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The author's previous t reatment  of diffusion of oxygen from an 
idealized capillary is made more exact;  the t reatment  here is valid for 
any substance which diffuses between blood and tissue, though the physi- 
cal situation is still somewhat idealized. A general equation is derived 
but not solved. 

Then follows an approximate t reatment  of the case in which all 
capillaries within a certain sphere have ceased to flow; conditions are 
discussed under which cells at  the center of this sphere will die. 

In an earl ier  paper  (Bloch, 1941), the  au thor  presented an ap- 
proximate  t rea tment  of the problem of diffusion of oxygen f rom a 
capillary. The present  paper  contains a formulat ion of the exact prob- 
lem of diffusion of any substance f rom or into a capillary. 

We shall again consider a circular cylindrical capillary of length 
l ,  whose axis is to be the ~-axis, so that  t ~ 0 a t  the arteriole and 

-~ l ,  a t  the venule, r (P)  will be the distance of point  P in the t issue 
f rom the t -axis ;  ro will be the radius of the capillary, and v the  ve- 
locity of the blood-flow. D and h will denote, respectively, the  t issue 
d~ffusion coefficient and the capillary permeabi l i ty  of the substance 
under  consideration, while Q (P)  will be  the ra te  of production of the  
substance in gm/cc  sec at  point  P in the tissue, ro and h are  assumed 
to be constant.  

I .  The case of oxygen: For  consideration of oxygen, we shall 
need to define some more quanti t ies:  

Co( t ) - - concen t ra t ion ,  in gm cm -3, of oxygen dissolved in the 
blood. 

c~--vo (0) ,  c~ ~ Co (l) ,  e' (~) -~ concentration, in gm cm -~, of 
oxygen in the  t issue immediately outside the capillary 
wall. 

xo (~) - -  concentration, in gm per cm 3 of blood, of removable oxy- 
gen in oxyhemoglobin. 

~ - - x o ( 0 ) ,  x ~ - - x o ( / ) ,  To(~) - -  x~ + co( t ) ,  T1 - -  xl + ~ ,  
T~ - -  x~ + c~, c (P)  - -  concentration, in gm cm -3, of oxy- 
gen at  point P in the tissue. 
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_ _  1(8C) (1) 
From material balance (Bloch, 1941), we have the following ex- 

pression: 

dTo 
-vro - - ~  -~ 2h [Co (r - c' (r ] - -  8nDa. (2) 

Also we know that the diffusion equation may be used in the tissue: 

Q 
V=c-- _ ~. 

The diffusion equation may be otherwise stated; the capillaries in the 
volume V' of tissue will make a contribution to e(P) which will be 
given by the sum of several surface integrals, each of which is taken 
over the surface of one capillary; added to this sum will be a volume 
integral, which represents the effect of tissue metabolism within vol- 
ume V': 

x + f f (=) .. v, ,4nDp' (P',P)" 

Here S~ is the surface of the i-th capillary: o(poP) is the distance 
from P to Pi ,  the general point on S~, and p' (P',P) is the distance 
from P to P', the general point in V'. Equation (3) is a special case 
of the general solution of Poisson's equation (MacMillan, 1936). 

Bloeh (1941) gave a brief discussion of the effect of other eapil- 
Iaries on concentration of a metabolite at a point in the region of 
supply of some particular capillary. The only conclusion reached was 
that, in general, this effect could not be neglected. It will, however, 
be evident that  distant capillaries will have less effect at points im- 
mediately outside the surface of some particular capillary than at 
points nearer the boundary of the region of supply. Hence, we shall 
set up equation (3) for c' (z), and shall neglect all terms but the first 
in the summation. The z-axis is to be taken coincident with the ~-axis, 
but whereas $ is defined only for points within the capillary and on its 
surface, z is defined only for points in the tissue. Thus c'(~) and c'(z) 
are logically distinct, but physically identical. 

