matrix Representation. For  any given problem of this kind our  
at tent ion may  be focused upon the "s t ruc tures"  implied by the rela- 
tions between the elements or  upon the dynamics of  the system. In 
ei ther case mat r ix  representa t ion can be used to advantage.  Such a 
sys tem can be described by matr ices  in the following way:  

Firs t ,  number  the elements of  the system f rom one to n in some 
a rb i t r a ry  fashion. Assume for  i l lustration tha t  only one type  
of relation will be considered. In other  words,  fo r  each ordered pai r  
of elements i,] we will say e i ther  iR] or iR-~], i.e., i is related to ] ,  
or  i is not related to ] .  

The set of all such relations can be conveniently described by  an 
n • n mat r ix  whose elements are ei ther R or R -~. Thus if  a typical  
element of the mat r ix  e,j is R ,  then we will say  iR].  If, however,  the 
typical  mat r ix  element e,s is R -1, then we will say i1~-~]. Such a 
mat r ix  can be called a struvture matr ix  insofar  as  the relations be- 
tween the elements imply a s t ruc ture  of the system. The mat r ix  
representa t ion can be extended to include any number,  say  k ,  of  
different kinds of  relations. In this case it would be necessary to use 
an nk • n matr ix  or kn • n matr ices  to represent  the total i ty  of re- 
lationships. 

In a similar way  the distr ibution of intrinsic proper t ies  among 
the elements of  the sys tem can also be represented by a matrix.  I f  
we consider a system possessing m different  classes of  intrinsic prop- 
ert ies,  then an n • m mat r ix  will do the job. Such a mat r ix  can be 
called a status matr ix  insofar  as the distr ibution of proper t ies  among 
the elements of the system describes a s tatus  of  the  elements as com- 
pared to each other. 

An Example. For  the sake of illustration, consider the following 
problem. How many structurally different compounds are represent- 
ed by the formula Cfflv (only sa tura ted  hydrocarbons  considered) ? 
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If we picture such a compound in a conventional steric diagram, 
it becomes evident that  every carbon atom in the molecule (except 
for the special case of methane) is chemically bound to one or more 
other carbon atoms. In the most general case such bonds may be 
single, double, or triple, but for saturated compounds only single 
bonds occur. 

Now, if we let the integer 1 represent the relation "has a single 
bond wi th"  and if we let 0 represent its negation, that  is, " i s  not 
bound to," then, by arbitrarily numbering the carbon atoms from 1 
to ~ we can write a series of propositions of the form i l l  and p0q. 
In words, these expressions mean "carbon atom i has a single bond 
ugth carbon atom ]" and "carbon atom p is not bound to carbon atom 
q o ' '  

According to the procedure outlined above, the totality of rela- 
tions among the carbon atoms can be represented by a p X p struc- 
ture matrix. 

For  the triwial case of CH4 (methane) we have a 1 X 1 matrix 
whose only element is 0 .  In other words, the only carbon atom in 
the molecule has no bends with itself. Ethane (C~H6) is represented 
by the 2 X 2 structure matrix 

1 0 ) .  

The elements of the major diagonal of such a structure matr ix 
will always be 0 since the statement "atom i has a single bend with 
atom i" is meaningless. The relation "has a single bond with" as used 
here is always reciprocal, so it follows that  the structure matrix will 
always be symmetric around the major  diagonal. Also note that  the 
sum of the elements of the structure matrix is exactly twice the num- 
ber of carbon atoms used in forming the "backbone" of the molecule. 
It follows then that  

4 p - - 1 / 2  ~ ~ e~s=~,. (1) 
j=l i=1 

The class of all pure saturated hydrocarbons having the formula 
C,Hv can, therefore, be represented by a class of # X # matrices. It  
must be noted, however, that the total number of isomers of the form 
C~Hv is considerably smaller than the number of different ~ X ~u mat- 
rices which can be used to represent them. This is due to the fact  
that  the numbering of the carbon atoms is arbi t rary and that renum- 
bering does not change the structure. I t  is fur ther  complicated by 
the fact that  renumbering also may leave the matr ix unchanged. 
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For these reasons many matrices are equivalent in t h e  sense 
that t hey  represent the same substance. The original problem, there- 
fore, of finding the number of different substances represented :by 
the formula C,HV reduces to the problem of counting the  number of 
subclasses of equivalent matrices making up the class of p: • lu mat- 
rices representing the formula C~Hv. 

