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The general linear two-factor nerve-excitation theory of the type 
of Rashevsky and Hill is discussed and normal forms are derived. 
It is shown that in same cases these equations are not reducible to 
the Rashevsky form. Most notable is the case in which the solutions 
are damped periodic functions. It is shown that in this case one or 
more---in some cases infinitely many---discharges are predictable, 
following the application of a constant stimulus S.  The number of 
discharges increases with S, but the frequency is a constant, charac- 
teristic of the fiber and independent of S. 

1. The general linear two-factor theory. T h e  two- fac tor  nerve-  
exci tat ion theories of Rashevsky (1933) and of Hill  (1936) are nat-  
ural  general izat ions of the s ingle-factor  theory  of Bla i r  (1932),  which 
supply several of the deficiencies of Blair 's  theory.  At  the  same t ime 
these have not  appeared to yield repet i t ive  discharges of the  nerve  
fiber under  constant  st imulation,  a phenomenon which is o f ten  met  
with empirically.  I t  is the purpose of the  presen t  discussion to con- 
s ider  the most  general  possible l inear  two-fac tor  theory,  and to show 
in par t icu la r  t ha t  fo r  suitable choices of the pa ramete r s  of  the  equa- 
tions such repet i t ive  discharges are  predictable.  

In its most  general  te rms the two-fac tor  theory  postulates the ca- 
paci ty  of the nerve  fiber to develop two "substances"  or  " fac to r s" ,  the 
r a t e  of development  of each being a l inear  homogeneous funct ion  of  
the three  quanti t ies:  the  st imulus intensi ty,  and the excess of  each 
substance or fac to r  over the res t ing  value. Exc i ta t ion  is supposed to 
occur and to continue as long as a cer ta in  l inear  homogeneous funct ion  
of  the measures  of these fac tors  is positive. 

We shall speak of the  fac tors  as substances, fo r  convenience and 
definiteness of the  picture,  though they do not  need to be such, and 
we shall speak of the i r  concentra t ions  as measures  of  the factors .  
Then  if  xl and x~ are  the concentra t ions  a t  any t ime t ,  and i f  S(t)  
is the stimulus intensity,  then  the development  of the substances is 
governed by the l inear  differential  equations 
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dxl 
dt = a~ (x~ - -  x~ o) + a~ (x~ - -  x~ ~ + a~ S ( t ) ,  

(1) 
d x  

dt - -  a~l (x l  - -  x : )  + ~ 2  (x2 - -  x~ ~ + as S ( t ) ,  

where x~ ~ and x: ~ are the concentrations in the resting fiber. Since we 
are by no means insisting that  they really are substances being devel- 
oped, we shall not require that  xl and x2 be positive to be meaningful. 

By suitable choice of units and of subscripts, it is no restriction 
to assume that the condition for  excitation be of the form 

x1 - -  x~ > 0 ,  (2) 

the left member of the inequality being the linear homogeneous func- 
tion referred to above. 

Empirically only S (t) and the resulting interval o f  excitation are 
measurable, that  is to say, only S ( t )  and the times at which the in- 
equality (2) is satisfied. Hence we shall define two forms of  the two- 
factor theory as being equivalent in ease tke corresponding inequal- 
it ies (2) are simultaneously satisfied. With this definition of equiva- 
lence we shall investigate the conditions for equivalence of any two 
two-factor theories and deduce normal forms for these. 

Blair's theory is obtainable by setting- a~ = ~ ----- ~2 = a~ ---- 0 
in (1). Rashevsky's theory assumed al: ~-- a~ = 0 ,  while Hill's the- 
ory had al: = a~ ---- 0 .  Offner (1937), seeking to test Rashevsky's and 
Hill's theory experimentally, found that they were, in fact, equivalent 
in the sense defined above. Young (1937) then showed that  the most 
general two-factor theory (1) could in general be formally reduced to 
the Rashevsky form. However, when the characteristic roots are com- 
plex so are the resulting coefficients in the Rashevsky form. Physically 
this is the case of (damped) periodicity with possible repetitive dis- 
charge, and is most conveniently studied by reducing to a non-Rash- 
evsky form with real coefficients. Rashevsky (1938) has reviewed 
completely the case of the equations in his form with real characteris- 
tic roots, summarizing the equivalence proofs of Offner and of Young, 
and discussing empirical checks. 

