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A b s t r a c t - - T h e  paper deals with the evaluation of the a pr ior i  possibility of estimating the unknown 
parameters of a system having a known structure via an input-output experiment (structural 
identifiabilityJ. The problem is analysed with reference to biological compartmental systems 
(and precisely to a specific but largely representative class of  these systems, i.e. the so-called 
strongly connected compartmental systems). The analysis is developed by using concepts and 
methods of system theory and particularly the concepts of "controllability" and "observability 
(i.e. the possibility of influencing the behaviour of the whole system by the input and of 
estimating it from the output). Two new theorems are proved concerning the necessary and 
sufficient conditions for the observability and controllability of strongly connected compart- 
mental systems, On the basis of these theorems, a structural identifiability criterion is established 
and a digital-computer implementation technique for this criterion is given. Some typical 
tracer-analysis experiments on biological compartmental systems are analysed with the aim of 
evaluating how many and which parameters of the considered model can be estimated through 
the chosen input-output experiments. 
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1 Introduction 

IN BIOMEDICAL engineering, compartmental mathe- 
matical models have been more and more used both 
in research problems (e.g. kinetics of distribution of 
materials through the organism, pharmacology, 
chemical kinetics etc.) and in diagnosis and therapy 
(e.g. clinical pharmacology, pharmacotherapy etc.). 

This paper deals with a problem of considerable 
practical importance in the utilisation of compart- 
mental models; in fact, before performing the experi- 
ment on a biological system, for which a compart- 
mental model has been adopted in order to find the 
values of its parameters, it is necessary to analyse the 
possibility of estimating the model parameters from 
the chosen input-output experiment. A solution to 
this problem is particularly important in the study of 
in vivo phenomena, as the experiment is often non- 
repeatable because of induced harm, high cost, 
technical impossibility, trouble etc. (e.g., an experi- 
ment involving the injection of radioactive 
substances). 

In the usual terminology of system theory, the 
methods for estimating the unknown parameters of a 
system from input-output experiments are called, as 
is well known, 'identification' methods; therefore the 
problem considered here is an 'identifiability' 
problem. As the adopted approach refers only to the 
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system structure, it may be called a 'structural 
identifiability' problem. 

In spite of its inherent interest, the problem of 
structural identifiability has been considered in the 
literature only recently. (BELLMAN and ASTROM, 
1970; H.~JEK, 1972). More precisely, BELLMAN and 
ASTROM (1970) put the problem of structural 
identifiability in a system-theory context and state 
precise general definitions. H.~JEK (1972) provides 
solution techniques for linear invariant compart- 
mental systems open to the environment, only for the 
one-input/one-output case (and not directly extend- 
able to multi-input/multi-output case) under restric- 
tive conditions. 

The present paper deals with the same matter, but 
treats it for a more general case than that considered 
by HXJEK (1972) (multi-input/multi-output strongly 
connected systems, both closed and open to the 
environment; precise definitions will be given in 
Section 2). As in the paper by BELLMAN and ASTR6M 
(1970), concepts and methods of system theory are 
adopted, particularly those of controllability (the 
possibility of influencing independently each state of 
the system through the inputs) and observability (the 
possibility of reconstructing each state of the system 
from the outputs). For the class of strongly connected 
compartmental systems, a largely representative class 
of biological systems, two new theorems are proved 
relating controllability and observability to the 
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system structure. The requested conditions stated by 
the two theorems allow us to establish a structural 
identifiability criterion. The check of controllability, 
observability and structural identifiability may be 
implemented on a digital computer; the corres- 
ponding flow chart is given. Examples of tracer- 
analysis experiments on several biological compart- 
mental systems taken from biomedical literature 
(bilirubin metabolism, ferrokinetics and thyroxine 
distribution) are reported. 

2 Study of compartmental systems in a system-theory 
context 

2 .1  Controllabili ty,  observabil i ty  and  identif iabili ty 

Basic concepts on biological compartmental 
systems are adequately described in the biomedical 
literature (see, for instance, SHE]'~'ARD, 1962; 
RESCIGNO and SEGRE, 1966; ATKINS, 1969; JAQUEZ, 
1972; COBELLI et aI., 1974). The fundamentals of 
system theory have also been described (see, for 
instance, ZADEH and DESOER, 1963; KALMAN, 1963; 
CHEN, 1970). 