The fact is that  this particular problem has been attacked and 
partially solved by number and group theoretical methods (Polya, 
1936). These results are, of course, translatable into the language of 
matrices and, therefore, should have a direct bearing on all of the 
other phenomena subsumed by the aforementioned "generic" prob- 
lem. 

Other Examples. In the above example no status matrix is in- 
volved and the attention is focused on the structure of the System. 
However, as was mentioned in the  introduction, the existence of a 
structure matrix and status matrix describing the same system fre- 
quently implies a dynamics. Accordingly, the dynamics:0f a neural 
net conforming to the postulates of McCulloch and Pitts has been 
described and analyzed by the use of matrix algebra (Landahl and 
Runge, 1946). 

In this case the elements of the system are neurons. The rela- 
tions appearing in the structure matrix are "can stimulate" and "can 
inhibit." The intrinsic properties associated with the status vector 
are "is active" and "is not active." In this paper it is shown that  
consecutive products of the status vector with the structure matrix 
give consecutive status vectors which represent the "state" of the 
net for different moments. 

In a subsequent paper H. D. Landahl (1947) extends the re- 
sults of the first paper and treats the "reverse problem," i.e., instead 
of describing the behavior of a given net he starts out with a given 
dynamics and defines the kind of net which will exhibit such be- 
havior. 

As a final example A. Rapoport (1949) and H. G. Landau (1950) 
use matrix theory in the study of the dynamics of chicken "societies" 
organized by the relation of "peck right." 

The foregoing is not intended as a proof for the wide applicabil- 
ity of matrix representation, for this is well known. The point is that 
in the cases cited above the structure matrix represents, in one way 
or another, a connected system, a network, an organization, or "lace- 
work" of simple relations. The structure matrix can, therefore, be 
interpreted as an important invariant of what may be loosely termed 
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"group order." An extensive study of square matrices, therefore,  
with an eye to the structures they imply may lead to useful defini- 
tions of such vague concepts as  organization, group stability, and 
so on. 

Some important steps in this direction appear in recent litera- 
ture (Luce and Perry, 1949; Luce, 1950). The authors define an 
organizational concept which they call a clique and the more general 
notion of an n-clique. Roughly speaking, a clique is a certain or- 
dering of relations in a subgroup of a system. R. D. Luce and A. D. 
Perry  show certain relations between the existence of cliques and 
certain properties of the matrices representing the system. 

In addition, these authors apply matrix algebra to a simple 
"communication system" in a manner quite analogous to the Lan- 
dahl-Runge treatment of neural nets. They arrive at a recursion 
formula for consecutive states of the system which is also analogous 
to the formula of Landahl and Runge. 

Group Communication. The Problem. The following problem, 
although in a way more general than that approached by Landahl 
and Runge, Luce and Perry, is nevertheless treated in a similar man- 
ner. The statement of the problem and some of the definitions may, 
therefore, be expected to overlap somewhat. 

Suppose that a group of n persons are asked to play the follow- 
ing game. Each member is told at the outset that  he must send "mes- 
sages" to certain other specified members of the group. On the other 
hand, he is not told who the recipients of the other members' "mes- 
sages" are. In fact, at the beginning of the game he does not even 
know who, if anyone, will send messages to him. The point of the 
game is for each member to know the complete structure of their 
communication system. In other words, each member must know the 
destination of every other member's messages. 

Accordingly, the messages themselves must contain such infor- 
mation. A typical message will read "The destination of C's mes- 
sages is D ,  the destinations of B's messages are A and D ,  and so on." 
The expression "the destinations of B's messages are A and D" is ac- 
tually a statement of all the information which member B possessed 
at the beginning of the game. Accordingly we shall refer to such ex- 
pressions as primary elements of information. 

