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1 Introduction 

THE TISSUES of the human central nervous system are 
bathed in a Clear fluid which is a dilute solution of 
salts and protein. This cerebrospinal fluid (c.s.f.) is 
formed inside the ventricles which are within the 
brain and also lies outside the brain and the spinal 
cord in the subarachnoid space. It does not normally 
lie within the spinal cord, the only exception being 
in syringomyelia, a disease which is sometimes called 
hydromyelia. The transmission of energy through 
c.s.f, is responsible for several disease processes. 
The best known of these is hydrocephalus (water on 
the brain), which is principally a hydrostatic 
phenomenon, being due to the damming back of 
fluid formed within the ventricles. The c.s.f, is 
subject to pulsatile as well as hydrostatic pressures 
and pulsations probably play a part in hydrocephalus 
both alone and with spina bifida, as well as the 
principal part in the formation of syringomyelia, 
syringobulbia and various other cystic malforma- 
tions. 

The fluid in the spaces around the brain and spinal 
cord is bounded by two membranes, the arachnoid 
which is very thin and immediately outside that, the 
dura mater which is a fibrous membrane (Fig. 1). 
The subarachnoid space a round the spinal cord 
approximates in shape to an annulus and in ad- 
dition to c.s.f, contains nerves, vessels and fine 
supporting ligaments of the cord. In the skull, the 
dura is fastened to bone and is therefore rigid, but in 
the spine it demonstrates some elastic properties. 

To gain some knowledge of the nature of propa- 
gation of pulse waves, a theoretical and practical 
study has been undertaken on the nature of the pas- 
sage of cough impulses along the spinal canal. 

"First received 16th February 1973 and in final form 22rid August 
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2 Resting pressure of c.s.f. 

Pressures within the c.s.f, pathways have tradi- 
tionally been measured with the patient in a hori- 
zontal position lying on the side. An open-ended 
manometer has been connected to the subarachnoid 
space. Normally, fluid rises into the manometer and 
pressures are therefore given in millimetres of c.s.f. 
(virtually water) above the midline. Arterial blood 
pressures are higher and taken with a cuff connected 
to a mercury manometer. Mercury units are now 
commonly used for c.s.f, pressure recordings also. 
1 mm Hg = 13" 5 mm c.s.f. = 43- 2 N / m  2. 

The veins contain blood, the pressure in them 

Fig. 1 Transverse section through the spine. The 
abdominal pressure (black arrows) is trans- 
mitted along the veins (white arrows) and is 
reflected in the c.s.f, which is represented as a 
clear, unshaded area around the cord 
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depends upon the position of the body and the state 
of muscular activity but is physiologically controlled 
so as to ensure the return of blood to the heart, even 
at rest. It is therefore usually approximately equal 
to atmospheric pressure at the upper end of the 
thorax when upright, or the midline when horizontal 
and on the side. Cerebrospinal-fluid pressure is 
usually about 10 mm Hg above venous pressure at 
rest. 

3 Origin of cough impulses 

Coughing produces a short sharp pressure rise 
within the major body cavities of the thorax and 
abdomen. The diaphragm is relaxed and the glottis 
dosed, the intra-abdominal pressure is then raised 
by contraction of the trunk muscles and pressure is 
raised until the glottis relaxes, releasing air from the 
lungs whereafter the pressure drops to atmospheric 
and the cough is over (Fig. 2). 

Coughs studied by WILLIAMS (1972) were those of 
the order of 0" 9 s duration, pressure in the abdomen 
rises to around 75-100 mm Hg (Figs. 3 and 4). 

4 Transmission of cough impulses to the spine 
The spine is made up of vertebrae, a series of 

bones and tough ligaments which are enveloped by 
muscles. It forms part of the body wall which sur- 
rounds the abdominal and thoracic cavities. There 
is a spinal canal running through the bones and this 
is protected from the direct action of muscles. It is 
within the protection of tbis spinal canal that the 
spinal cord lies, surrounded by cerebrospinal fluid, 
arachnoid and dural membranes giving off a pair 
of nerves for each vertebra. Outside the dura there 
is a little fat and a plexus of epidural veins which lie 
chiefly on the front of the cord as two vertical 
channels which are crosslinked and supplied with 
anastomoses (connecting channels which allow flow 
in either direction) to the veins from bones of the 
spines, the veins within the surrounding muscles and 
to the veins of the abdominal cavities. The anasto- 
motic veins occur at each segmental level. There are 
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Fig. 3 Two normal coughs in the erect position. The 
manubrium is the top of the breast bone. The 
top trace is lumbar from the bottom of the spine. 
The middle trace is cisternal, from the base of  
the skull, the bottom trace is differential, lumbar 
minus cisternaL The mean attenuation factor is 
91.5%. The pressure given is the pressure 
above the manubrium sterni 