In any case, in order to state precisely the 
terminology and symbols used it seems useful to 
report some definitions and fundamental relations. 
Compartmental systems may be studied by linear- 
system-theory methods. In  this context they are 
described as dynamical, linear, time-invariant 
systems in their usual input-state-output form: 

= A x + B u  . . . . . . . .  (1) 

y = C x  . . . . . . . . . .  (2) 

where x,  u and y are the state, input and output 
vectors, respectively. 

With reference to the specific form of the compart- 
mental systems, matrices A, B and C show peculiar 
characteristics. The order n of matrix A is equal to 
the number of system compartments; its entries are 
related to the rate constants of the compartmental 
system by the following equations: 

a~s = k~s i # j . . . . . . .  (3) 

a .  = - k o ~ -  ~7~ kj l  
.i=1 

. . . . . .  (4) 

where k o is the rate constant from compartment j 
to i and ko~ is the rate constant from compartment i 
to the environment. From eqns. 3 and 4, it follows 
that the eigenvalues of matrix A cannot be purely 
imaginary and have nonpositive real parts 
(HEARON, 1963). 

Matrix B is of n x r~ dimension, where r~ < n is 
the number of inputs; its entries can assume either 
Value 1 or value 0 under the following conditions: 

•]bts = 1 
[=1 

v j  . . . . . . .  (5) 

0 i # ix, i2, ..., gb 
_ _  b~.i = ( 6 )  

s=l 1 i = il, i2, ..., ir b 

Matrix C is of dimension rc • n where rc ~< n is 
the number of outputs; its entries can assume either 
value 1 or value 0 under the following conditions: 

~ c ~  s -- 1 
j = l  

V i . . . . . . .  (7) 

rc / o  j # j l ,  j2 . . . . .  jro 
23 Cfj = ~ (8) 
*=t 1 J = j l ,  J2 . . . . .  j% 

As was seen in Section 1, heuristically, a system is 
said to be controllable if all state variables can be 
independently modified through the inputs, and it is 
said to be observable when the outputs allow us to 
reconstruct all the state variables. 

As is well known, the above properties may be 
ascertained by some tests. Rigorous treatments on 
this subject can be found in the system-theory 
literature (ZADEH and DESOER, 1963; KALMAN, 1963; 
CHIN, 1970). 

Referring to current criteria, a linear invariant 
system is completely controllable (c.c.) if and only if 
the composite n x ( n - r ~ + l ) . r ~  matrix (control- 
lability matrix) 

P = [BIABIA  z B I . . . IA " - 'b  B] . . . .  (9) 

is of rank n, and it is completely observable (c.o.) if 
and only if the composite matrix ( n - r e +  l).rc x n 
(observability matrix) 

Q = [C'[A'C'IA~'C'I...IA . . . .  'C'] (10) 

(C' = transpose of C) is of rank n, where n is the 
order of the system and rb and rc are the ranks of 
matrices B and C. 

The input-output behaviour of a c.c. and c.o. 
system is completely described by its transfer- 
function matrix G(s). Laplace-transforming eqns. 
(1) and (2), the relation between input and output 
vectors can be obtained ifl the form 

Y ( s )  = G ( s ) . U ( s )  = C . ( s I -  A ) - I . B . U ( s )  (11) 

According to matrix-inversion rules, G(s) may be 
written in terms of the adjoint matrix of ( s l -  A)  

1 
G(s) - C.adj ( s I -  A ) . B  . (12) 

det ( s l -  A )  

The knowledge of G(s) allows the estimation of a 
certain number of system parameters; the maximum 
of this number equals the number of independent 
coefficients of numerator and denominator poly- 
nomials of the entries of G(s).  

A c.c. and c.o. compartmental system is said to be 
structurally identifiable when the chosen input-  
output experiment allows the estimation of all the 
unknown parameters (rate constants). 
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I f  the whole compartmental  system is not  both  
c.c. and  c.o., the considerations on structural identi- 
fiability are to be restricted to the c.c. and c:o. par t  
of  the system. 