2. Roots real and distinct. Equations (1) can be writ ten in ma- 
trix notation in the form 

dx 
dt -- a ( x  - -  x~ -}- a S ( t ) ,  (3) 

where S is a scalar, a ,  x and x ~ are column vectors, and a is a two-by- 
two matrix. Any linear substitution 
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dy dx 
y = c x ,  dt -- c ~ ,  (4) 

where  the mat r ix  c is a non-singular mat r ix  of constants,  t r ans fo rms  
the l inear differential equations (3) into the  l inear differential  equa- 
tions 

dy 
- -  b ( y  - -  yO) _~_ fl S ~ t )  ( 5 )  

dt 
where  

b = c a c  -1, f l = c a .  (6) 

However ,  we can admit  only those matr ices  c for  which inequali ty (2) 
and the inequality 

Y l -  Y~ > 0 (7) 

are simultaneously satisfied. Such matr ices  c will be said to define a n  
admissible substitution. Any equations (3) and (5) obtainable one 
f rom the other  by  an admissible subst i tut ion are  equivalent in our  
sense. 

I t  is at  once evident tha t  a scalar mat r ix  

c = ( ~  0) ,p  p ~ 0  (8) 

defines an admissible substi tution.  This has the effect only of multi-  
plying the two coefficients a I and as by the same posit ive scalar fac tor  
p. Hence, only the ratio a I *. •2 is important,  and we may, for  example, 
at  any time assume a~ and a~ to be the sine and the cosine of some 
angle. 

We next  recall the well known theorem in algebra which s tates  
tha t  for  any non-singular mat r ix  c ,  the character is t ic  roots of  the ma- 
tr ices ~ and c a c -1 are the same. These are the roots 21 and ~2 of  
the  quadrat ic  equation 

f a - - 2 I  I = 0 ,  (9) 

where  I is the identi ty matr ix.  Hence if  an admissible subst i tu t ion 
exists such tha t  the mat r ix  b is diagonal, b has necessari ly the fo rm 

(10) 

We can easily wri te  down, the mat r ix  c defining such an admis- 
sible substi tution,  when the roots ~1 and 22 are real and distinct, by  re- 
fe r r ing  to some principles of project ive geometry.  Consider the t rans-  
format ion 



132 MATHEMATICAL BIOPHYSICS 

~' -~ a ~ (11) 

of the elements (~1, ~ )  of a one-dimensional project ive form into the 
elements (~1', ~ ' )  of this  same form. When the roots ~1 and 42 are 
real and distinct  there  are two real and dist inct  fixed elements, i.e. 
two elements of the  one-dimensional form, ( ~ ,  ~21) and (~12 , ~2) 
which are  t r ans formed  into themselves by  the t ransformat ion  (11).  
These are given by the two pairs  of dependent  homogeneous equations 

~ ~ = a ~ ,  (i ---- 1, 2) ,  (12) 

I f  we  introduce new coordinates into this project ive form by  the 
coordinate subst i tut ion 

= c ~,  ~' ---- c ~', (13) 

then the t rans format ion  (11) is equivalent to 

~' = c a c -1 ~ .  (14) 

Now a project ive coordinate system in a one-dimensional form is 
fixed when the project ive coordinates of three elements of the  form 
are assigned. Let  us, therefore,  assign to the point  ~ the  ~-coordi- 
na tes  (1,0), to ~'~ the  ~-coordinates (0,1) and to (1,1) the V-coordi- 
nares (1,1). Evidently,  then, the points  (1,0) and (0,1) are  the fixed 
points of  the  t rans format ion  (14),  and therefore  this takes the form 

~i' = hi ~ .  (15) 

Since the required coordinate subst i tut ion changes the  coordi- 
nares of ~ and ~ into (1,0) and (0,1) respectively, and leaves the co- 
ordinates  of (1,1) unchanged, it is easy to wr i te  down this substi tu-  
t ion explicitly in te rms  of the  ~ j  by expressing the fac t  tha t  the anhar-  
monic ratio of an a rb i t r a ry  ~ with ~ ,  ~2 and (1,1) is equal to the an- 
harmonic  rat io  of the corresponding ~ with (1,0), (0,1) and (1,1). I f  
we  write,  then, x and y in place of ~ and ~ for  the  variable point  we 
obtain the desired form of  the subst i tut ion (4) : 

