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The general linear two-factor nerve-excitation theory of the type
of Rashevsky and Hill is discussed and normal forms are derived.
1t is shown that in some cases these equations are not reducible to
the Rashevsky form. Most notable is the case in which the solutions
are damped periodic functions. It is shown that in this case one or
more—in some cases infinitely many—discharges are predictable,
following the application of a constant stimulus S. The number of
discharges increases with S, but the frequency is a constant, charac-
teristic of the fiber and independent of S.

1. The general linear two-factor theory. The two-factor nerve-
excitation theories of Rashevsky (1933) and of Hill (1936) are nat-
ural generalizations of the single-factor theory of Blair (1932), which
supply several of the deficiencies of Blair’s theory. At the same time
these have not appeared to yield repetitive discharges of the nerve
fiber under constant stimulation, a phenomenon which is often met
with empirically. It is the purpose of the present discussion to con-
sider the most general possible linear two-factor theory, and to show
in particular that for suitable choices of the parameters of the equa-
tions such repetitive discharges are predictable.

In its most general terms the two-factor theory postulates the ca-
pacity of the nerve fiber to develop two “substances” or “factors”, the
rate of development of each being a linear homogeneous function of
the three quantities: the stimulus intensity, and the excess of each
substance or factor over the resting value. Excitation is supposed to
occur and to continue as long as a certain linear homogeneous function
of the measures of these factors is positive.

We shall speak of the factors as substances, for convenience and
definiteness of the picture, though they do not need to be such, and
we shall speak of their concentrations as measures of the factors.
Then if , and . are the concentrations at any time ¢, and if S(%)
is the stimulus intensity, then the development of the substances is
governed by the linear differential equations
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%ﬁ_l = Oy (X3 — 2,°) F Qo (22 — 22°) + o, S(2),
1)
% = @y (501 _— xl") _I_ (,ng (x‘z - 3320) + s S(t),

where z,° and x.° are the concentrationg in the resting fiber. Since we
are by no means insisting that they really are substances being devel-
oped, we shall not require that x, and 2, be positive to be meaningful.

By suitable choice of units and of subscripts, it is no restriction
to assume that the condition for excitation be of the form

L,— 2 >0, (2)

the left member of the inequality being the linear homogeneous func-
tion referred to above.

Empirically only S(¢) and the resulting interval of excitation are
measurable, that is to say, only S(¢) and the times at which the in-
equality (2) is satisfied. Hence we shall define two forms of the two-
factor theory as being equivalent in case the corresponding inequal-
tties (2) are simultaneously satisfied. With this definition of equiva-
lence we shall investigate the conditions for equivalence of any two
two-factor theories and deduce normal forms for these.

Blair’s theory is obtainable by setting @y, = @y = @ = 0, =
in (1). Rashevsky’s theory assumed a., = @,, = 0, while Hill’s the-
ory had a,, = a, = 0. Offner (1937), seeking to test Rashevsky’s and
Hill’s theory experimentally, found that they were, in fact, equivalent
in the sense defined above. Young (1937) then showed that the most
general two-factor theory (1) could in general be formally reduced to.
the Rashevsky form. However, when the characteristic roots are com-
plex so are the resulting coefficients in the Rashevsky form. Physically
this is the case of (damped) periodicity with possible repetitive dis-
charge, and is most conveniently studied by reducing to a non-Rash-
evsky form with real coefficients. Rashevsky (1938) has reviewed
completely the case of the equations in his form with real characteris-
tic roots, summarizing the equivalence proofs of Offner and of Young,
and discussing empirical checks.

2. Roots real and distinct. Equations (1) can be written in ma-
trix notation in the form

d
%:a(x——x") 4 a8 (), (3)

where S is a scalar, o, z and z° are column vectors, and « is a two-by-
two matrix. Any linear substitution
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dy dx
= G 4
V=% wT°’x: )
where the matrix ¢ is a non-singular matrix of constants, tra:nsforms
the linear differential equations (8) into the linear differential equa-
tions
W = b@w—v) +pS00) (®)
where
b=cact, f=cua. (6)

However, we can admit only those matrices ¢ for which inequality (2)
and the inequality

Y1—Y.>0 (7

are simultaneously satisfied. Such matrices ¢ will be said to define an
admissible substitution. Any equations (3) and (5) obtainable one
from the other by an admissible substitution are equivalent in our
sense.

It is at once evident that a scalar matrix

c Z(P 0 ) , p>0 (8)
0 p

defines an admissible substitution. This has the effect only of multi-

plying the two coefficients a, and o, by the same positive scalar factor

p . Hence, only the ratio o, : o, is important, and we may, for example,

at any time assume o, and «, to be the sine and the cosine of some

angle.