Now since there are n members in the group, there must also 
be n primary elements of information. The game will end, there- 
fore, when every member possesses n different primary elements of 
information. 
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The Method. If we number the members of the group from 1 to 
n in some arbi trary fashion we can proceed in the usual manner to 
construct a structure matrix which will represent the communication 
system. The matrix can be constructed by rows. To write down the 
] th  row of the matrix we ask "Does member ] send messages to 
member i"? I f  the answer is yes, then the element e,j of the struc- 
ture matrix is one. I f  the answer is no, then the element e,j is zero. 
By repeating this procedure n 2 times the complete structure matrix 
can be written down. 

For example, see the three member group diagrammed below 
in Figure 1 and a corresponding structure matrix as follows: 

1 o 1 / 
1 1 0 . 
0 1 1 

(2) 

FIGURE 1 

Notice that  the diagonal elements of the structure matrix are 
all l 's. This would be as though each member of the group sends 
himself messages. This notation is useful in the operations which 
follow. We can think of it as though each number repeatedly "re- 
minds himself of" or "remembers" the information which he has 
already obtained. 

A status matrix describing the distribution of primary informa- 
tion throughout the group can also be constructed. This can be done 
columnwise. To write down the ]th element of the ith column we 
must ask: "Does member i possess the pr imary element of informa- 
tion associated with member ]"? I f  the answer is yes, then the ]th 
element of the ith column is one. If  the answer is no, then the ]th 
member of the ith column is zero. This process defines the status 
matrix. 

At the beginning of the game each member of the group will 
possess only the pr imary information associated with himself. In 
other words, all that  he will know is where he sends his own mes- 
sages. The status matrix at the beginning of the game will, there- 
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fore, be the identity matrix. The matr ix  will have l ' s  along the ma- 
jor  diagonal and zeros everywhere else. 

Successive States. As the game proceeds the information will 
begin to shuttle from person to person according to the pathways of 
the system. This will result in a constantly changing status matrix. 
Now, if the  rate of flow of messages were in no way controlled, cer- 
tain differences between the various people playing the game would 
begin to show themselves. Some members of the group may find 
themselves, for example, sending only one-third as many messages 
per unit time as other members. In order to remove such differences 
between the individuals from our considerations we will stipulate that  
each member must send messages along all of his permissible chan- 
nels exactly once per unit time. The problem is now well defined and 
we can ask the first question, namely, "How long will the game last"? 

Before going on to answer this question it should be noted that  
a slight change in the definition of the status matrix makes it pos- 
sible for us to prove a useful theorem. To this end we will say that  
if the general element of the status matrix e~s is some positive i n -  
teger, then member i possesses the primary element of information 
associated with member j. However, as before, if e~s is zero, then 
we shall say that  the member i is ignorant of the primary element 
of information associated with member j. 

Fundamental Theorem. The status matrix, representing the dis- 
tribution of primary elements of information among the members of 
the system after t units of time, is given by the tth power of the 
structure matrix in the sense of ordinary matrix ,multiplication. 

Proof: Lemma. If S denotes the structure matrix and It de- 
notes the status matrix after  t units of time then, 

1~§ = I tS .  (3) 

Let e~s it) denote the typical element of the status matrix after  t units 
of time. Also, let s~s denote the typical element of the structure ma- 
trix. According to the definition of ordinary matrix multiplication, 
we have 

P~s = s ~ e l s  (~) + s~e~ /* )  + . . . .  + s~.e./t), (4) 

where P~s is the typical element of the matrix product I tS .  
Since none of the elements s~ or e~s (t~ is ever negative, it fol- 