2.2 Some properties o f  strongly connected compart- 
mental systems 

Some statements and definitions, useful for the 
following, are reported in this Section. A compart-  
mental  system is strongly connected when every 
compar tment  can be reached from every compart-  
ment  of the system along one path* at least. 

Let us consider two matrices K and Ko formed by 
the rate constants  (see eqns. 3 and  4). Matrix K is a 
square matrix of n rows, where n is the number  of  
compartments ,  and  groups the rate constants  
between compartments;  all its entries are non -  
negative, and  those of the main  diagonal are zero. 
Matrix Ko is a row matrix with n entries, and groups 
the rate constants from compartments  to the 
environment .  If  all the entries of  Ko are zero the 
system is said to be closed, otherwise it is open. 

The entries of K ~ (i.e. the r th  power of K) are 
given by 

[Kr]tj = 2~ kitsklll2...ktr_ J �9 (13) 
I I ,  12 ,  . . . ,  I t -  1 = 1 ,  n 

Therefore [K']tj > 0 implies that at least one path 
of l eng th t  r exists that connects compar tment  j to 
compar tment  i. 

I f  matrix 

R (m) = '~  K r 
r = l  

is considered, it can be noticed that [R(m)]~j > 0 
implies that at least one path of length smaller than  
or equal to m exists connecting compar tment  j to 
compar tment  i. It  follows that all entries of  ma t r ix  
R (") of an n-compartment  strongly connected system 
are positive. 

3 Theorems on controllability and observability in a 
structural sense of  strongly connected compartmental 
systems 

A compartmental  system can be non-c.c, and/or  
non-c.o, either because of its own structure or  
because of a particular combinat ion  of the para- 
meter values {ko}. In  the first case the r ank  of matrix 
P and/or  Q is always less than n for whatever values 
of  rate constants  relative to the system of  fixed 
Stl;ucture (unchanged topology). 

"As is we#known in graph theory a path is a succession of branches 
without bifurcations, that is a subgraph such that each node has at 
most one entering and at most one outgoing branch and the output 
node of a branch is also the input node of the next branch of  the 
succession. In compartmental-system theory the notion of a path is 
usually adopted with reference to a f low-graph representation of the 
system, where compartments are represented by nodes and rate 
constants by branches 

t The/ength ofapathisthenumberof i tsbranches 

Therefore it seems useful to state the following 
definition: a compartmental  system is said to be 
non-c.c. (non-c.o.) in a structural sense when it is 
non-c.c (non-c.o.)  for all possible values of thepara -  
meters {k,j} structurally different from zero. 

Two new theorems relating strong connection to 
controllabil i ty and observability are now proved. 

Theorem 1: Strong connection is a necessary 
condi t ion for a compartmental  system to be c.c. 
through any input  and c .o  through any output. 

Proof by contradiction: Suppose the system is not  
strongly connected, i.e. there are two compart-  
ments, numbered  1 and n for convenience, such that 
no path exists from 1 to n. Let 

B = C = [0 . . .  011 ( 1 4 )  

In this case, the entries of the last row of the control-  
lability matrix P:  

[B],ll [A],xl [A2],d...] [A"-rb],l (15) 

are all zero, because compar tment  n cannot  be 
reached along any path from compar tment  1. The 
rank of P is therefore less than n. The hypothesis is 
therefore contradicted; q.e.d. 

A similar proof  holds for the complete-observa- 
bility condi t ion  (the entries of the first column of the 
observability matrix (2 are all zero). 

Theorem 2: Strong connect ion is a sufficient 
condit ion for a compartmental  system to be both  
c.c. and c.o. in  a structural sense. 

Proof: It  is necessary to prove that, under  such a 
hypothesis, matrices P and (2 cannot  have an 
identically nul l  determinant  for any input  and  any 
output. I t  will be proved that P and Q have neither 
its rows or columns identically null,  nor  l inearly 
dependent. 