We next recall the well known theorem in algebra which states
that for any non-singular matrix ¢, the characteristic roots of the ma-
trices a. and ¢ a ¢ are the same. These are the roots i, and 1, of
the quadratic equation

la—iIl=0, (9

where I is the identity matrix. Hence if an admissible substitution
exists such that the matrix b is diagonal, b has necessarily the form

69

We can easily write down, the matrix ¢ defining such an admis-
sible substitution, when the roots 1, and 1, are real and distinct, by re-
ferring to some principles of projective geometry., Consider the trans-
formation
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&=aé (11)

of the elements (£,, &) of a one-dimensional projective form into the
elements (&', &) of this same form. When the roots i, and 1. are
real and distinet there are two real and distinct fixed elements, i.e.
two elements of the one-dimensional form, (&', &') and (&2, &?)
which are transformed into themselves by the transformation (11).
These are given by the two pairs of dependent homogeneous equations

i &t =a&t, (t=1,2), (12)

If we introduce new coordinates into this projective form by the
coordinate substitution

n=cé&, W =c&, (13)
then the transformation (11) is equivalent to
17':6&0’117. (14)

Now a projective coordinate system in a one-dimensional form is
fixed when the projective coordinates of three elements of the form
are assigned. Let us, therefore, assign to the point & the y-coordi-
nates (1,0), to & the y-coordinates (0,1) and to (1,1) the y-coordi-
nates (1,7). Evidently, then, the points (7,0) and (0,1) are the fixed
points of the transformation (14), and therefore this takes the form

0 = i g . (15)

Since the required coordinate substitution changes the coordi-
nates of &' and & into (1,0) and (0,1) respectively, and leaves the co-
ordinates of (1,7) unchanged, it is easy to write down this substitu-
tion explicitly in terms of the &,/ by expressing the fact that the anhar-
monic ratio of an arbitrary & with &, £2 and (2,1) is equal to the an-
harmonic ratio of the corresponding 5 with (1,0), (0,1) and (1,1).If
we write, then, x and y in place of & and 7 for the variable point we
obtain the desired form of the substitution (4):

— &2a,— &2, Elra,— &,
Y P 5‘22_512 ’ ¥ = P 521"—511 ’ (16)

where p is an arbitrary constant.

One thing remains to be determined. We observe that interchang-
ing the notations &' and &2 of the two fixed points, or, what comes to
the same thing, interchanging the subseripts on the two characteristic
roots i; and 1., has the effect of interchanging 9, and y,. Whichever
root is called 1, and whatever the sign of p, the equations x, = x, and
Y, = y. will be simultaneously satisfied, but unless these are properly
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associated the orders of the inequalities will be reversed. For definite-
ness we require that

p>0. 17)

It is no restriction if we so choose the homogeneous coordinates of
&' and &2 that

&P —&t=1. (18)
Then we have

Yo — Y1 = p{ (& — &E2) @y — (&0 — £2)%,} .
But by subtracting equations (18) one from the other we find that

E — &7 = &1 — &2,
whence
Y1 — Y= ‘P(fzz—"gal) (X, — ) . (19)

Thus in order that the inequalities (2) and (7) shall be simultaneous-
ly satisfied the designations i, and i, must be assigned to the charac-
teristic roots in such a way that

25 —&>0 (20)

when the scalar factor p is chosen positive and the homogeneous co-
ordinates of the fixed points are chosen to satify (18).
From equation (6) we have
.31 - P(§22 Ay — 5'12 0'2) ’
(21)

,52 == P(Ezl o — &t ‘12) .
Varying the scalar factor p does not affect the matrix b , but only the
magnitudes of the coefficients 3. Hence, we may choose this scalar
factor so that

B2 > = (22)
and hence so that 8, and g, are the cosine and the sine of some angle.
This is in accordance with the statement made above that only the
ratio of the coefficients of S(¢) is important. Note that

,61‘—ﬁ2 = P(Ezz—‘&zl) (0-1—“(12) y (23)

8o that the quantities §, — . and a, — a, have the same sign. Nothing
can be said, however, about the signs of §, and g, separately.

We have tacitly assumed, in the foregoing discussion, that the

point (1,1) is not itself a double-point of the transformation (11).