Y~=P ~ 2 ~ _ _ ~  , Y ~ = p  ~ _ _ ~  (16) 

where  p is an a rb i t r a ry  constant. 
One th ing remains to be determined. We observe that  interchang- 

ing the notat ions ~ and ~2 of the two fixed points, or, what  comes to 
the  same thing, in terchanging the subscripts  on the two characteris t ic  
roots  ~ and 2~, has the effect of interchanging y~ and y2 �9 Whichever  
root  is called 2~ and wha tever  the sign of  p, the equations x~ = x~ and 
y~ = y2 will be simultaneously satisfied, bu t  unless these are proper ly  
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associated the orders  of the inequalities will be reversed.  For  definite- 
ness we require tha t  

> O. (17) 

It is no restriction if we so choose the homogeneous coordinates of 
~ and ~2 tha t  

~2 ~ ~ 51 ~ = 1 . ( 1 8 )  

Then we have 

y~ - -  y~  = o{ ( ~  - -  ~ )  x~ - -  ( ~ ?  - -  ~ ? )  x 2 } .  

But by subtract ing equations (18) one f rom the other  we find tha t  

whence 
Y ~ - - Y ~ - - - -  , 0 ( } 2 - -  ~ , )  ( x l - - x , )  . ( 1 9 )  

Thus in order that the inequalities (2) and (7) shall be simultaneous- 
ly satisfied the designations ~ and i~ mus t  be assigned to the charac- 
teristic roots in such ~ way  

when  the scalar factor p is 
ordinates of the fixed points 

From equation (6) we 

that  

5:~--~.' > o (2o) 

chosen positive and the homogeneous co- 
are chosen to sat i fy  (18). 
have 

~2 = p ( } ~ ,  - ,  - -  ~ ?  -~)  . 
(21) 

Vary ing  the scalar fac tor  p does not  affect the mat r ix  b ,  but  only the 
magni tudes  of the coefficients ft. Hence, we may  choose this scalar 
factor  so tha t  

fl;2 @ fl~ __-- 1 (22) 

and hence so tha t  fl~ and fi~ are the cosine and the sine of some angle. 
This is in accordance with the  s ta tement  made above tha t  only the 
ratio of the coefficients of  S ( t )  is important .  Note tha t  

f l l - - f l~ = p(~2 z -  ~1) (a~ M ~ )  , (23) 

so that  the quantit ies fll ~ fi2 and a~ ~ a~ h~ve the same sign. Nothing 
can be said, however,  about the signs of fll and fl~ separately. 

We have tacit ly assumed, in the foregoing discussion, tha t  the 
point (1,1) is not  i tself a double-point of the t rans format ion  (11). 
Postponing, for  the moment,  our consideration of this possibility, we 
may summarize:  
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Let  the excitation equations in the explicit f o rm  (1) or the m a t r i x  
form (3) be such that  the roots ~ and ~ of the quadratic equation (9) 
are real and distinct. Le t  the vectors ~1 and 52, which sa t i s fy  the ma- 
tr ix  equations (12), both have unequal components.  Then  their  com- 
ponents  can be chosen to sat is fy  (18) and the indices can be so ad- 
jus ted  that  (20) /s satisfied. Then  the subst i tut ion (16) w i t h  an ar- 
b i trary  positive scal~r p is admissible and t rans forms  the equations 
(1) into the equations 

dyl 
- -  21 ( y ~  ~ Yl ~ -}- fl~ S ( t )  , 

dt 
(24') 

dt 

dy~ 
- -  ~ 2 ( y : ~ y :  ~ ~ - S ( t )  sin/?, 

dt 
for  some angle ft. This  is the Rashevsky  f o rm  of the excitation equa- 
tions, and it  contains five essential parameters.  For  stabil i ty to exist, 
and non-excitation in the rest ing state, it is necessary that 

~ < 0 ,  ~ < 0 ,  y O < y O ,  (25) 

while f rom  the nature of the subst i tut ion it fol lows that fl~ ~ fl2 and 
a~ ~ a~ sat is fy  (23) and hence have the same sign. 