Equation (2), combined with equation (3) set up as proposed 
above, will still require one more relation to make the problem deter- 
minate. This relation may be most conveniently obtained by consid- 
eration of the equilibrium between dissolved oxygen and oxyhemo- 
globin, which consideration should lead us to an expression for xo (co). 
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Xo (Co) having been found, equation (3) for  c' (z) can be solved, 
and the quantities c'(~), Co(~), Xo(~), To(~), and a(~) will all be de- 
termined.  Then this value of a(~) can be subst i tuted in each term of 
equation (3), which substitution, combined with a reasonable assump- 
tion about Q (P) ,  will reduce the problem of determining c (P) in the 
field of n equivalent capillaries to tha t  of evaluat ing the integrals. If, 
on the other  hand, we prefer  not to make any  assumptions about 
Q (i5), we can use H. D. Landahl 's  expression for  Q (c) (Rashevsky, 
1940) in the volume integral,  in which case c (P) will be the solution 
of an integral  equation. Thus, by the use only of t h e  approximation 
involved in dropping all but one of the terms in the summation in 
equation (3) when solving for  c' (z),  we shall be able, in principle, to 
obtain an expression for  c (P) .  

Bloch (1941) gives a discussion of the equilibrium between oxy- 
gen a n d  oxyhemoglobin, in which it is pointed out t ha t  Xo will depend 
not  only on Co, but also on concentration of CO~ and on the t ime lag 
in dissociation of oxyhemoglobin. I t  has seemed expedient to neglect 
the t ime lag, and to determine the relationship between Xo and Co and 
CO~ concentration by reference to data  in L. J. Henderson, (1928, p. 
130). The curves here show y ,  percentage of  hemoglobin oxidized, as 
a funct ion of u ,  pressure of dissolved oxygen in mill imeters of mer- 
cury. The parameter  of the family of curves is w ,  pressure of C 0 2 ;  
since its effect is slight ( if  w and u are expressed in mm Hg ( d u / d w ) v  
--- 1/4 per cent m m - ~ ( d y / d w ) , ,  -~ 2,/3 per cent mm-~), we have set 
y (u,w) ---- y (u, average w) .  y (u) may  be fa i r ly  well represented in 
the significant range o f u  ( f rom 20 to 80 r a m )  by a parabola: 

y - -  a2u 2 + a~u + ao 

where u2 : - 2.18 • 10 -~, al - -  3.24, and ao : - 27.3. 
To get  xo (co), one must  get Xo (y) and U(Co). Both these relation- 

ships are simple proportionalities. 

x8 
xo "-- ~ y : M y  (4) 

where x~ is the concentration of oxygen in H b O ~ ( g m  cm -~ of blood) 
when H b  is 100% oxidized, and M - -  x s / 1 0 0 . 1  Also, u is proportional 
to Co : 

U "-- N c o .  

1 It may be of interest here to note that anemia will be characterized by a 
low value of the quantity x 8 . Perhaps in the future it will be possible to inves- 
tigate anemia from this point of view. 
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Hence we have 

xo -"  M y  = M  (o~u 2 + a~u + %) - -  M (a~N2co 2 + alNco + ao). (5) 

Since To ---- Xo + Co, 

To " -  Co + M (u2N~c,, ~ + %Nco + ao) ~- 72002 + 7~Co + 70 (6) 

the 7's being defined in terms of the a's and N by equation (6). 
Now we are able to comlaine equations (2), (3) and (6) into a 

single equation in one unknown. 
First,  since we shall be manipulat ing only the surface integral in 

equation (3), we shall substitute A for the volume integral. We have 

c (P) - f , f  p(p,p------~ + A 

o r  ?2. 
~'~ roa(~) d ~ + A (7) c'(z)=jodejo..V2 o (i cosO)+(z-O 2 

o o 

where O is the angle between the radii vectores to the  points p and P .  
Only one angle appears in the integrand because a is assumed to be 
a function of ~ only. 