With respect to controllability, let: 

1 

B = [ ! ]  . . . . . . . . .  (16) 

Let compartments  be numbered  as follows: from 2 
to r l  those reached by a path of length 1 from com- 
partment  1, from r l  + 1 to r2 those reached by a path  
of length 2 from 1, and so on. 

Because of the strong connection, all elements on 
the ma in  diagonal  of P are evidently positive; then 
no  null  rows or columns can exist. At  this point,  it 
can be noticed that:  

(a) there is no  linear dependence either between 
row 1 and  the rows from 2 to r b  or between 
these last rows and the rows from r l  + 1 to r2, 
and so on, since, because of the chosen number -  
ing, entries p~l for i =  2, 3 . . . . .  n, p~2 for 
i = r l +  l,  r 1 + 2 ,  ..., n etc. are zero; 
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(b) there is no linear dependence either among the 
rows from 1 to rl ,  or among those from r~ + 1 to 
r2 and so on, as each of their entries is a sum of 
monomials, one of which does not appear in any 
other entry; q.e.d. 

A similar procedure is used for the proof concerning 
observability. Let 

C = [1 0 ... 0] . . . . . . .  (17) 

Compartments are numbered by considering the 
paths from each of them to compartment 1. The 
remarks made on matrix P also hold for matrix Q. 

It is obvious that the proof can be extended to the 
multi-input and/or multi-output case. Theorem 2 
allows us to state that the rank of matrices P and Q 
can be less than n only in a subspace of the {kfj. > 0} 
space. In fact, in the case of one-input/one-output 
systems, each of the equations d e t P  = 0 and 
det Q = 0 is the general expression of a hypersurface, 
therefore the non-c.c, and non-c.o, subspaces are 
represented by hypersurfaces. For the multi-input/ 
multi-output case, there are as many hypersurface 
equations as there are submatrices of rank n of 
matrix P and Q, respectively. Non-c.c. and non-c.o. 
subspaces are then represented by the intersections 
of the hypersurfaces described by the equations 
relative to the considered submatrices of P and Q, 
respectively. 

4 Structural identifiability of strongly connected 
compartmental systems 

As was proved in Section 3, strong connection is a 
necessary and sufficient condition for a compart- 
mental system to be c.c. and c.o. Therefore a test on 
R <"), according to Section 2.2, assures controllability 
and observability. As seen in Section 2.1 the input- 
output behaviour of a c.c. and c.o. compartmental 
system is completely described by the transfer- 
function matrix G(s) (see eqn. 12). 

When the whole system is completely controllable 
through input j and completely observable through 
output i, there ate no cancellations in [G(s)]tj (the 
traI~sfer function between input j and output i), and 
the denominator has maximum degree. As previ- 
ously proved, such a condition is satisfied by each 
pair ij of a strongly connected compartmental sys- 
tem; in such a case all transfer functions [G(s)]~j 
have the same denominator. 

To determine the number of coefficients that can 
be estimated, the series expansions of det ( s l - A )  
and C.adj  ( s I - A ) . B  are considered (CH~N, 1970; 
GANTMAClaER, 1959). The first one is expanded as 
follows: 

d e t ( s l - A )  = s n 2 f f a l s n - l - ~ a 2 s n - 2 " ~ - . . . - ~ a t l  (18) 

where: a~ > 0 for i = 2 . . . . .  n -  l, a, > 0 for open 
systems and a, = 0 for closed systems. 

Properties of at follow from the properties of the 
eigenvalues of A. 

adj ( s l - A )  is expanded as follows: 

a d j ( s l - A )  = R o s " - l + R l s " - Z + . . . + R , _ l  (19) 

where 

Ro = I 
R 1 = A + a l l  
R2 = A Z + a l  A+O:2l 

Rn-1 = A " - ~ + a l A n - 2 + . L + a n _ l l  . (20) 

and at for i = 1, ..., n - l ,  as in the expansion of 
det ( s I -  A), are all positive. 

From eqns. 12, t8, 19 and 20, 

1 
G(s) - det ( s l -  [CB(s"- ~ + al s "-2 + . . .  + a,_ 1) A) 

+ C A B ( s n - : + a l  s n - 3 + . . . + a , - 2 )  

+ . . . + C A " - :  B ( s + a l ) + C A  "-x B] (21) 

[G(s)],j has the same expression as G(s) if we take 
[CB]tj, [CAB]lj . . . . .  [CA"-1 B]ij, respectively. 