Postponing, for the moment, our consideration of this possibility, we
may summarize:
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Let the excitation equations in the explicit form (1) or the matrix
form (8) be such that the roots A, and 1, of the quadratic equation (9)
are real and distinct. Let the vectors & and & , which satisfy the ma-
trixz equations (12), both have unequal components. Then their com-
ponents can be chosen to satisfy (18) and the indices can be so ad-
justed that (20) is satisfied. Then the substitution (16) with an ar-
bitrary posilive scalar p is admissible and transforms the equations
(1) into the equaiions

dy, _ .
—d—t——}»1(y1“y1 ) +/31S(t) ’
(24')
dy. _ .
—dT'-la('!/z""yz )‘+,32S(t) ’

where B, and B, are given by (21). The scalar p can further be speci-
fied so that (22) is satisfied, and in this case the equations (24') can
be written

”ff; = (U — 1) + S(B) cos f
(24)
| %=zz(y2—y2°) + S(¢) sin 8,

for some angle 8. This is the Rashevsky form of the excitation equa-
tions, and it contains five essential parameters. For stability to exist,
and non-excitation in the resting state, it is necessary that

AhA<0, <0, ¥ <, (25)

while from the nature of the substitution it follows that g, — B, and
a;, — o, satisfy (23) and hence have the same sign.

In the exceptional case when (1,1) is a fixed point of the trans-
formation (11) there is no substitution (4) admissible in our sense
which throws the excitation equations into the Rashevsky form. If 1,
is the root corresponding to the fixed point (Z,7) and if 1, is the other
root, the equations (1) are in the form

% = a(x, — x,°) + (h—@a) (2. — 2,°) + @S (),

(26)
% = (a — 1) (2, — 2,%) -+ (11—|—12-—a,) (2, — 2,°) +a, S(2) »

where a is some constant. The other fixed point is then (¢ — 4,,
@ — 2,) . We may make a substitution which gives to this point the
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coordinates (0,1), in which case the excitation equations take the form

dy, _ .
7{~21(y1~—y1 )+ 8. 8(@)

(27)

where the coefficients § are yet to be determined and we may still
assign the projective coordinates of another point. But g, and g, are
the projective 7-coordinates of the point whose coordinates are
(@, 0;) in the &-system. Hence the following statement is immedi-
ately evident:

In the exceptional case when (1,1) 1s o fixed point of the trans-
formation (11), the excitation equations connot be given the Rash-
evsky form by any admissible substitution, but they can be given the
form (27). In these equations 1, is the root of (9) corresponding to
the fixed point (1,1), and 2, is the other root. To obtain this form one
has only to choose a. substitution keeping fixed the coordinates of
(1,1) and giving to the other fixed point the coordinates (0,1). As
for the coefficients 8, there are three possibilities:

& if ay = a,, then B, = B, whatever substitution of this type
one employs;

b. if (o, a)) is the second fixred point of the transformation
(11) then 8, = 0 and B, is — 1 or -- 1 according as a, — q, is positive
or negative;

¢. if the coefficients a do not satisfy either relation, then B, and
B. can be given arbitrary distinct values, f, = ., and in particular
B2 can be made equal to zero and f, equal to 4 1 or — 1 according as
o, — a, 18 positive or negative.

In case ¢ the substitution is uniquely determined since the coor-
dinates of the three points whose initial coordinates are (7,2) (e —4;,
a— 1;) and (o4, o,) are assigned. In cases a and b the point (w, , a,)
coincides projectively with one of the other two, and the third point
may be chosen at will.

3. Roots real and equal. If the characteristic roots are equal,
Ay = 2» = 4, and the matrix b can be diagonalized, then it is a scalar

matrix
Y7 (]
cact=b ——(0 i ),

a=c*be=»

whence
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since a scalar matrix is commutative with any matrix. Hence in the
case of equal roots the excitation equations cannot be given the Rash-
evsky form unless they are initially in this form, and any (admissible)
substitution leaves them in this form. If, in addition, a, = a;, then
the two quantities x; — «,° and x, — #,° satisfy the same differential
equation, a case which is obviously of no importance. In the light
of the discussion of the preceding section it is therefore evident that:

If the characterictic roots are equal, then the excitation equations
cannot take the Rashevsky form unless they are initially of this form.
In this case, however, it is physically necessary that «, == o, , and the
equations can be given the form

duy.
=i — o) =5(8)
(28)
d
dy; = AU —2°) »

where the sign before S(t) in the first equation is that of the quantily
O — O .