In the exceptional case when (1,1) is a fixed point of the trans- 
formation (11) there is no substitution (4) admissible in our sense 
which throws the excitation equations into the Rashevsky form. If ~ll 
is the root corresponding to the fixed point (1,1) and if ~2 is the other 
root, the equations (1) are in the form 

(~xl 
dt - - a ( x ~ - - x ~ ~  ~- ( 2 ~ - - a )  ( x : - -  x~ ~ ~-a~ S ( t )  , 

~2 
dt -- (a ~ Jl:) (xl  - -  x~ ~ -~- ( ~  -4- 2~ ~ a) (x: ~ x~ o) -[- a~ S ( t )  , 

where a is some constant. The other fixed point is then (a - -  ]1, 
a - -  ~)  . We may make a substitution which gives to this point the 

(26) 

(24) 

•Y2 
- -  ~ ( y ~  _ _  y o)_~_ f12 S ( t )  , 

dt 

where  fll and fi2 are given by (21). The scalar p can fu r ther  be speci- 
fied so that (22) is satisfied, and in this case the equations (24') can 
be wr i t t en  

dYl 
- - ~ ( y i - - y l  ~ ) -~- S ( t ) cos fl , 
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coordinates (0,1),  in which case the excitation equations take the fo rm 

dYl 
dt -- 2~(y~ ~ y~~ -~ fl~ S ( t )  , 

dy: 
(27) 

where  the coefficients fl are  yet  to be determined and we may still 
assign the project ive coordinates of another  point. But  fll and ~ are  
the projective pcoordina tes  of the point whose coordinates are  
(~1, %) in the ~-system. Hence the following s ta tement  is immedi- 
ately evident:  

In  the exceptional case w h e n  (1,1) is a fixed point  of the trans- 
format ion  {11), the excitation equations cannot be given the Rash- 
evsky  f o rm  by any admissible substi tution,  but they can be given the 
f o r m  (27). In  these equations ~1 is the root of (9) corresponding to 
the fixed point  (1,1),  and ~ is the other root. To obtain this f o r m  one 
has only to choose a subst i tut ion keeping fixed the coordinates of 
(1,1) and giving to the other fixed point  the coordinates (0,1).  As  

for  the coefficients fl , there are three possibilities: 
a. i f  al = a2, then fll = t?~ whatever  subst i tut ion of this type 

one employs; 

b. i f  (a l ,  a~) is the second fixed point  of the t rans format ion  
(11) then fl~ -= 0 and f12 is ~ 1 or -~ 1 ~ccording as al - -  c~ is positive 
or negative; 

c. i f  the coefficients a do not sat is fy  either relation, then fl~ and 
fl~ can be giv,en arbi t rary  dist inct  values, fl~ :/: fl~ , and in particular 
fl~ can be made equal to zero and fl~ equal to -~- 1 or ~ 1 according as 
a~ ~ a~ is positive or negative. 

In  case c the substitution is uniquely determined since the coor- 
dinates of  the three points whose initial coordinates are  (1,1) (a - -  2~, 
a ~ ~2) and (a~, a~) are  assigned. In cases a and b the point (a~, a2) 
coincides projectively with one of the  other  two, and the  th i rd  point 
m a y  be chosen at  will. 

3. Roots real and equal. I f  the character is t ic  roots a re  equal, 
~ = ~ =- ~, and the mat r ix  b can be diagonalized, then it is a scalar  
ma t r ix  

whence 

oo 1 0) 



136 MATHEMATICAL BIOPHYSICS 

since a scalar mat r ix  is commutative with any  matr ix .  Hence in the  
case of equal roots the excitation equations cannot be given the Rash- 
evsky form unless they are initially in this form, and any  (admissible) 
substi tut ion leaves them in this form. If, in addition, a~ = a~, then 
the two quantit ies xl - -  x~ ~ and x: - -  x: ~ sa t is fy  the same differential  
equation, a case which is obviously of no importance. In the l ight  
of the discussion of the preceding section it is therefore evident tha t :  

I f  the characterictic roots are equal, then the excitation equations 
cannot take tke Rashevsky form unless they are initially of  this fo~m. 
In this case, however, it is physically necessary that a~ =/= a2 , and the 
equations can be given the f o r m  

dY:l 
dt 

- -  2 ( y ~ _ _ y o )  + _ S ( t )  , 

dy2 
dt - -  ~ ( y 2 - y 2  ~ , 

(2s) 

where tke sign before S ( t) in the first equation is that of the quantity 

In the cont ra ry  case, when the excitation equations have equal 
characterist ic roots but are not in the Rashevsky form, there is only 
one fixed element of the t ransformat ion  (11). This can be given, say, 
the projective coordinates (0,1) by an admissible substitution, pro- 
vided i t  is not  the element (1,1). Th~ original equations in this  case 
can be wr i t ten  

dxl 
dt -- ( 2 + a ) ( x ~ - - x ~  ~ - I ~ a ( x 2 -  x2 ~ + al S (t) , 

dx~ a 
dt ~ ( x l - - x l ~  + ( A - - a )  ( x 2 - - x ~  ~ + a 2 S ( t )  , 

(29) 

where  2 is the characterist ic root and (~,  1) is the fixed element. I f  
al =/= a~ the substi tution 