Fig. 2 Vertical section through the midl ine of the body. 
During coughing the area shaded in dots, up to 
the larynx, is subjected to sudden high pressure. 
This pressure is transmitted to the spinal canal 
whence i t  travels upwards. The veins are repre- 
sented by the system of black lines connected 
to the heart and i t  can be seen that they are 
open to atmospheric pressure in the neck 
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Eight coughs in the presence of spinal block. 
Note the change in time scale from Fig. 3. The 
impulses are greatly attenuated by the time they 
reach the cistern. The mean attenuation factor 
is 23.5% 

862 Medical and Biological Engineering November 1975 



thirty vertebrae, each one corresponding to a seg- 
ment throughout the spine. All but the topmost 
seven (cervical) vertebrae are intimately connected 
to the thoracic or abdominal cavities by veins 
(Fig. 2). 

As the pressure in the thorax and abdomen rise 
during coughing, or any similar manoeuvre, the 
veins within the major body cavities are subjected 
to a high pressure and blood moves into the epidural 
veins transmitting most of that rise in pressure 
(Fig. 1). The increase in pressure is normally trans- 
missible across the membranes forming the wall of 
the veins and across the dura and arachnoid to the 
c.s.f. 

5 Recording c.s.f, pressure 

Samples of pressure from human c.s.f, channels 
can be taken during routine clinical investigations 
from lumbar-puncture and cisternal-puncture 
needles. These are inserted between the vertebrae in 
the lumbar region and the cisterna magna, which 
can be reached between the skull and the highest 
cervical vertebra. These two sites are about 50 cm 
apart in adult subjects. Connection to recording 
apparatus allows a continuous record to be made. 
The method used by Williams is to record lumbar 
pressure as the top tracing, cisternal as the second 
tracing and the bottom tracing is a differential 
record lumbar minus cisternal pressure (Fig. 3). 
Williams has used the upright position because this 
is most relevant to human activity and in the belief 
that having the head high and therefore as a low- 
pressure zone, pulses will move upward more 
readily, although this assumption has not been 
tested. 

6 Attenuation of cough impulse 

Slow pressure changes are normally transmitted 
along the spinal canal with little attenuation. This 
has been known since 1830, when Queckenstedt 
described his test. The patient is positioned hori- 
zontally with a lumbar manometer in place. The 
neck is suddenly squeezed and the veins draining 
blood from the skull are thereby compressed, pro- 
ducing an increase in intracranial pressure. Nor- 
mally, a rise occurs in the manometer-fluid level 
which falls when the neck is released. If there is a 
blockage affecting the spinal subarachnoid space 
between the skull and the lumbar puncture needle, 
then the rise in pressure in the lumbar region is 
absent or extremely slow. The rate of fall is also im- 
paired in compressive lesions. Such impaired res- 
ponses are therefore evidence of a compressive 
lesion of the spinal cord and the test is of value in 
the diagnosis of spinal paralyses. The accuracy of 
Queckenstedt's test has been improved by electrical 
recording apparatus (GILLAND, 1966; LAKKE, 1969) 
and also has been improved by recording from the 
cistern as well as the lumbar region so that the pres- 
sure change above the obstruction as well as below 

can be compared (AYER, 1921; GILLAND, 1966). 
Queckenstedt's test produces a movement of c.s.f. 
downwards initially followed by an upward rebound, 
but coughing produces a pulse in the opposite direc- 
tion, that is it travels from the lumbar region to the 
cisternal. 

The cough impulse provides a much sharper rise 
in pressure of higher amplitude and also provides a 
quick fall instead of a plateau effect. 

It seemed that this was likely to be a much more 
sensitive test than Queckenstedt's for the detection 
of spinal block and also that a study of the cough 
impulse would provide a simple model for a pre- 
liminary analysis of the nature of cerebrospinal-fluid 
pulse-wave propagation. 

The clinical results have been presented in brief 
elsewhere (WILLIAMS, 1972) and a more extensive 
report producing statistical correlations with clinical 
measurements of degrees of spinal block as determ- 
ined by X rays is being prepared for publication. 

7 Mathematical model 

In proposing a preliminary mathematical model 
for the study of cerebrospinal-fluid pulse-wave 
propagation, as activated by a cough, severe restric- 
tions must be made in the choice of the flow geo- 
metry and in the physics of the wave propagation. 

The assumption is made that no significant wave 
propagation occurs in the veins outside the dura. 
The following flow configuration is then examined 
theoretically (Fig. 5). The cerebrospinal fluid is con- 
tained in an annulus, uniform in cross-section and 
of length I. It is bounded internally by the spinal 
cord assumed to have uniform circular cross-section 
of radius b. It is bounded externally by the elastic 
dura of thickness h and radius a (>b).  