lows that  neither the right-hand member of expression (4) nor any 
of its terms s~e~s (t) can ever be negative. This implies that  if the 
right-hand member of expression (4) is zero then all of its terms 
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s~ekj ~t> are  individually zero. However ,  s~,e~i <t~ ~ 0 m e a n s  either 
s ~ :  0 ,  ekj "~ - -  0 ,  or both. But, according to the  definition o f  the  
s t ruc ture  matrix,  s~k : 0 tells us tha t  m e m b e r  i never  receives mes- 
sages f rom member  k .  F rom the definition of the s ta tus  mat r ix  
e~ ~*~ --  0 tells us tha t  member  k (at  the t ime t )  does no t  possess the 
p r imary  element of informat ion associated with member  ] .  I f  e i ther  
(or both) of these conditions hold, it follows tha t  member  i could 
not  obtain the p r imary  element of informat ion associated with mem- 
ber  ] at  the  t i m e  t + 1 f r o m  m e m b e r  k .  I f  this is t rue for  all o f  the  
t e r m s  in the r ight-hand member  of expression (4) ,  then it follows 
tha t  member  i could no t  obtain the p r imary  element of information 
associated with member  ] at  the  t i m e  t + 1 f r o m  a n y  o ther  member, ~. 
We must  conclude then that,  given these conditions, the general ele- 
ment  of the s ta tus  mat r ix  at  the t ime t + 1 mus t  be zero, i.e., 
e~j (t§ ~ 0 .  But, given these conditions, we see f rom expression (4) 
tha t  p~j is zero. Hence, for  this case we find tha t  P',s ~ e~s (*§ 

The only remaining possibility is for  the r ight-hand member  of 
expression (4) to be a positive integer. This means tha t  s,ke~s (~) ( for  
at  least one k) is a positive integer. In order  for  this to be t rue  we 
must  have s~k - -  1 and e~i (t) - -  + integer. But  s~k "-- 1 means tha t  
member  i does receive messages f rom member  k .  Also, e~s (t) - -  + 
integer  means tha t  member  k (at  the t ime t )  does possess the  pri- 
ma ry  element of  information associated with member  ] .  F rom this 
we must  conclude tha t  member  i ,  a t  the t ime t + 1, wi l l  possess 
the p r imary  element of informat ion associated with member  ] .  This 
implies tha t  e~j (~*~) must  be a positive integer. But  under these con- 
ditions p~j is a positive integer, as a glance at  expression (4) will 
show. Hence again e~j (*§ - -  p ~ .  Thus the lemma is proved. In 
other  words,  expression (3) is a valid recursion formula.  

Now let us recall tha t  the s ta tus  mat r ix  Io (a t  the beginning of 
the game) is simply the identi ty matr ix.  Using expression (3) ,  we 
get  I~ - -  l o S .  But  loS  = S ;  hence I~ = S ~. I t  follows by induction 
tha t  the  fundamenta l  theorem is true, tha t  is, 

I,  ----- S t . (5) 

Express ion (5) makes  it possible for  us to give a t  least  a for-  
mal solution to the original problem, namely:  " H o w  long will the game 
last" ? 

I f  any element of the s ta tus  mat r ix  I ,  is zero, then we know tha t  
at  least  one member  of  the group does not  yet  possess the  p r imary  
informat ion assoc ia ted  wi th  a t  least one o ther  member,  and so the 
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game is not finished. The game will end a t  the f i r s t  moment  when 
every element of the status mat r ix  is non-zero. The game will end, 
therefore after T units of time, where T is the smallest power of the 
structure matrix containing no zero elements. 

Adequate Systems. Not all groups will be able to end their  game. 
Their channels of communication may be inadequate. Such inade- 
quacy may be due to an insufficient number  of channels or an inade- 
quate a r rangement  of those which are available. We shall refer  to 
the s t ructure  mat r ix  of such an inadequate communication system 
as an inadequate matr ix .  Similarly, the s t ructure  mat r ix  of an in- 
adequate communication system can be called a n  adequate matrix.  
Some interest ing details relat ing to these notions of adequate and in- 
adequate matrices are developed by Luce (1950) in the section on 
connectivity in a structure. 

In order for  a s t ructure to be adequate, it  is necessary for  every 
member to send messages to at  least one other member and to re- 
ceive messages f rom at  least one other member. In fact, there must  
exist a t  least one path of channels f rom any given member of the 
group to every other member. I f  this were not so, t ha t  is, if  no such 
path existed between member i and member  ] ,  for  example, then the 
p r imary  element of informat ion associated with  member i would 
never be available to member ] .  In terms of the s t ructure  mat r ix  
this means tha t  there must  exist some sequence of integers k l ,  k2, 
k3, -..- k~ (not necessarily all different) such tha t  s~, ,  s ~ ,  sk ~ 
. . . .  s~m~ are all l ' s .  