About the denominator common to all entries of 
G(s) and the corresponding numerators, the follow- 
ing remarks can be made: 

(i) The denominator is of degree n, and the coef- 
ficient of s n is always 1, therefore n parameters 
can be estimated in the case ~, r 0 (open sys- 
tems), and n - 1  in the case ~, = 0 (closed 
systems). 

(ii) The numerator, if [CB],j = 1, is of degree n -  1, 
and the'coefficient of  s "-~ is 1; therefore n - 1  
parameters can be estimated. If 
[CA ~- : BJij = [CA t-  2 B]Lj = ... [ceJ i j  = 0 
and [CA t B]tj # 0, the numerator is of degree 
n - l - 1  and the coefficient of the maximum- 
degree term is a function of {k~j}, therefore the 
number of the parameters that can be estimated 
is n - 1 .  Notice that [CAt B J t j #  0 implies 
[CA t+1 BJij # O. 

Obviously the system is structurally identifiable 
when the number of parameters that can be esti- 
mated from G(s) is not smaller than the number of 
the unknown system parameters. The existence of 
redundance does not influence structural identi- 
fiability, but is useful for a better numerical para- 
meter estimation, as the measures are generally 
corrupted by noise. 

5 Flow chart for a check of structural identifiability on 
strongly connected compartmental systems and some 
operative notes 

In this Section, the results obtained in Sections 
3 and 4 are utilised for the digital-computer imple- 
mentation of a program able to perform an analysis 
of  structural identifiability of strongly connected 
compartmental systems. 
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In Fig. 1, the flow chart of  the program is reported. 
The main operat ions are: 

(i) input of  K, Ko, B and C 
(ii) checking strong connection through R ("> 

(iii) checking structural identifiability through G(s). 
Notice  that  K and Ko are matrices of  binary 

entries (ku = 1 if  a transfer from j to i exists, 
k u = 0 if it does not). Matr ix A is computed as 
follows: a u =  ku- for i r  a ~ =  1 if ko~= 1 or 
k u = 1 for some j ,  otherwise au = 0. 

The program, written in PL1 language, was tested 
on a 370/158 I B M  computer  through a 2741 terminal. 

When the chosen experiment does not  allow the 
model  to be identified, some different procedures 
can be adopted. When possible, either a different 
experiment is chosen or  a different model  is devel- 
oped that can be identified by the chosen experi- 
ment;  otherwise the problem can be accurately 
analysed and some relations sought among  the para-  
meters which are to be estimated. In examining 

h 
m - NUMBER OF 

POSITIVE K~i 
m O- NUMBER OF 

POSITIVE KOj 
m 1 -mi ra  0 

NO 
i 

Y 
YES 

I I 

co:NUMBER ] 
OF POSITIVE 

LCB]d 

these possibilities the biological phenomena  are 
always taken into account;  sometimes it is impos- 
sible to change the inpu t -ou tpu t  experiment,  i~ 
some other cases there is no further informat ion 
about  the coefficients, not  even about  the possibility 
of  neglecting some of  them. 

d=d Co(n- l l  I 

6 Example 

In this Section, some significant biological com- 
partmental  systems are considered, and concepts and 
methods  developed in the paper are applied to 
analyse their structural identifiability. The pro- 
cedure is examined in detail only for the first ex- 
ample,  but results are reported for the other  
examples. 

6.1 BiHrubin metabolism 

A 3-compartment  mode[ (BERK et al., 1967), 
extravascular spaces-l ,  plasma-2 and liver-3, is 

A 

YES 

COMPUTEA J 

i 
I - O  1 
-I 
i I+'~ 

l 
I COMPUTE 

CA I B 

I Cl= NUMBER OF POSITIVE I 
[CA I B]i i 

i 

YES 

A 

> 

Fig. 1 Flow chart for a check of structurally identffiability of strongly connected compartmental systems 
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reported in Fig. 2. Exchanges between plasma and 
extravascular spaces are slower than those between 
plasma and liver. The experiment is performed with 
input (injection of radioactive tracer) and output in 
compartment 2. 