A block is simulated by thickening the cord radius 
to b(1 + e) over a length 12 and located a distance ll 
from the lumbar region. The distance from the block 
to the cisternal region is denoted by' la so that 
l = 11+12+13. On varying the lengths ll, 12 and be, 
the effects of the size a nd  location of the block can 
be investigated. When e = 0 there is no blockage, 
and when b(1 + e) = a complete blockage is achieved. 

A difficult decision in the modelling arises in the 
choice of closure conditions to be employed at the 
lumbar and cisternal ends. The origin of the pressure 
pulse due to the cough is in the lumbar region, and, 
clearly, both the lumbar and cisternal regions have 
an ability to absorb and transmit energy. They also 
have a capacity to absorb a volume of c.s.f, with a 
corresponding change in pressure. This is a function 
of the compliance of the dura and the vessels around 
the c.s.f, spaces and its result in total is referred to as 
capacitance. The capacitance of the cisternal end is 
essentially that of the head and is normally greater 
than that at the lumbar end. From a mathematical 
viewpoint, it is simplest to look at extreme end 
conditions namely, if an end is 'closed' the fluid 
velocity is zero, and the capacitance zero; if 'open' 
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the excess pressure will be zero, and the capacitance 
infinite. The extreme condit ions analysed are open 
or  closed at the lumbar  end and open at the cisternal. 
Closed cisternal condit ions have also to be con- 
sidered, and numerical  results are presented for 
completeness. Only further  experimental  observa- 
tions will indicate a more  realistic modell ing pro- 
cedure for  the capacitances o f  the lumbar  and 
cisternal regions. 

Alternatively,  useful informat ion can be obtained 
by examining the propagat ion  of  a plane wave 
coming f rom infinity to the vicinity of  the block. 
Since the size of  the b lock 12 is small 

/t 13 ) 

a l imit ing case is obtained depending only on a, b, 
e and lz for 13 --+ oo and 11 ~ 00. 

Wi th  regard to the physics o f  the wave propaga-  
tion, it is assumed (see LAMB, 1898) that the c.s.f, is 
an inviscid compressible fluid. Thus there is a simul- 
taneous vibrat ion in the c.s.f, as modified by the 
yielding of  the dura, the longitudinal  vibrat ion of  
the dura as modified by the c.s.f, and the radial 
vibrations o f  the system. Owing to the inclusion o f  
a block in the present flow geometry, it would  be 
extremely difficult to include the effects due to a 
viscous c.s.f. [see, for example, the work  of  
WOMERSLEY (1955) on the flow of b lood in large 
arteries]. 

Consequently,  a pressure wave in the c.s.f, is 
considered not  to be damped by viscous forces but  
only at tenuated by the presence of  the block and the 
yielding of  the dura. It  is also assumed that  excess 
pressures on propagat ion of  the wave are small com- 
pared with the absolute  pressure of  the fluid. More-  
over, all wave fronts are assumed to be plane and 
any distortions as they converge or  diverge on the 
ne ighbourhood  of  the block are ignored. 

Employing this mathemat ica l  model,  it was pro- 
posed to examine standing waves with a view to 
obtaining at least some knowledge of  
(a) speed of  a pressure wave in the c.s.f, and the 

associated speed of  the longitudinal  dura wave; 
and 

(b) a t tenuat ion of  the pressure wave. 
In  Section 8, the effects due to the dura are ignored 
and the external boundary  r = a is taken to be rigid. 
At tenuat ion  factors for a plane pressure wave 
propagat ion  in a partially blocked annulus are then 
determined as a funct ion of  a, b, e, It,  12, 13 and the 
specifications for the lumbar  and cisternal regions. 
In  Section 9, the effects due to an elastic dura  are 
discussed. Finally, in Section 10 a discussion of  the 
results is given. 

8 Rigid-wall model 

The governing equat ions  for plane-wave propaga-  

tion (see LANDAU and LIFSmTZ, 1959) are: 

and 

0 a p 1 02 p 
Oz 2 Co 2 0 t 2 . . . . . . .  (1) 

Ou 1 0 p  
O t -  p Oz . . . . . . . .  (2) 

where the wave speed Co = ~/Op/Op, p is the excess 
pressure, u the velocity of  the c.s.f., p the density of  
the c.s.f., t the time, and z is measured f rom the 
lumbar  end in the longitudinal  direction along the 
axis of  the annulus. Let  the j t h  section, j = 1, 2 and 
3, denote the three regions 0~<z~< Is, ls ~<z~< 

ls + Iz and 12 <<. z <<. I~ +12 +13, respectively. 