The Cycle. Since every member must  send messages to at  least 
one other member, it follows tha t  at least n channels are necessary 
in order to construct  an adequate system. In fact, this number  is 
sufficient if the channels are laid out in a simple closed chain which 
includes all of the members of the group. We shall refer  to the ma- 
t r ix  of such a s t ructure  as a minimal-cyclic matrix.  

Changing Structure. The game can be complicated somewhat  
by permit t ing the members to shif t  their  channels of communication 
in some prescribed temporal  order. The s t ructure  matr ix,  under  these 
conditions, would change f rom time to time. 

In order to describe such a system it  would be necessary to wri te  
down a series of s t ructure  matrices $1, S~, - . . .  , S~, . . . .  , where St 
represents the par t icular  communication s t ructure  being used a t  the 
time t .  We shall refer  to such a series of matr ices as a struvture 
series. 

The General Theorem. The status matrix, representing the dis- 
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tribution of primary information among the members of the system 
after t units of time, is given by the matrix product SIS~S8 . . . .  S t ,  
in the sense of ordinary matrix multiplication. 

Proof :  In proving recursion formula  (3) we assumed tha t  the  
s t ruc ture  mat r ix  S was constant  wi th  time. But  this assumption in 
no w a y  affects the argument ,  since it deals only wi th  the t th exchange 
of  information.  This permits  us to wr i te  the slightly more  general 
recursion formula:  

l t . l  = I t S t  . (6) 

But since 11 = 1oS1 - -  $1,  the general theorem follows by  a simple 
induction on expression (6).  

Adequate Structure Series. We have a l ready shown tha t  certain 
tr ivial  s t ructure  series (constant  adequate s t ruc ture)  results  in a 
finite game. We may now ask for  more  general  conditions on the 
s t ruc ture  series such tha t  it will be adequate. 

Theorem. The maximum number of different structure matrices 
representing laossible communication systems between n labeled mem- 
bers is given by the expression 2 ("-1)". 

Proof :  The l ' s  appear ing  in the i th row of a s t ruc ture  mat r ix  
tell us (by  definition) to  whom member  i sends his messages.  I t  may  
be tha t  he sends no messages to anyone, in which case the only 1 ap- 
pear ing in the i th row would be element s ~ .  But  this can happen i n  
only one way. It  may  be tha t  member  i does send messages to ex- 
actly one other  member,  in which case a 1 would appear  elsewhere 
in the row. This could happen in n - -  1 different ways.  In  general, 
member  i may  send messages to k other  members.  This could 

n - - 1  
happen i n (  k )d i f f e r en t  ways '  w h e r e ( n - k l )  is the number  ~  

ways  in which we can choose k objects  f rom n - -  1 objects,  all dif- 
ferent.  The number  of ways  N in which a given row can be "dis- 
posed of"  is given by  the expression 

N - 1 + (n - -  1) + + + . . . .  + (7) 
2 3 n -  

I t  follows tha t  the number  of  ways  in which all of the rows can be 
disposed of together  is N" = 2 (~1)", which proves the  theorem. 

Definition: Any s t ruc ture  series which indefinitely repeats  a sub- 
series of  s t ruc ture  matr ices  will be called a cyclic structure series. 

Theorem. Any  cyclic structuve series Which contains one or more 
adequate matrices is an adequate structure series. 
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Proof :  I f  a positive in teger  appears  in some element of the  
s tatus  mat r ix  at  some time t ,  then, by vir tue of the fac t  tha t  each 
member  "reminds  himself of" his a lready acquired informat ion 
(every diagonal element of any s t ruc ture  mat r ix  is 1), tha t  part icu- 
lar element of the s ta tus  mat r ix  can never again be zero, for  any 
t ime a f te r  t .  I t  follows tha t  if a given adequate mat r ix  is applied 
to the changing s ta tus  mat r ix  every k units of  time, then every ele- 
ment  of the s tatus  mat r ix  will be a positive integer in a t  most  kT 
units of time, where  T is the minimum power  of the adequate struc- 
ture  mat r ix  containing no zeros. Such a cyclic s t ruc ture  series must ,  
therefore,  be adequate. 