From equation (2) we learn that  
vro dT~ 

o- ( 0  - -  ( 8 )  
8riD d~ 

and that  
vro dTo 

c' (~) ---- co (~) + 2--ff d-~-" (9) 

Equation (6 )g ives  us another expression for dTo/d~: 

dco 
dTo _ (27:Co + 7~) - (10) 
d~ d~ " 

If  we substitute in (8) and (9) the value of dTo/d~ given in (10), 
and substitute the resulting expressions for c'(~) and a($) in (7), 
we get 

vro dco 
Oo (z) + - ~ -  [2r~Co (z) + rl] gz 

- -3o Jo 8 ~ D d O  vr~ [27~eo(~) + 71] - -  (11) 

• dr 

\/2ro2(1 -- cos O~-+ (z -- ~)2 

ddo 
d~ 

4aDp' (P ' ,P)  " 
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Equation (11) will, in principle, give us ao(~), from which we 
can readily obtain c'(~), a(~), To(~), and xo(~). If  we put the value 
of a( ( )  thus derived into equation (3), we will have a determinate 
expression for c (P).  Therefore the present desideratum is the solu- 
tion of (11). Unfortunately, however, equation (11) is of a form 
which is, so far  as is known, not soluble. Hence we shall have to con- 
fine ourselves to an incomplete discussion of the solution. 

First, it is evident that, since O =< z =< l,  there will, for every 
choice of P (z ) ,  be one point in the range of integration in (11) at 
which the integrand will become infinite. That this singularity will 
not make the integral become infinite can, however, be shown by the 
follow, ing argument: Consider a small circle, of radius 0, fitted to 
the surface of the capillary with its center at the point P ( z ) .  If  
is sufficiently small; we may approximate the integration over the in- 
terior, ~, of this circle by integration of a constant ~, the average 
value of a in the neighborhood of P, over a circular region of a plane; 
as ~ approaches zero, this approximation becomes exact; for any ~ > 0, 
the singularity in the integrand occurs within the circle, so that  there 
will be no singular points encountered in integrating over such of the 
capillary surface S as lies outside 7- Now, if e denotes the distance 
from the center of the circle to the general point in ~, our integral 
becomes 

f ~ .  2~e f o  ~ de "- 2~ade ---- 2 ~ .  
Jo 8 

This quantity obviously approaches zero as 5 approaches zero, so that, 
as ~ approaches zero, the integration over S - ~ approaches a finite 
limit; it is evident that  the singularity at P does not make the integral 
diverge. 

H. The case of glucose: The problem of the diffusion of glucose 
is simpler than that  of oxygen because glucose experiences no buffer- 
ing so, 

Co(() - To((), Xo(() - - 0 .  
For this reason, the equation corresponding to equation (11) is 

2,~ z ~ dc~ 

vro dco dO 

The same argument as that given for the case of oxygen applies here 
and shows that  the singularity in the integrand does not make the in- 
tegral diverge. 
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III. Other cases: I t  will be Seen tha t  other  metaboli tes will be- 
have either like oxygen or  like glucose; we sha l l  denote the types of 
substances exhibit ing these two types  of behavior  as types I and II, 
respectively, type  II being, as we have seen, a special case of type I. 

A. Non-buffered substances:All non-buffered substances behave 
like glucose, and hence belong to type  II. Therefore  equation (12) 
applies to their  concentrat ions in the blood, and its solution will en- 
able us to compute all other  unknown quantit ies.  

B. Buffered substances: In the general case of buffering, the 
substance will exist in several forms,  in some of which, the "mobile" 
forms,  it can pass through the capillary wall and in the rest  of which, 
the  "immobile" forms, it cannot. Let  us denote by co (~) the total con- 
centration, in gm per  cc of blood, of the substance in mobile form, by 
Xo (~) its total concentrat ion in immobile form, and, as for  oxygen, by 
To(~) the sum Co(~) + Xo(~) ; let c(P) ,  x (P) ,  and T(P)  be the corre- 
sponding concentrat ions at point  P in the  tissue. Let  us assume we 
know x as a function of V(Xo as a function of Co) when the forms  are  
at  equilibrium. 

We are  t rea t ing  a s teady state, so we assume the existence of  
equilibrium between mobile and immobile forms in the  tissue, and, in 
accordance with the t rea tment  of oxygen, neglect any t ime  lag there 
may  be in the t ransi t ion between the two forms in the blood. 

I t  will be seen that  buffer ing in the t issue will manifes t  i tself by 
influencing the production integral  in equation (3) .  But, since we are  
dealing with the case in which exactly as much of the substance goes 
f rom the mobile form to the immobile form as goes the other  way, 
a t  any point  in the tissue, it is evident tha t  buffering in the t issue has 
no effect on the value of Q ,  and hence introduces no change in our  
problem. 