Consider  the j t h  section of  the annulus. There are 
two waves, one incident and one reflected. The 
excess pressure pj is given by 

pj = ikpcoZ{Aj  exp i(a}t - kz )  + Bj  exp i({ot + kz)} ,  (3) 

representing waves travell ing in the positive and 
negative z-direct ions  with wave speed Co = o)/k; 
o) is the pulsatance, o)/2~ is the frequency and k is 
the wave number.  Employing  eqns. 2 and 3, the 
velocity o f  the c.s.f, is 

k 2 Co 2 
uj - i----~ ( - A j  exp i(o)t -- kz )  + Bj exp i(ogt + kz)} 

(4) 

The unknown amplitudes Aj and B j, for j = 1, 2, and 
3, are now obtained for the specified condi t ions  at 
the lumbar  and cisternal regions, together with con- 
ditions o f  continuity in the pressure and vo lume rate 
o f  flow at the junctions o f  sections 1 and 2 and 
sections 2 and 3. 

T h e  open ( lumbar)-open (cisternal) case 
At the lumbar  z = 0, Pl  = 0, yielding: 

A~ + B1 = 0 . . . . . . . . .  (5) 

At  z = ls there is continuity in pressure and volume 
rate of  flow yielding: 

As + Bs exp 2ikll  = A2 + Bz exp 2ikl l  (6) 

and 

- A 1 + B 1  e x p 2 i k l l  = r  e x p 2 i k l l )  . (7) 

respectively. The ratio of  the cross-sectional areas: 

c~ = {a 2 -  (1 + e )  2 b 2 } / ( a 2 - b  2) (8) 

gives a measure of  the degree of  blockage. 

At  z = It + 12 continuity in pressure and volume 
rate o f  flow yields: 

A2 + B2 exp 2ik( l l  +12) 
= A3+B3  e x p 2 i k ( l l + 1 2 )  (9) 
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and 

~{ - A2 + B2 exp 2 i k ( l l  + 12)} 

= - A z + B 3  e x p 2 i k ( l l + 1 2 )  . . . . .  (10) 

respectively. 

Finally,  at the cisternal z =  l ~ + l z + I 3 ,  ua = O, 
yielding 

A3 + Ba exp 2ik l  = 0 . . . . . .  (11) 

Eqns.  5-11 are consistent, provided the wave 
number  k is a roo t  of  the transcendental  equat ion 

( ( ~ -  1 ) -  (r 1) exp 2ikl3} 

x {(ct + 1) exp 2 ik ( l l  + 12) + (1 - ~) exp 2ikl2} 

- {(~+ 1)+ (1 - ~t) exp 2ikla} 

x { ( ~ - l ) e x p 2 i k l a - ( ~ + l ) } = O  . . . .  (12) 

The  at tenuat ion factor IAa/A~I is determined f rom 

Aa 2 = sin 2 k i t (  cos2 kl2 + ~2 sin 2 kl2) 

cos 2 klx  
+ ~2 (~2 cos 2 kl2  + sin 2 kl2) 

+ (1 - ~2) sin 2kl~ sin 2k12 (13) 
2~ 

When  the vessel is unblocked (~ = 1, e = 0) the 
lowest root  is 

k = ~ / l  . . . . . . . . . .  (14) 

for a complete  block a = 0 and 

k = zc/l~ . . . . . . . . . .  (15) 

F o r  a par t ia l  blockage, the transcendental  equat ion  
(eqn. 12) is readily solved using the N e w t o n - R a p h -  
son procedure.  Taking typical length scales for a 
human  as l = 0 .5m,  b = 5 m m ,  a = 10ram, length 
o f  blockage 12 = 10 m m  and var ious ll  --- 400, 350 
and 300 mm,  the corresponding at tenuat ion factors 
IAa/A,I are given graphically in Fig. 6 for various 
e (0 ~< ~ ~< 1). 

T h e  closed ( l umbar ) -open  (cis ternal)  case 

The analysis is exactly the same as for the o p e n -  
open case except that  eqn. 5 is replaced by 

- A I + B 1  = 0 . . . . . . . .  (16) 

The  corresponding transcendental  equat ion for 
determining the wave number  k is 

{ ( a - 1 )  + (~ + 1) exp (2 ik l l )}  

x { ( e -  1 ) -  ( e +  1) exp 2ikla} exp 2ikl2 

+ {(e+ 1)+ ( e -  1) exp 2 ik l t }  

x { ( r  = 0 . . . .  (17) 

The at tenuat ion factor [A3 /A l l  is determined f rom 

Aa 2 cos 2 klx  (~2 sin z kl2 + cos 2 kl2) 
Z = 

+ sin 2 k l l ( ~  2 cos z kl2 + sin 2 kl2)/o~ z 

+ {(1 - ~2) sin 2kl~ sin 2kl2}2~ (18) 

When  the tube is unblocked (~ = 1) the lowest root  
for k is 

k = ~/21 . . . . . . . . . .  (19) 

and for a complete  block, k is given by eqn. 15. 
Typical values of  the a t tenuat ion factor are given 
in Fig. 6 for various e. 