Since the game always ends at  the moment  when zeros no longer 
appear  in the s tatus  matrix,  it follows tha t  the game will last T units 
of time, where  T is the minimum subscr ipt  of the s t ructure  mat r ix  
for  which the product  S1S~Sa . . . .  Sr contains no zeros. That  this  
product  contains no zeros for  some T is, in fact,  the definition of an 
adequate s t ructure  series. 

I t  is possible for  every mat r ix  of a s t ruc ture  series to be inade- 
quate and still fo rm an adequate s t ruc ture  series. Fo r  example, con- 
sider the s t ruc ture  series S1S~SIS~ . . . .  , where  (1 0) (1 1) 

$1 - -  and S~= . 
1 1 0 1 

It  is readily seen that  the element e~ of s t ructure  mat r ix  $1 and 
element e12 of s t ruc ture  mat r ix  S~ will remain zeros for  all powers  
of these matrices.  This m e a n s  tha t  both $1 and $2 are  inadequate 
matrices.  The product  S~S~, however,  contains no zeros;  hence, the  
structure series is adequate. 

Efficiency. For  a group of any given size certain s t ruc ture  mat-  
rices or  s t ruc ture  series end the game fas te r  than others. The solu- 
tion time T is, therefore,  a kind of measure  of the  efficiency of  the  
communication system. The var ious  adequate s t ruc ture  matr ices  and 
series can, therefore,  be ordered in a preferent ia l  hierarchy.  

I f  every member  of a group could communicate directly wi th  
every other  member  of the group, only one interchange of informa- 
tion would end the game. However ,  such a communication sys tem 
would require  n ( n  ~ 1) channels. On the other  hand, a minimal- 
cyclic s t ructure  has a solution t ime of T - -  n - -  1 ,  bu t  it has only n 
channels. Fo r  some purposes we may  be interested in the efficiency 
of a communication system as reflected by  its economical use  of chan- 
nels. The number  C of channels in a given s t ructure  is simply the 
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sum of the elements of the s t ruc ture  mat r ix  minus the number  of  
elements in the major  diagonal;  thus  we have 

C = ~ ~ s ~ i -  n .  (8) 
~=1 j= l  

Now let us re turn  to the s t ruc ture  mat r ix  (2) of the three member  
group example.  The s tatus  matr ices  associated with this s t ruc ture  
are  as follows: ( 0o) (101) 
1o--  0 1 0 , I ~ =  1 1 0 , h =  2 1 1 (9) 

0 0 1 0 1 1 1 2 1.  

The solution t ime of this s t ruc ture  is 2 units, since I2 is the  first 
s ta tus  mat r ix  containing no zeros. Notice, however,  tha t  three of 
the elements of 12 are 2's. This means tha t  each member  of the group 
received one pr imary  element of informat ion on two different oc- 
casions. 

For  some purposes such a repeti t ion of informat ion may  be con- 
sidered an advantage  insofar  as informat ion received many  t imes 
may  perhaps be more likely accurate.  

We may, however,  be more interested in an economy of mes- 
sages. This may  be par t icular ly  t rue when the system is such that  
each message is very  likely to be accurate.  In this case it would be 
ideal i f  the solution mat r ix  contained only l 's.  

F rom the above considerations it would seem tha t  the rat io  ~/  
of the number  of elements in the solution mat r ix  (n :) to the sum of 
the elements of tha t  mat r ix  could serve as a useful measure  of the 
system's  efficiency in regard  to message economy; thus 

n ~ 
- - -  (lO) 

t,1--1 

It  should be noted, however,  tha t  the sum of the  elements of the  
solution mat r ix  does not give the total number  of  messages sent. This 
sum is usually larger  than  the number  of actual messages.  To inter- 
pre t  the meaning of the  operat ions between the s t ruc ture  and s tatus  
matr ices  accurately,  we  must  say tha t  a given member  who has re- 
ceived a p r imary  element of informat ion k t imes by  the t ime t will 
repeat tha t  element of  informat ion k t imes in all of  the messages he 
sends a t  the t ime t 4- 1 .  Actually, this s imply implies tha t  the  sum 
of the  elements of  the solution mat r ix  reflects a "weight ing"  of  the  
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evils of redundance. I t  is as though this sum were  saying:  " I t  is bad 
to send the same informat ion three times, bu t  it is more than twice 
as bad to send it six t imes." 