Xl - -  ~ X2 (~2 Xl - -  {~1 X2 
, Y2 = e , ( 3 0 )  Yl = p 1 - - ~ u  a 2 - - a l  

where 

p(a2 p--ai) ( l - -u)  ({]{2--0{1) > O, 
yields the form 

(31) 
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where  

dYl 
dt 

- -  , ~ ( y ~ _ _ y O )  • S ( t )  , 

dy2 
dt 

-- b(y~__y~O) -~r ~ ( y 2 - - y 2  ~ , 

b =  

In case a~ = a2 we obtain the form 

dy~ 
dt -- 2 ( y ~ y l ~  • S ( t )  , 

(32) 

(33) 

(34) 

The explicit form of  the equations of  subst i tut ion can be derived as 
explained previously, but  they are  slightly more complicated and we 
do not wr i te  them here. The subst i tut ion is uniquely determined up 

dy2 
-dr = t~(YI ~ Y~~ _]_ ~ (y~ __ y o) + fl~ S ( t )  �9 

(35) 

dy: 
- - b ( y l - - y l  ~ + ~ ( y 2 - - y 2  ~ ~ S ( t ) ,  

dt 

with a different expression for  b .  I f  u = 1 in (29),  the fixed element 
is (1,1) and the subst i tut ion yielding the form (32) or  (34) is no 
longer admissible. 

I f  the characterist ic roots ~1 = )~2 =- ~ are equal, and the excita- 
t ion equations are not  in the Ra~hevsky  form,  they  can be w r i t t e n  in 
the f o r m  (29),  where  (,u,1) is the single f ixeg element.  I f  ~ =/= 1 and 
al -~ a2, a subs t i tu t ion  of the f o rm  (30) yields the equations (32).  I f  
a~ = a2, i t  is possible to obtain the  f o r m  (34).  B u t  i f  ft = 1 ,  ne i ther  
of  these forms  is obtainable by an admissible subs t i tu t ion  and one can 
only alter the f o r m  (29) by mak ing  the coefficients a~ and as equal to 
zero or uni ty .  

4. The characterist ic roots complex. In this case the roots are 
necessari ly distinct, being conjugate complex. Let  these be ~ • i f~. 
Then we choose the subst i tut ion which gives the coordinates (1 ,  ---/) 
to the fixed point  corresponding to the root  2 + i ~ ,  and the coordi- 
nates (1 ,  i) to the fixed point  corresponding to the root  ~ - -  i ~ .  The 
excitation equations then take the form 

dyl 
- -  ~ ( y ~ _ _ y  o) __~(y2__y2o )  + ill S ( t )  , 

dt  
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to a scale fac tor  p. I t  is convenient for  the fu r the r  discussion to ad- 
jus t  the t ime units  so tha t  

22 _~_/~2 = 1.  (36) 

This can always be done by subst i tut ing 

= t ~/2 .~ ~- ~2 (37) 

and wr i t ing  the corresponding equations in T instead of t .  Suppose 
this  has  been done, and let us then rename the variables, calling the 
t ime variable in the new units  t instead of r and the new coefficients 
and funct ions again ~,  ~ ,  fl,  and S( t ) .  Equat ion (36) is then satis- 
fied and by a fu r the r  choice of  the scale fac tor  p we can suppose tha t  

/?2 ~_ fl22 = 1 .  (38) 
Hence we may set 

)l = cos ~,, ~ = sin ? ,  

fl~ = cos fl ,  f12 ---- sin fi,  

and wri te  our equations (35) in the fo rm 

dyl 
- -  (y, _ _ y  o) cos 7 -  ( Y ~ -  Y2 ~ sin ? -~ -S ( t )  cos fl,  

dt 

(39) 

(40) 

B = B o - -  .~ote-x~S(x) sin ( ,ux - - f l )  dx. 