Matrices K, Ko are 

-i! k12 
K=  2t 0 

k32 

It  can be observed 

~ 23 K o =  [0 0 kos] 

that if R (3) = 2 Kz has all /=I 

Fig. 2 3- compartment model of bilirubin me tabolism 

entries positive, the model is strongly connected 
and is therefore c.c. and c.o. 

Matrices A, B and C are 

k21 
A = k2t 

0 

[~ B 1 
0 ; 

k21 0 7 
| - k 1 2 - k 3 z  k23 

ka2 - k23 - -  koa_l 

c = [0 1 0] 

From the expression det ( s I - A )  (see eqn. 18), It 
follows that three parameters can be estimated from 
the denominator of [G(s)]22 as the system is open. 

From CB = I, it follows that two more para- 
meters can be estimated from the numerator, there- 
fore the system is identifiable without redundant 
equations, as the number of unknown parameters 
is five. 

The computer run of  the program for this example 
is shown in Table 1. 

The 3-compartment model represents the bio- 
logical phenomenon when the output experiment 
lasts for at least 48 h. Very often the experiment is 
limited to 4-8 h.; in this case bilirubin metabolism 
can be studied with the 2-compartment model 
(BARRET et al., 1968; COBELLI et al., 1974) of Fig. 3, 
for plasma-1 and liver-2. 

Here the experiment is performed with the input 
(injection of radioactive tracer) and output in 
compartment 1. In this case too, the system is 
structurally identifiable without redundant equations 

6.2 Ferrok inetics 

A 4-compartment model (JOHNSON et al., 1973), for 

Fig. 3 2-compartment model of bilirubin metabolism 

Table 1. Computer run of the program for the 3- 
compartment model of bilirubin metabolism 

GIVE NUMBER OF COMPARTMENTS 
? 3 

GIVE K 
? 0,1,0 
? ? 1,0,1 
? ? 0,1,0 

GIVE KO 
? 0,0,1 

STRONGLY CONNECTED SYSTEM 

GIVE NUMBER OF INPUTS 
? 1 

GIVE: INPUTS IN COMPARTMENTS 
? 2 

GIVE NUMBER OF OUTPUTS 
? 1 

GIVE: OUTPUTS IN COMPARTMENTS 
? 2 

THE SYSTEM IS STRUCTURALLY IDENTIFIABLE 
WITH 0 REDUNDANT EQUATIONS 

Fig. 4 4-compartment mode/of  ferrokinetics 

extravascular spaces-l, plasma-2, bone marrow-3 
and red blood cells-4, is reported in Fig. 4. 

The experiment is performed with the input 
(injection of radioactive tracer) and output in 
compartment 2. I t  can be proved that the system is 
structurally identifiable without redundant equations. 
If  a second output i n compartment 4 is provided, 
there are three redundant equations. 

Fig. 5 4-compartment model of thyroxine distribution 
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6.3 "lhyroxine distribution 

A 4-compartment model (SHARNEY e t  al., 1965; 
NICOLOFF and DOWLING, 1968), for interstitial 
fluids-l, liver-2, plasma-3 and other organs and/or  
tissues-4 is reported in Fig. 5. Exchanges between 
compartments 1-2 are slower than those between 

check quickly the maximum number of identifiable 
parameters of the compartmental system. 

A flow chart for a digital computer implementation 
of the whole procedure has been presented. 

Finally, the procedure has been applied to several 
examples concerning biological compartmental 
systems. 

Fig. 6 3-compartment model of thyroxine distribution 

Acknowledgments--The authors wish to thank Prof. A. 
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compartments 1-3 and 2-3; exchanges between 4-1 
are slower than those between 1-2. Moreover, 
outputs from compartments 2 and 3 due to meta- 
bolism and excretion, respectively, may be considered 
as negligible in a first approximation (B~r~ETAZZO 
et aL, 1972). 