T h e  l imi t ing  case o f  11 ~ ~ and  la ---roo 

Consider now the propagat ion  o f  a plane pressure 
wave travell ing f rom z = - oo in the direction o f  z 
increasing. It  is necessary to find the characteristics 
of  the t ransmit ted wave after passage through the 
block at z = la. Fo r  convenience,  choose a new 
origin z = 0 at the block and let the length of  the 
block be 12 as before. F o r  the sections - oo ~< z ~< 0 
(j  = 1) and 0 ~< z ~< 12 (j  = 2), the wave representa- 
tions are given by eqns. 3. and4.  F o r  the transmitted 
wave in the section 12 ~< z ~< oo (j  = 3), the required 
expressions are: 

Pa = ikpco  2 A3 exp i(cot - k z )  . . . .  (20) 

and 

k z Co 2 
Uz - ie~ A3 exp i ( o g t - k z )  . (21) 

Continui ty in pressure and vo lume rate of  flow at 

z = 0 and 12 y idds  the four  relationships:  

A~-t-B1 = A 2 + B 2  . . . . . . .  (22) 

- A1 + B1 = ~t ( -  A2 + B2) . . . . .  (23) 

A2 + B2 exp 2ikl2 = Aa . . . . .  (24) 

~ ( -  A2 + B2 exp 2ikl2) = - A z  (25) 

These give, for any kl2,  the a t tenuat ion factor 

A~axa = 4~/{(1 + ~)4 + (1 - ~)4_ 2(1 - ~2)2 cos 2kl2} § 

. . . .  (26) 

Min imum values of  IAa/AI[  will occur for 

cosZk/2 = - 12((kl2 = (2n+ 1) zc, n = 0, 1, 2 . . . .  )} 

max imum values will occur when cos2kl2 = + 1 ,  
(kl2 = nzr, n = 1, 2, 3 . . . .  ). 
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Thus, for all dg 

A33 A~ 2~ (27) max = 1, rain - l + ~ Z  . 

Consequently,  for 0 ~< ~ ~< 1 and  any kl2, there 
exists the simple inequality: 

2~ A_23 
1 + ~ ~< ~< 1 . . . . . . .  (28) 

These m i n i m u m  and  maximum values are indicated 
in Fig. 6. 

The analysis for the open-closed, and  closed-closed 
cases is no t  given, but  computed results are included 
in Fig. 6. 

The open-open case for a finite tube predicts the 
greatest reductions in the at tenuat ion factor. For  
example, when e = 0.95, l ,  = 400 ram, a reduction 
of 16% is indicated; moreover, as l~ decreases 
]A3/All  decreases unt i l  11 = 350ram and  then in- 
creases. The interpretat ion of these results in rela- 
t ion to clinical findings is given in Section 10. 

In  the above, the effect of the block is controlled 
by e and  it is no t  necessary to state how the block 
is sited at z = l~. Theoretically, it could be attached 
to the cord as shown in Fig. 5, bu t  equally well it 
could be attached to the 'rigid' dura. The latter case 
is more  common  since the elastic dura  is usually 
compressed from outside producing a constriction 
in the c.s.f, pathway. 

I t  is of  interest to examine theoretically the effects 
due to the vibrations of the elastic dura. So as to 
make  this investigation mathematically tractable 
it is necessary to assume that the block is sited on the 
cord, as shown in Fig. 5. 

9 Effects of  the elastic dura 

The following analysis follows closely the investi- 
gat ion of LaMa (1898) on the propagation of sound 
in a tube as affected by the elasticity of the walls. 
Lamb ' s  work is modified to describe the present 
annu la r  geometry with a partial block. An  essential 
assumption of the analysis is that the wavelength is 

o+h] dupe [E I] I 

~,~lJ// L, / block _ / / i /  
~Y--Mf - -  - ~7s27 . . . .  "-.7z2__~: . . . . . . . . . . . . . . . .  '~,~Z// 

! !t2 ! t3 I 
t' '1" r 

Fig. 5 Mathemat ical  mode l  o f  the c.s.f, pa thway with 
b lock 

large, i.e. small wave number.  In  this context, it is 
meaningful to discuss the finite tube (see eqns. 14 
and  15) but  no t  the limiting case leading to maximum 
and  min imum criterion (eqn. 27). In  the latter, the 
wave lengths concerned are of the same order as the 
dura radius and  consequently insurmountable  
mathematical  difficulties would be incurred in the 
locality of the block. 