Buffering in the blood will manifes t  i tself  exactly as :it did in o u r  
t rea tment  of oxygen. ~ will be defined in the same way, and equations 
(2) ,  (3) ,  and (7) will be unchanged. The steps between equation 
(7) and equation (11) will be essentially the  same as before, except 
that,  in general, we shall not have xo as a quadrat ic  function of co. 

dTo d __ [dxo + 1rico 
[Xo(Co) + col [gCo 

dco + 1 will be known:  let us denote it by r (Co). Hence, f rom equa- 

t ions (8) and (9) ~, 

yr. dco 
(13) 
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_ V r o  . c ~ o  
C' (~) = Co (~) -~ ~-~ + (Oo) ~ - .  

The generalized version of equation (11) will thus be 

vro d ~ _  
Co (z) + ~ + (Co) dz - -  

d4~, 0 
r -~--d~ 

(14) 

(15) 

fO 2~ ~l 
dO I vr~2 + A . 

Jo 8rid x/2ro2(1 - cos O) § (z - ~)~ 

It will be evident that equations (12) and (14), for general sub- 
stances of types II and I respectively, will hold whether the substances 
are being produced or consumed in the tissue, since the sign of Q does 
not affect the validity of equations (2), (3), or (7), from which the 
later equations are derived. Actually, also, equation (12) is a special 
case of equation (15), in which ~(c~) ~ 1.  

Thus the solution of equation (15) will determine the behavior of 
any metabolite in its passage between blood and tissue. 

IV.  Since the solution of equation (15) presents seemingly in- 
surmountable difficulties, we shall derive an expression which should 
enable us to find, approximately, the effect of distant capillaries. 

First, because we are interested in the concentration at a point 
far  from a capillary, we shall t reat  the capillary as a line segment 
of length / ,  omitting the integration with respect to 0 in equation 
(3). In accordance with this change, we must replace q, productivity 
per unit area, by ~, productivity per unit length. It  will be seen that 

---- 2nroq . (16) 

Hence, if we denote by a~ (P) the contribution to c (P) made by 
the i-th capillary, and by A (P) the effect at P of production in the 
tissue, as in equations (7), (12), (15), we have 

c(P)  - -F ,  o~(P) § A ( P ) .  (17) 

The quantity c~ (P) will be given by the following equation: 

c ,(P)  ----__,]o_ P ~  - -2nro | - : - -  ~_~__- (18) 
J o  V r'~ + (z~ - ~)2 

Determination of a (~) reqtfires the solution of equation (15) or 
an equivalent equation, in which can not be used the line-segment ap- 
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proximation of this section, since the equation applies to a point  ad- 
joining the surface  of  the capillary. F o r  this reason, we shall inves- 
t igate  the form of c (P)  for  two simple forms of ~, assumed given. 

F rom equation (2) we  note that,  i f  a(~) is a polynomial of degree 
K ,  To(F) is  a polynomial of degree K + 1 .  In part icular,  if  ~(~) is 
a constant,  a(F) - -  ~o, we have To(F) a linear function of ~, 

T ~ - T ~  
To ( ~ )  = T~ + - -  ~ 

1 

and vro T ~ -  T~ (19) 

a - -  ao 8riD l 

Also, i f  a is linear, To is quadrat ic :  

To (~) = To + m~ + ~F ~ 

and (20) 
Vro 

( ~ )  - -  - -  8 n D  ( g l  + 2 ~ )  

In the case of quadrat ic  To(~) [equation (20)] ,  we have not  
enough facts  a t  our  disposal to evaluate the  coefficients gl and ~ ,  bu t  
if  To(F) is l inear [equatiOn (19) ] ,  all coefficients a re  determined. I t  
will be seen la ter  tha t  this l inear form is the most  useful. 