In the contrary case, when the excitation equations have equal
characteristic roots but are not in the Rashevsky form, there is only
one fixed element of the transformation (11). This can be given, say,
the projective coordinates (0,1) by an admissible substitution, pro-
vided it is not the element (1,1). The original equations in this case
can be written

dx,

g (G4a) (z, —2.°) —pa(e, —x.°) - a, S(E) »

(29)

dz, @ o 0
o T )+ (=) (@ —) + SO,

where 1 is the characteristic root and (u, 1) is the fixed element. If
a; == o, the substitution

v =p 11 u 2’ ’!/z:paz 1 (231 z’ (30)
——/l O — Oy
where
p(azﬂ_al) (1'—”) (a2—a1) > 07 (31)

yields the form
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d
L= i— ) =5
(32)
d
Fyt_z =b(¥—¥.°) + A (¥ — ¥:°) >
where
b ::(u——-l)(al——~azy)u. (33)
Ay — Oy
In case o, = o, we obtain the form
d
SR im—u) =S,
(34)
dy, . .
7 by — ) + 2 (Y. —u.°) =S(¢)

with a different expression for b. If x = 1 in (29), the fixed element
is (1,1) and the substitution yielding the form (32) or (34) is no
longer admissible.

If the characteristic roots A, = 4. = A are equal, and the excita-
tion equations are not in the Rashevsky form, they can be written in
the form (29), where (u,1) is the single fixed element. If u +# 1 and
a 7= oy, ¢ substitution of the form (30) yields the equations (32). If
01 = 0, ©t is possible to obtain the form (34). But if u = 1, neither
of these forms is obtainable by an admissible substitution and one can
only alter the form (29) by making the coefficients o, and a, equal to
zero or unity.

4. The characteristic roots complex. In this case the roots are
necessarily distinct, being conjugate complex. Let these be 4 == i p.
Then we choose the substitution which gives the coordinates (1, —9)
to the fixed point corresponding to the root 4 - ¢ u, and the coordi-
nates (1, 7) to the fixed point corresponding to the root A — i u. The
excitation equations then take the form

dy,
d?i =1 —9.°) —u(W—y.°) + £ S()

(35)

2y,
E = ) 2 — ) + S ()

The explicit form of the equations of substitution can be derived as
explained previously, but they are slightly more complicated and we
do not write them here. The substitution is uniquely determined up
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to a scale factor p. It is convenient for the further discussion to ad-
just the time units so that

2ur=1, (36)
This can always be done by substituting
r=tVEF (37)

and writing the corresponding equations in r instead of ¢. Suppose
this has been done, and let us then rename the variables, calling the
time variable in the new units ¢ instead of » and the new coefficients
and functions again 1, u, 8, and S(¢). Equation (36) is then satis-
fied and by a further choice of the scale factor p we can suppose that

B2+ p2=1. (38)
Hence we may set
A=cosy, p=siny,
(39)
pr=-cos g, p=sing,

and write our equations (385) in the form

dy. .

—;’T = (¥ —9.°) cos y — (¥ — ¥,") siny + S(¢) cos B,

) (40)
dzf = (Y1 —%°) siny + (¥ — %,°) cos y -+ S(f) sin .

The remainder of our discussion will deal with the properties of
the solutions of the equations (40), or of equations (35) with (36)
and (38) holding.

If S(t) = 0, the homogeneous equations have the solutions

Y —Y* = eM(Acosut—Bsinut),
(41)
Yo— Yo' = e*(Bcosut-+Asinput),

as one can readily verify, with 4 and B constant. In fact, A and B are
the values of ¥, — #,° and y» — ¥.° respectively, at the time £t = 0.
In the general case the solution still has this form, except that the
A and B are no longer constant, but are functions of ¢ defined by

A=Ao+fte—MS<x) cos (ue — B) da,
’ (42)
B=B,— [ e*S() sin (us — ) dz.

bl ]
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In these equations A, and B, are constant, and are the initial values
of ¥, — y,° and ¥, — ¥.° respectively.

We are especially interested in the case when S is a constant and
A, = B, = 0, i.e. when a constant stimulus is applied to a resting
fiber. In this case the quadratures (42) can be effected, and one ob-
tains

A = S[cos(f—y) —eMcos(ut—p+y)],
(43)
B = S[sin(f—y) +eMsin(ut—pg+»)].