Let ~s be the longitudinal  displacement of the 
elastic dura and  ~s denote its radial displacement. 
The corresponding extensions will be O~s/Oz along z, 
and  ~,[a radially; j = 1, 2 and 3 is employed to 
denote the three sections. Let the density of the dura 
be p* and  in the usual nota t ion  E denotes Young 's  
Modulus and cr is Poisson's Ratio. 

The equations of mot ion for the dura (j = 1, 2, 3) 
are: 

Ot z - - f i ~ \ - ~ z  2 + - -  Oz . . . .  (29) 

Ot ~ - hp* p* \ a  ~ + --a Oz ] (30) 

Here pj is the excess pressure exerted by the c.s.f, on 
the dura; B* = E l ( I - a 2 ) .  

For  the inviscid c.s.f., let w s denote the longi- 
tudinal velocity and  us the radial velocity. The pres- 
sure Ps is governed by the wave equat ion:  

Ot 2 = c~ - 7 - ~ r  r + Oz 2 ]  . 

where Co is the velocity of waves in an unlimited 
environment;  Co = ~/~c/p and  lc is the cubical 
elasticity of the c.s.f. The velocity components  u s 
and w s are given by Euler 's equations:  

O u s _  t Ops Ow s I Ops 
Ot p Or and  Ot = - p  0--~ ( j =  1 ,2 ,3 )  

. . . .  (32) 

Since the c.s.f, is inviscid, the following condit ions 
must  be applied. At  the inner  surface of the dura 
r = a :  

us = o~s/at . . . . . . . . .  (33) 

and on the cord 

us = 0 at r = bj{b~ = b3 = b, bz = b ( l+e )}  (34) 

Consider now a plane pressure wave: 

Ps = P s(r){ A s exp i(cot + kz)  + B s exp i ( c o t -  kz)} (35) 

where Ps(r) describes the variation in pressure with 
r; As and Bs are at present arbi trary constants. For  
the dura assume that:  

~s = Ds exp i ( c o t + k z ) + H j  exp i ( c o t - k z )  (36) 
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and 

(j -- Ej exp i(cot + kz) + Jj exp i(cot - kz) (37) 

For  eqn. 35, the wave equation (eqn. 31) reduces to 

1 d ( d P ~  _ v2 pj = 0 . . . .  (38) 
r dr r ~ - ]  

where 

v 2 =  k s 1 -  . . . . . . .  (39) 

The solution, in terms of zeroth-order modified 
Bessel functions, is 

P~(r) = Fj Io(vr) + Gj Ko(vr) . . . .  (40) 

where Fj and Gj are constants. 
On insertion of eqns. 35 and 40, together with 

eqns. 36 and 37, into eqns. 32-34 and eqns. 29 and 
30, and after some manipulation, there results the 
following: 

k z c 2 p [ Io(vr)Koi(vbj)-Io'(vb J) Ko(vr) t 
P~ - v [io (va) Ko (vbj)-Io (vbj) Ko (vaa)] 

x {Dj exp i(tot + kz) + Hj exp i(ogt - kz)} (41) 

k 2 c 2 [ lo(vr) Ko'(vbj)-Io'(vbj) Ko(vr) } 
wj = v ~Io (va)Ko'(vbj)-lo'(vbj)Ko(v~ 

x { -  Dj exp i(cot+kz)+Hs exp i(cot-kz)} (42) 

the transcendental equation for the wave speed is 

pN~ e 2 B* 
(c2--  ~-~)(  c2+ hp*k(l_c2/c02)~: p*a2 k 2 ) 

k2a2 \ p , ]  = 0 (43) 

where 

Io(va) Ko'(vbj)-Io'(vbj) Ko(va) 
Nj = Io'(va) Ko'(vbj)-Io'(vbj) Ko'(va) (44) 

Eqn. 43 indicates that the wave speeds must alter in 
the locality of  the block. This is not unreasonable, 
for it is known that the wave velocity is dependent 
o n ' t h e  effects of viscous damping. Considerable 
simplification is achieved on examining the limiting 
case of long wavelength, k --~ 0. When v --* 0, eqn. 
44 yields the limiting forms: 

2el  
N~ = N3 ,'~ (a2_b2) v +0(1) (45) 

2 a  
N2 (a 2 - b 2) v {1 + 0(e2)) + 0(1) (46) 

Consequently, for small k and small e the transcen- 
dental equation for the wave speed is 