Vro T1 - T~ 
I f  q(~) is constant,  equation (19) tells us i ~  value is 

8riD 1 
Thus, f rom equation (18),  we have, dropping the subscripts  and per- 
forming  the integration, 

vro2(T~ - T~) x / r  2 + (z  - l) 2 + 1 - z 
c ( r ,  z )  ~ log - . (21) 

4Dl  x / r  2 + z 2 - z 

I f  To is quadrat ic  and a linear, as in equation (20),  so tha t  

v~o 
a ( F ) - -  8nD (~1+2~2~) ,  

then integrat ion gives 

c ( r , z ) - -  ~ D I 2 # ~ [ ~ / r 2 +  ( z - - l ) 2  - - ~ r 2 + z 2  ] 

+ 1] #1 log ~/r2 + (z -- i) z + 1 -- z l �9 (22) + [2~z  
~ /~  + z 2 z ] 

When one is dealing with an actual capillary, To and q cannot  
be l inear and constant,  respectively, since expression (21) is sym- 
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metric about the plane z -- 1/z, while linearity of To implies asym- 
metry in Co and in c', hence in v(P) ,  if permeability, h ,  is assumed 
constant. However, in treating the case of many capillaries, oriented at 
random, we shall assume that  for each capillary with a given orienta- 
tion there is another at the same distance with opposite orientation, 
and shall use equation (21) to express the effect of one capillary. 

Distance in this case will be the distance from the central point of 
the capillary: 

R - - 4 r 2 - { -  ( z - ~ ) 2 ,  

or, if 

z - / - - Z , R - - V  r~ + Z  ~. 
z 

We shall set r --  Z on the average. Now equation (21) becomes 

c ( R ) ( ~ c ( r , Z )  ) -vr~ T~)~ 

1R P R l -t-- 
V2 2 

• log ,, (23) 
/ P R l l R + 

R~ + V2 4 V 2  2 

Since we are interested only in the effects of distant capillaries, 
we shall assume l is small compared with R and shall hence subtract 
~l ~ from the radicands in both numerator  and denominator of equa- 
tion (23)~, thus making the radicands perfect squares. Now it is easy 
to integrate c (R) over the volume between R ~ R1 and R ~ R2. This 
integration will give us an expression for contributions to concentra- 
tion at point P of all capillaries lying between two spherical surfaces 
of radii R1 and R2, respectively, with their centers at P. R~ > R1. 
What we are doing here is treating these capillaries as a producing/ 
consuming continuum rather  ~han as discrete producing/consuming 
bodies; we shall obtain ~ c~ (P) [see equation (17)] for the case in 
which all capillaries within a sphere of.radius R1 have ceased to flow. 
if the tissue has radius R2 �9 
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c~(P) ~nvro2(T~ - T~) I R,~ R~ + �89 
- -  3D1 [ log R: - �89 

/, 

~a R2:' -- -~- R1 § l l  / 
+ ~-  log  ~ - R ~  log R1 ~-------7_ + �89 ( R~* - R ~ ) I  " 

R 1 2  - -  4 

(24)  

Here n is the number of capillaries per cubic centimeter between R1 
and R~. A (P) will be given by the following integration: 

A (P) 4~DJ ~ R = ~-~ R~ ~. (25) 

Thus, by combining equations ( 2 4 ) a n d  (25) in accordance with 
equation (17), we obtain 

~nvro~(T1 - T2) [ R~ + �89 R1 + �89 
c (P )  - -  ~D1 R~ ~ log R~ - �89 - R~ log R1 - �89 

L 

F (26) 
lS R22 - 4- 1 Q +-~log 12 +�89 +~-~R~ 2. 

R 1 2  - -  _ _  

4 

Equation (26), then, enabling us, as it does, to calculate concen- 
tration in a region whose capillaries are not flowing, should be sus- 
ceptible to experimental verification. 

An assumption which must be made concerning tissue is that, if 
equivalent capillaries are uniformly distributed, n per unit volume, 
throughout tissue, each capillary produces/consumes exactly one n-th 
as much of any metabolite as is consumed/produced in a unit volume 
of tissue. This must be true if the tissue is in a steady state. 