(42) 

Y2 - -  Y2 ~ = e xt (B cos ~ t ~- A sin ~ t ) ,  

as one can readily verify,  wi th  A and B constant. In fact,  A and B are 
the values of y~ - -  y o, and y~ - -  y o, respectively, a t  the t ime t -= 0 .  
In the general case the solution still has this form, except t ha t  the 
A and B are no longer constant, but  are functions of t defined by 

A =Ao-[- S (x )  cos ( ~ x - - f l )  dx ,  
~ 0  

(41) 

dy2 
- -  ( y l - - y l  ~ s i n r ~  ( y : - - y 2  ~ cos ~ , ~  S ( t )  s in f l .  

dt  

The remainder  of  our discussion will deal wi th  the properties of 
the solutions of the equations (40), or of  equations (35) wi th  (36) 
and (38) holding. 

I f  S (t) --~ 0 ,  the homogeneous equations have the solutions 

yl __ y O = eXt (A cos ~ t - -  B sin ~ t ) ,  
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I n  t h e s e  e q u a t i o n s  Ao a n d  B o  a r e  c o n s t a n t ,  a n d  a r e  t h e  i n i t i a l  v a l u e s  
o f  yx - -  y O a n d  yz - -  y O r e s p e c t i v e l y .  

W e  a r e  e s p e c i a l l y  i n t e r e s t e d  in  t h e  c a s e  w h e n  S is  a c o n s t a n t  a n d  
Ao = Bo = 0 ,  i.e. w h e n  a c o n s t a n t  s t i m u l u s  is a p p l i e d  to  a r e s t i n g  
f iber .  I n  t h i s  c a s e  t h e  q u a d r a t u r e s  (42)  c a n  b e  e f fec ted ,  a n d  one  ob-  
t a i n s  

A = S [ c o s ( f l - -  ? )  - -  e -xt cos  (!t t - - f l - ~ -  y ) ]  , 
(43 )  

B = S [ s i n ( f l - -  7) ~ -  e-Xt s i n ( , ,  t - - f l - ~  y ) ]  . 

H e n c e ,  on  s u b s t i t u t i n g  t h e s e  v a l u e s  of  A a n d  B in to  (41)  w e  o b t a i n  

y ~ _ _ y o  = S [ e X t  c o s ( ~  t @ f l - -  7) - -  cos  (fl - -  Y)]  , 
(44 )  

Yz - -  y O = S [ e X t  s in  (g  t + fl - -  7) - -  s in  (fl - -  7) ] , 

o r ,  s o m e w h a t  m o r e  exp l i c i t l y ,  

Y I  - -  Yx ~ ~ S [ e  tc~ 7 cos  ( t  s in  7 + f l -  7) - -  cos  (fi - -  7 ) ] ,  
(45) 

y~ __  y o = S [e t r ~ s in  ( t  s in  7-4- fl -- 7) -- s in  (fl - -  7) ] �9 

E x c i t a t i o n  wi l l  o c c u r  a t  t h e  f i rs t ,  t h i r d ,  . . . ,  r o o t s  o f  

i.e. o f  
Y l  ~ Y2 

e xt [cos  ( s t  d -  fl - -  7) - -  s i n  ( s t - 4 -  fl - -  7) ] 
(46) 

y2 ~ - -  y l  ~ 
= cos  (fl - -  ? )  - -  s in  (fl - -  ? )  -4- S ' 

a n d  wi l l  c o n t i n u e  un t i l  t h e  s econd ,  f o u r t h ,  . . . ,  r o o t s  r e s p e c t i v e l y .  T h i s  
e q u a t i o n  c a n  b e  s imp l i f i ed  s l i g h t l y ,  b y  m e a n s  o f  a t r i g o n o m e t r i c  i d e n -  
t i t y ,  to  t h e  f o r m  

e~ cos (st § ~ - -  r + ~-) = cos ( 8 - -  7 § ~-) + 
4 4 

a n d  i f  w e  s e t  
21 

w e  h a v e  

e ~ cos(~t -J- ~'-- r) = cos ( ~ ' - -  r) § 

F o r  a b b r e v i a t i o n  s e t  

y O __ yl o 

, ( 4 7 )  
SV~ 

(4s) 

y O __  y O 

S V ~  
(49 )  
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f ( t )  ~ e~ cos(~t + ~ ' - -  r ) ,  
(50) 

~(S)  - - Y ~ ~  > O, 
s ~  

and wr i te  (49) in the fo rm 

f ( t )  = f ( o )  § 4 ( s )  �9 (51) 