B* (C2--Co2) [(1--a2) p-~ --C 2] 

2aZtec2 ( ) B* 
hB,(a2 bZ) c 2 -  -~ (47) 

The,constants Dj and Hj are now determined. At the 
junctions z = l~ and z = l~ + lz there is continuity 
in the volume rate of flow. However, it is necessary 
to assume continuity in the integrated pressures at 
these junctions as these cannot be matched exactly. 
The following conditions are invoked: 

f wlr  wzr a t z = l l  dr 
t, b(1 +~) 

2 
!+ w2rdr= f wardr a t z=l~+12  

b( e) b 

j ( p l -pe ) rd r  = 0 at z = ll 
b(1 +e) 

a 

j] (p3-p2)rdr  = 0 a t z  = l l+le 
b( ~) 

(48) 

Insertion of  eqns. 41 and 42 into eqns. 48 yields the 
following equations between the Dj and Hj: 

- D 1 exp 2ikll + H1 = - D2 exp 2ikll + H2 (49) 

- Da exp 2ik(ll + 12)+ H3 

= - D2 exp 2ik(ll+12)+H2 (50) 

fl(D~ exp 2iklx + H1) = Dz exp 2ikl~ + H2 (51) 

fl{Da exp 2ik(ll + 12) -Jr Ha} 

= Da exp2ik(ll+12)+H2 (52) 

where 

b(1 + e) 
/~-- l + - - •  

a 

\ / o - - - 7 ( ~ ) ~ - - I ~  ] 

For  the open (lumbar)-open (cisternal) end condi- 
tions (cf. eqns. 5 and 11), the remaining relations are 
derived as: 

and in the double limit e --* 0, v ~ 0 DI+H1 = 0 . . . . . . . .  (54) 
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and 

03 exp2ikl+H3 = 0 . . . . . .  (55) 

Manipulation of eqns. 49-55 yields the same tran- 
scendental equation for k as given by eqn. 12 and the 
same expression for the attenuation factor JH3/Hxl as 
given by eqn. 13 provided e in eqns. 12 and 13 is 
replaced by ft. Thus, within the framework of 
approximations already employed in deriving eqns. 
45 and 46, it follows that as ~ ~ 0 and k --* 0 

/~-~ ~{1 +0(c2)} . . . . . . .  (56) 
The wave number and attenuation factors for the 
open-open case given in Fig. 6 are, for small block- 
age, unaltered by the vibrations of the dura. This 
conclusion is also true for the other finite-flow 
geometries but not, as previously mentioned, for the 
case yielding maximum and minimum limits of 
IA3/A,I. 

Returning now to the calculation of the c.s.f, and 
dura wave speeds. For  small k and small c they are 
obtained on solving eqn. 47. Information on the 
elastic constants for living or dead dura are not 
available. The following physical properties were 
employed, namely: 

E =  5 x 1 0 8 N / m  2, a = 0 . 4 8 ,  p * = 0 . 9 5 g / c m  a 

For the c.s.f, values for water are employed, namely 

p = 1 g/cm 3 and x = 2.22 x 109 N/m 2 

Numerical solution of the approximate equation 
(eqn. 47) yields dura wave speeds of 1.37x10 a, 
4.34x103, 1.37x104cm/s for dura thicknesses 
h = 0.01, 0.1 and 1.0 ram, respectively. The acoustic 

, ~ 5 ]  closed- 
ii/3Q [ closed 

//--4 0 J 

.J/3=01 open- 
.;7 X>-! J r closed 

. . . . . .  ~ ~ J / m a x .  (infinite tube) 
..... =.~ ~-~-~-r~;=~.~.~-E=:2._:- ~ . . . .  :~F~40 

" ' ~ - ~ - ~ 3 5  [ closed- 
~"-.x ~ 2 - - 3 0  | open - ,  

\ \ 30 ]  open- 
\ \ "~35~'open 

mtn. predtctton '\ 
(infinite tube) '\.\. 

\ 
'\. 

\. 
\ 
' \  

\ 

' 0:2 ' 0'4 0:6 0"8 '~ 1'0 

Fig. 6 Theoretical predict ions o f  attenuation factors 
for various e and block locat ions I1 (see Fig. 5) ; 
a = l O m m ,  b - = 5 m m  and /2 = l O m m ,  
. . . .  min imum and maximum criterion for the 
open or closed condit ions 

wave transmitted by the c.s.f, moves at a speed of 
8.27 x 10 z m/s and is independent of the dura thick- 
ness. Consequently, the characteristics of this wave 
are unsuitable to clinical analysis. 