If, as in the case we are considering, the capillaries inside a 
sphere of radius R1 are not flowing, then capillaries at distances from 
the center not much greater  than R~ will have to supply/consume 
some of the material  that  normally would have been supplied/con- 
sumed by the capillaries inside the sphere. For this reason they will 
have values of ~ greater  in absolute magnitude than the average value 
for the whole tissue; hence equation (26) is not accurate, since a in 
fact should be a function of R and so should have been included in the 
integrand. This correction we shall neglect. 
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Whatever  may  be the correction to a for  the closer capillaries, it 
will be seen that  the more dis tant  capillaries will be less affected by 
the absence of capillaries within the sphere of radius R~ ; as R ap- 
proaches infinity, the correction approaches zero, so tha t  capillaries 
at  infinite distance f rom P will each produce/consume exactly as much 
mater ial  as  is consumed/produced in one n-th unit  volume of tissue 
at  infinite distance. Hence, 

dc ( P )  
l im - -  - -  0. (27) 

R~,~ dR~ 

Application of equation (27) to equat ion  (26) will give us a re- 
lation between Q and (T~ - T:) in terms of the other  quanti t ies in- 
volved: 

r 
lim nnvr~ ( T~ - T f )  | 

R ~  D 1  L 

R~ l 

R2 log + ~ - -  0,  ( 2 8 )  

R~ 2 

whence 

o r  

n n v r o  2 (T1 - Tf) R~ ~- Q 
D ~ R f - - 0  

Q 
- - -  ( 2 9 )  ~Wro ~ ( T I -  T~) - -  n" 

Equat ion  (29) is identical with the relation between Q and 
(T1 - T~) obtained by a different method. 

I f  blood is flowing with velocity v in a capillary of radius to ,  then 
the volume of blood passing a given point  per  uni t  t ime is n r J v .  Then, 
if  the concentrat ion of some substance is T~ at the enter ing end of the 
capil lary and T2 at  the other  end, the blood enter ing per  unit  t ime con- 
rains a mass  of the substance equal to Tlnro fv ,  while the mass  con- 
tained in the  blood leaving per  unit  t ime is T f n r J v .  Hence, in uni t  
time, the blood loses (T1 - T~)nro~v,  or gains (T~ - T1)nro fv ,  mass 
units. Now, if there  are  n capillaries per  uni t  volume of tissue, and if  
we assume each capillary to produce/consume as much of  the sub- 
stance as is consumed/produced by a volume 1 / n  of tissue, then 

Q 
(T1 - T~)nro~v z - - -  (30) 

n 
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if Q is production per unit volume of tissue. Equation (30) is seen 
to be identical with equation (29). This fact does not  constitute a 
verifica'tion of our assumption that  q is constant, since the assump- 
tions leading to equations (29) and (30) are equivalent for any q (~), 
and thus must lead to the same equation. Hence the identity of (29) 
and (30) merely indicates that the error  introduced in ,the approxi- 
mation used in integrating equation (23) vanishes as R approaches 
infinity. 

I f  we now substitute for Q in equation (26) its value as given by 
equation (29), we obtain 

c ( P )  - -  nnvr~ - T~) [ R~ ~ log R2 + �89 R1 + �89 
3Dl R~ - �89 - R~8 log R~ - ~-----~ 

t 
l s ,  R~ 2-~/~ 1 3 ] (31) 

~. 1R~ ~ 1R~ 2 J " + - g  - 

I't is now possible to obtain an expression for concentration at 
any point "P at distance ~( from point P, if  ~ < R~ and if we assume 
the field within the sphere of radius R~ about P is spherically sym- 
metrical. This comes from solution of the diffusion equation 

Q 
D 

whose solution for this case is 

c ( ~ )  nnvro~(T1 - T2) [ R~ + �89 
- -  3D1 [ R~3"l~ R~ - �89 

.R1 + �89 la lo R~ - �88 3 ] (32) 
R1 s log Rl  _ �89 + -~ g ~-~2 -_ ~-i~ �89 - ~ lR~2 + �89 l ~  " 