Hence, on substituting these values of A and B into (41) we obtain

Y — Y, = S[eMcos(ut 4+ f—7y)—cos(B—7)],

(44)
Yo — Y° = S[er Sin(yt-—f—ﬂ—'y) —sin (—19»)],
or, somewhat more explicitly,
Y1— " = S[e' =Y cos(tsiny 4 f—y) —cos(F—y)],
(45)
Yo —Y° = S[e? s Ysin(Esiny + f—y) —sin(f—y)].
Excitation will occur at the first, third, --- , roots of
Y= Y=
i.e. of
e*[eos (ut + f—y) —sin(ut + — )]
(46)
. 20 - ?/1"
=cos(ﬁ—y)—-sm(ﬂ-—-y)—|————y S )
and will continue until the second, fourth, --- , roots respectively. This

equation can be simplified slightly, by means of a trigonometric iden-
tity, to the form

At t T — — ___._—‘7’20 o ’ 47
e cos(ut + 8 y+4) cos (B y+4) -+ Ve (47)
and if we set

B=p+7 (48)
we have
— ylo

e* cos(ut -+ ' — y) = cos( — y) _;_L.

49
5% (49)

For abbreviation set
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f(t) =ecos(ut 4§ —vy),
(50)

$(S) _——_—M >0,
Sv2

and write (49) in the form
F(@) = f(0) 4 ¢(S) . (51)

The following statement is now immediate: ‘

When the excitation equations (1) have complex roots i =+ 1u
there is a unique admissible substitution (4) reducing these equations
to the form (35), with g, and f, satisfying (38). By a further choice
of time unit it is possible to obtain the somewhat simpler form (40).
In these equations 2 = cos y < 0, u = sin y == 0, and y.° > y.°, but the
parameters are otherwise independent and unrestricted as to sign. K-~
citation is assumed to occur and persist whiley, > ¥ .

The general solution of these equations is given by (41) and (42),
but in the special case that a constant stimulus S is applied to a rest-
ing fiber the quadratures can be effected and the solutions are given
by (44). The intensity-time relations are then given by an equation
of the form (51) where £ and ¢ are defined by (50), excitation lasting
while (1) — £(0) > ¢(S). Since ¢ (S) > 0 for all S, while vanish~
ing asymptotically in S, and since £(t) fluctuates periodically in sign
and vanishes asymptotically in t, we have the following possibilities:

If £(0) > 0, £(t) can exceed £(0) at most a finite number of
times, and if £(0) 1is an absolute maximum of £(t) for allt > 0, no
excitation is possible for any S. If, however, f(t) exceeds £(0) for
some t > 0, then for sufficiently large S at least one discharge will be
possible, and the rheobase is given by the value of S for which
o (S) = f(t,) — £(0), t, being the value of t at the first maximum
of £(t).

If £(0) = 0 the rheobase S, is given by $(S,) = f(t,), and if t.
is the time of the n-th maximum, n discharges are obtainable by mak-
ing S > S, where ¢(8,) = f(t.). The solution S, exists and is
unique for any n .

If £(0) < 0, let S, be the unique solution of ¢(S) + £(0) =0,
and S, the rheobase obtained as in the first case. If S < S, no excito-
tion occurs; if S, < S < S, there will be a finite number of dis-
charges; if S = S,,, there will be infinitely many discharges; and if
S > B, then after aft most a finite number of discharges o state of
permanent excitation will result persisting as long as the constant
stimulus S is applied.

This last case of f(0) < 0 might seem to be physically impossible,
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but if it be supposed that an intensity S, of the stimulus is injurious,
then the mechanism breaks down for such stimuli and one still has
only a finite number of discharges from any “physiologically admis-
sible” stimulus.

It is to be noted that on this theory the frequency of the dis-
charge under constant stimulation is a fixed characteristic of the nerve
fiber, and is independent of the intensity S of stimulation. Only the
number of discharges varies with S, and this is potentially infinite
for fibers for which f(0) < 0, but limited in those for which f(0) >
0. In order to obtain variation of the frequency with S by a two-fac-
tor theory (or, in fact, by an n-factor theory) it is necessary to gen-
eralize equations (1) to a form

dx, . .
v =fi(x, —2,° 2, — x,°, S),
(52)
dx, . .
v = folX — 2,°, 2, — 2,°, S),

where it is supposed that the functions f vanish with their three argu-
ments &, — x,°, &, — x,° and S. If the functions f are expanded in
power series of the three arguments, the linear equations discussed
above may be regarded as first-order approximations.

Nevertheless, the linear theory in the periodic case yields, at
least qualitatively, not only the possibility of repetitive discharges, but
also the depressed state (relative refractoriness) and the ensuing su-
pernormal phase. However for any quantitative checks it will be neces-
sary to study the solutions (41) with A4 and B constant giving the re-
covery course after withdrawal of the stimulus, and also the course of
development of the two substances with intermittent stimulation.
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