The following s ta tement  is now immediate:  
When the excitation equations. (1) have complex roots ~ • it~ 

there is a unique admissible substitution (4) reducing these equations 
to the form (35),  with fil and fi2 satisfying (38).  By a further choice 
of time unit it is possible to obtain the somewhat simpler form (40).  
In these equations 2 ~- cos ? < 0,  ~ = sin y :/: 0 ,  and y O > y o, but the 
parameters are otherwise independent and unrestricted as to sign. Ex- 
citation is assumed to occur and persist while yl ~ Y2 �9 

The general solution of these equations is given by (41) and (42),  
but in the special case that a constant stimulus S is applied to a rest~ 
ing fiber the qvndratures can be effeeted and the solutions are given 
by (44).  The intensity-time relations are then given by an equation 
of the form (51) where f and ~ are defined by (50),  excitation lasting 
w~kile f ( t )  - -  f ( 0 )  _> ~ ( S ) .  Since ~(S)  > 0 for all S ,  while vanish- 
ing asymptotically in S ,  and since f (t) fluctuates periodically in sign 
and vanishes asymptotically in t ,  we have the following possibilities: 

I f  f ( 0 )  > 0 ,  f ( t )  can exceed f ( 0 )  at most a finite number of 
times, and if f (0) is an absolute maximum of f (t) for all t ~ 0,  no 
excitation is possible for any S .  If, however, f (t) exceeds f(O) for 
some t > 0, then for sufficiently large S at least one discharge will be 
possible, and the rheobase is given by the value of S for which 
~(S)  ---- f(t~) - -  f (O),  % being the value of t at the first maximum 
of r (t). 

I f  f(O) = 0 the rheobase S~ is given by 6($ i )  : f ( t~) ,  and if G 
is the time of the n-th maximum, n discharges are obtainable by mak- 
ing S ~ S. where (h(S.) = f ( t . ) .  The solution S. exists and is 
unique for any n .  

I f  f(O) < O, let S~ be the unique solution of ~(S)  q- f(O) = O, 
and S1 the rheobase obtained as in the first case. I f  S < SI no excita- 
tion occurs; if  S~ < S < S~ there will be a finite number of dis- 
charges; if  S -= S~ , there will be infinitely many discharges; and if 
S > S~,  theva after at most a finite number of discharges a state o/ 
permanent excitation will result persisting as long as the constant 
stimulus S is applied. 

This last case of f (0) < 0 might  seem to be physically impossible, 
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bu t  if it  be supposed that  an intensity S~ of the st imulus is injurious,  
then the mechanism breaks down for  such stimuli and one still has 
only a finite number  of discharges f rom any "physiologically admis- 
sible" stimulus. 

I t  is to be noted tha t  on this theory the f requency of the dis- 
charge under  constant  st imulation is a fixed character is t ic  of the nerve 
fiber, and is independent  of  the intensity S of stimulation. Only the 
number  of  discharges varies with S ,  and this is potential ly infinite 
for  fibers for  which f ( 0 )  < 0 ,  bu t  limited in those for  which f ( 0 )  > 
0 .  In order  to obtain var ia t ion of the f requency with S by a two-fac-  
tor  theory  (or, in fact,  by an n-factor  theory)  it is necessary to gen- 
eralize equations (1) to a form 

d X l  
dt - - f l ( x l - - X l  ~  ~  

dx2 
d t  - -  f ~  ( x l  - -  x~  ~ , x :  - -  x :  ~ , S )  , 

(52) 
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where  it is supposed that  the functions f vanish with their  three argu- 
ments  xl - -  xl ~ , x2 - -  x2 ~ and S. I f  the funct ions f are  expanded in 
power  series of the three  arguments ,  the l inear equat ions discussed 
above may  be regarded as f irst-order approximations.  

Nevertheless,  the l inear theory  in the periodic case yields, at  
least qualitatively, not  only the possibil i ty of repet i t ive discharges, bu t  
also the depressed state (relative refractor iness)  and t h e  ensuing su- 
pernormal  phase. However  for  any  quant i ta t ive checks it will be neces- 
sary  to s tudy the solutions (41) with A and B constant  giving the re- 
covery course a f t e r  wi thdrawal  of  the stimulus, and also the course of 
development of the two substances with in t e rmi t t en t  stimulation. 