J 

All the foregoing treatmen't has been carried through on the as- 
sumption that Q is constant. Whether or not this will in general be 
true is difficult to say; Landahl has, however (Rashevsky, 1940), ob- 
tained relations between concentration and consumption for glucose 
and oxygen, respectively. These relations show that, as concentration 
of ei ther of these substances outside a cell increases, the cell's con- 
sumption of this substance approaches an asymptotic value -Q*. It 
is possible to define in each case a value c* of external concentration 
such that  Q may be considered equal to Q* if and only if c > c*. It 
seems also reasonable to assume that metabolism of other substances 
depends upon the metabolism of oxygen and glucose in such a way 
that if oxygen and glucose concentrations, denoted by C and C' re- 
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spectively, a re  grea te r  than  thei r  critical values, G* and G'*, all produc- 
tions and  consumptions are  constant, provided the constants  of  the  
cells in t h e  tissue do not  change. Hence, our t r ea tmen t  is valid i f  
and only if G ->- G* and C' >= G'*. In Rashevsky, 1940, we find expres- 
sions for  G and G': 

G = X -~ ,  + Q.~---~Q (33)  - Q  

Q' ~'o' 
C' = Z - ~ .  + q, .  q,  . (84) 

Here  Q ,  Q*; Q', Q'* are  consumption and critical consumption of oxy- 
gen and glucose, respectively. 5 , 5 ' ,  Z,  g' a re  constants given in Ra- 
shevsky, 1940 ; my  Z is Rashevsky's ~. These constants depend, in par-  
ticular,  upon the na ture  of the cells in the tissue. 

Now we set 

G * = g + ~  

C'* - -  7.' + ~'. (35) 

These are  the values of C and G' at  which the s t ra ight  lines t angent  to 
the G(Q) and G' (Q') curves, respectively, a t  the origin, intersect  the  
lines Q = Q* and Q' = Q'*. They seem reasonable values for  G* and C'*. 

If  we now substitute for  T~, T2, D the values q' l ,  "/'~, if); 
T~', ~'2', 'D' for  the special cases of  oxygen and glucose, respectively, 
and substi tute for  c (P)  in equation (31) the values of G* and C'* f rom 
equation (35), we obtain 

+ 5 ~ nnvr~ ('FI - T~ ) I R: + �89 
g 3'D1 [ R2310g R~. -- �89 

R1 + �89 Is 1 R22 - -  ~12 3 2 ] 
-- R13 log R~ - �89 + 8- og R I  2 �88 - �89 - ~. IR2 j �9 

+ ~ , =  anvro 2 ('i"1' - ~2') [ R2 + �89 Z' 
3D'l [ R~ 3 log R~ - �89 

R1 + �89 l ~ R22 - 112 3 ] 
- R1 ~ l o g  R1 - �89 + 8 -  l o g  R1 ~ _ �88 - �89 - ~ tR22 ] " 

(36) 

These equations give the conditions tha t  concentrat ions of oxygen 
and glucose, respectively, are  as low as they can be if metabolism is to 
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remain constan,t as concentrat ion changes. I f  R~* and RI'* are  the 
values of R1 for  which these two equations are true, then the smaller 
of  ,these is the  radius of  the  largest  sphere of  capillaries whose  ceas- 
ing to flow will not  decrease metabolic ra te  a t  any point of  the tissue. 

I f  we divide each equation (36) by the (positive) coefficient in 
f ron t  of the brackets  on the r ight  side, we get  two equations, in each 

o f  which the quant i ty  on the r ight  side is the same decreasing func- 
tion of R1. Hence, RI* < R~'* if  

3"D/( z + ~) 3'D'/( z' +~ ' )  > 
nnvro2(T~ -- T~) nnvro2(T~ ' -  T2') 

o r  if 
(37) 

(z + ~) ~)'(z' + ~') > 

Thus we see tha t  if  the inequality (37) is true, oxygen is the  critical 
substance in maintenance of asymptot ic  metabol ism;  otherwise,  glu- 
cose is the critical substance. 

Once we have discovered whether  or  not inequality (37) is true, 
we know which of the equations (36) to solve for  R1. I t  is to be ex- 
pected tha t  when R1 exceeds this value, the metabolism of the cells in 
the  center  of ,the sphere of non-flowing capillaries will considerably 
slow down, and in some tissues, notably in brain and in s t r ia ted 
muscle, the cells may  begin to die. 
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