So fa r  we have three possible measures  of efficiency: the inverse 
of the solution t ime T -1, the number  of channels per  member  C/n ,  
and the redundancy ratio ~ / .  

Minimal-Cyclic Structure. In a minimal-cyclic s t ructure  the most  
remote member  f rom any given member  is n - -  1 steps away. This 
means tha t  the solution t ime T of a minimal-cyclic s t ructure  is n - -  1 
units. The efficiency of such a system (in regard  to speed) drops 
linearly wi th  increasing size of the group. 

This s t ructure  has exactly 1 channel per  member  so that  in this 
sense it is perfect ly efficient. 

By elementary considerations we find that  the redundancy ra- 
tio ~/  of a minimal-cyclic s t ructure  is given by the expression 

2~I -~ n/2 ~-1. (11) 

This means tha t  the redundancy rises sharply wi th  increasing size 
of the group. 

Theorem. The redundancy ratio $~I of any series structure 
$1S2S3 . . . .  which consists entirely of minimal-cyclic matrices is al- 
ways less than 1. 

Proof :  In order  for  the redundancy ratio ~ / t o  be 1 it is neces- 
sa ry  that  all of the elements of the solution mat r ix  also be 1. The 
determinant  of such a matrix,  however,  is zero. This means tha t  the 
ideal solution mat r ix  is singular. 

I t  can be readily shown that  a minimal-cyclic mat r ix  is never  
singular. But  the solution mat r ix  is given by a product  of the form 
SIS~ .. . .  Sr in which all of the factors  are non-singular matrices.  The 
theorem follows f rom the fact  tha t  the product  of a non-singular ma- 
tr ix with a non-singular mat r ix  is also non-singular. 

Partial Solution. An interest ing var ia t ion of this game would be 
to stop it a f te r  a designated playing time. We would undoubtedly 
find tha t  some s t ructures  had progressed fu r the r  toward  solution 
than others (as measured by the number  of  zeros in the final s tatus  
ma t r ix ) .  

I t  may  be tha t  under certain circumstances a communication 
system of this kind is in constant  danger  of being completely blocked. 
I t  may  also be that  certain s t ruc tures  which are highly efficient ac- 
cording to the  previously mentioned s tandards  actually t ransmi t  most  
of the informat ion jus t  near  solution time. 
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Such a s t ructure  would not be very useful in such "dangerous"  
circumstances, since its disruption before solution time would leave 
most  of the members ignorant  of most of the information.  

Other s t ructures  not quite as efficient according to the previous 
s tandards  may  exhibit a rapidly growing spread of informat ion in 
the system. I f  it  were disrupted before solution t ime a t  least much 
of  the informat ion would have already been t ransmit ted.  

Also in this connection, if  we permit  negative numbers in the 
s ta tus  matrices to represent  false informat ion and in the s t ructure  
matrices to represent  "chronic" liars, we would have situations anal- 
ogous to the spreading and checking of false " rumors ."  Perhaps  sim- 
ple mat r ix  operations can be devised to represent  these phenomena. 

Higher Order Information. So fa r  the players of the game were 
all interested in only one question, namely, " W h a t  is the s t ructure  
of the sys tem"?  In a higher order game the part icipants  might  be in- 
terested not only in what  they know about the s t ructure  of  the sys- 
tem, but  also in what everyone else knows about the system. 

The distr ibution of informat ion in such a system can be repre- 
sented by a mat r ix  whose elements are also matrices. A discussion 
of such higher  order games will appear in a subsequent paper. 

This investigation is par t  of the work done under  Contract  No. 
AF  19(122)-161 between the  U. S. Air  Force Cambridge Research 
Laboratories and The Universi ty  of Chicago. 
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