On employing an iterative process involving eqn. 
12, with e replaced by ,8, and taking N2 in eqn. 43 
the wave number k and wave speeds can be deter- 
mined numerically for various h and e. These are 
listed in Table 1 for e < 0.5. Note that the dura wave 
speed for fixed thickness decreases with increasing 
blockage; for fixed blockage it increases with in- 
creasing dura thickness. 

Table 1. Theoretical predict ions for dura wave speed 
as a funct ion o f  the dura thickness and the size of  the 
block 

e h, mm 0.01 0.1 1"0 

0 1.37 4.34 13.7 
0.2 1.28 4.05 12.8 
0.3 1.23 3.88 12.2 
0.4 1.16 3.68 11.6 
0.5 1.09 3.44 10.9 

Dura wave speed (10 m/s); a = l O  mm., b=Smm.,/1 =400mm. 
/ 2=10  mm., and /3=90  mm. Wave speed for c.s.f, is 8.27X102 
m/s. 

10 Discusslon of  results 

In Fig. 6, attenuation factors for different sizes of 
blockages are displayed for finite-flow geometries 
and the limiting case of an infinite tube. The dura 
was assumed to form a rigid boundary. Clearly the 
open (lumbar)-open (cisternal) and closed (lumbar)- 
open (cisternal) configurations give a reduction in 
the attenuation factor with increasing size of block- 
age. The open-closed and closed-closed geometries 
yield increasing attenuation factors, with increasing 
size of blockage, and these results may have some 
bearing on the mechanisms of syringomyelia and 
syringobulbia. 

In Section 9, the effects of the elastic dura, with a 
block sited on the cord, have been discussed. It is 
shown that the vibrations of the dura do not alter 
the size of attenuation factors for the finite tubes. 
The investigation does, however, yield information 
on the time taken for the pressure wave to travel 
from the lumbar to the cisternal region. From Table 
1, it follows that over a length of 0.5 m of c.s.f, path- 
way the times taken were 0.04, 0.01 and 0.001 s for 
dura thickness h = 0.01, 0.1 and 1.0mm, respec- 
tively. From the observations of Williams (Fig. 3) 
on the pressure pulse, the time taken was of the 
order of 0.04s. Thus the dura vibrations mainly 
control the times scales of the pressure-pulse 
propagation. 

These theoretical predictions of the natural 
frequencies of the system cannot be compared 
directly to the clinical observations of WILLZANS 
(1972). The effect of a cough is to produce a varia- 
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tion of the pressure p = p(t) at the lumbar end, and 
the problem is to determine the propagation of  this 
pressure variation along the c.s.f, pathway to the 
cisternal end. The duration of the pulse is far greater 
tban the time for the wave to travel up and down the 
tube and the effect of  this is that the natural frequen- 
cies, as discussed above, will probably appear simply 
as superpositions on top of the applied pulse; 
moreover, the natural frequencies will, in practice, 
have a lower amplitude than that of the pulse. 

Further theoretical and experimental work is 
envisaged; for example, performing a spectral analy- 
sis of the experimental recordings of the cough pulse 
input so as to give the frequency components and 
appropriate amplitudes, it should then be possible to 
predict, on employing eqn. 13, the pressure pulse at 
the cisternal end for a specified degree of blockage. 
Comparing the latter for a range of  e with the ob- 
served cisternal output would then identify the 
degree of blockage. 
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Aspects th6oriques de I'affaiblissement des impulsions de pression 
dans les voles de passage du liquide c6r6brospinal 

Sommaire--La toux produit des impulsions de pression dans le liquide c6r~brospinal. Cot article sugg~re 
un mod61e math6matique pour l'examen de la propagation des ondes ~t travers les voles de passage 
du liquide c6r6brospinal, et il examine les effets de diff6rents degr6s d'obstruction des voles de passage 
du liquide spinal (blocage) sur les facteurs d'affaiblissement et les vitesses de propagation des ondes, 
ainsi que les effets des vibrations sur la dura 61astique. 

Theoretische aspekte der di~mpfung yon druckimpulsen 
in den flfissigkeitskan~ilen yon hirn und rfickenmark 

Zusammenfassung--Durch Husten werden Druckimpulse in der zerebrospinalen Fli.issigkeit erzeugt. 
Zur Untersuchung der Fortpflanzung yon Wellen durch die zerebrospinalen Fliissigkeitskan~ile 
wird ein mathematisches Modell vorgeschlagen. Die auf die verschiedenen BehinderungsstS.rken 
fiir die Spinalfliissigkeitskanale (Blockierungen) zuriickzufiJhrenden Auswirkungen auf die 
D~mpfungsfaktoren und Wellengeschwindigkeiten werden besprochen, ebenso die Auswirkungen 
yon Schwingungen der elastischen Dura. 
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