The experiment with the input (injection of 
radioactive tracer) and output in compartment 3 
allows us to estimate only seven of the ten unknown 
parameters; therefore the system is not structurally 
identifiable via the chosen input-output  experiment. 

In this case, two procedures can be followed for 
system identification as seen in Section 6: the first 
consists in modifying the input-output  experiment, 
when it is physiologically realisable without trouble, 
the second consists in adopting a model of 'lightly' 
modified structure from the previous one, but still 
sufficiently approximate and therefore significant. 

Fo r  the model of Fig. 5, both procedures cart b e  
followed. 

In the modified input-output  experiment; 
compartment 2 is also observed: in this case the 
system is structurally identifiable. A suitably accept- 
able simplification of the model neglects exchanges 
between compartments 1-4 and 1-2 and assumes the 
system to be closed (BENETAZZO et al., 1972) (Fig. 6). 
In this case, the initially chosen input-output  
experiment in compartment 3 implies that the system 
is structurally identifiable. 

7 Conclusions 

In this paper, the structural identifiability of  
biological strongly connected compartmental systems 
has been analysed. 

Concepts and methods of linear system theory 
have been applied to compartmental systems in order 
to define controllability, observability and structural 
identifiability. 

The relation between strong connection and the 
properties of  controllability and observability has 
been proved. 

The results of the proved theorems make possible 
an analysis of structural identifiability of strongly 
connected compartmental  'systems through the 
transfer-function matrix G(s). A simple criterion, 
based on a series expansion of G(s), allows us to 
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Identifiabilite structurelle des syst&mes biologiques compartiment~s 
liaison forte 

Sommaire---L'article pr6sente l'6valuation de la possibilit6 d'estimer ~, priori les param~:tres inconnus d'un 
syst~me ayant une structure connue, 5, l'aid.e d'une exp6rience entr6e-sortie (Identifiabilite structurelle). 
Le probl~me est analys6 avec r6f6rence aux syst~mes biologiques compartiment6s (et pr6cis6ment avec 
une cat6gorie sp6cifique mais bie~ repr6sentative de ces syst~mes, c'est h dire les syst~mes comparti- 
ment~s/ t  liaison forte ainsi nomm~s). L'analyse est d~velopp~e 5. l 'aide de concepts et de m6thodes 
pour une th6orie de syst6me et en particulier les concepts de 'contr61abilit6' et d"observabilit6' (c'est 
/t dire la possibilit6 d'influencer le comportement de tout le syst~me avec l'entr6e et de l'estimer ~. 
partir  de la sortie). 
On d6montre deux th6or6mes nouveaux se rapportant aux conditions n6cessaires et suffisantes pour 
l'observabilit~ et la controlabilit~ des syst~mes compartiment6s ~t liaisons fortes. A partir de ces 
th6or~mes, on 6tablit un crit~re d'identifiabilite structurelle et on donne la raise en effet technique de 
calcul num6rique de ce crit~re. 
Quelques exp6riences typiques d'analyse de trac6s sur des syst~mes biologiques compartiment6s sont 
donn6es dans le but d'6valuer le nombre et ceux des param~tres du syst~me consid6r6 pouvant 6tre 
estim6s par l'interm6diaire des exp6riences entr6e-sortie choisies. 

Strukturelle Identifizierbarkeit yon stark verbundenen biologischen 
Zellensystemen 

Zusammenfassung--Der Aufsatz befaBt sich mit der Beurtei[ung einer a priori M/3glichkeit, die unbekannten 
Parameter eines Systems mit einer bekannten Struktur fiber ein Eingabe/Ausgabe-Experiment zu 
errechnen (strukturelle Identifizierbarkeit). 
Das Problem wird in bezug auf biologische Zellensysteme analysiert (und genauer gesagt in bezug auf 
eine spezifische, jedocb_ weitgehend repr/isentative Klasse dieser Systeme, d.h. die sogenanntert stark 
verbundenen Zellensysteme). Die Analyse wird entwickelt durch Verwnedung von Konzepten und 
Verfahren der Systemtheorie und insbesondere von Konzepten der Kontrollierbarkeit und Beo- 
bachtungsm6glichkeit (d.h. der M6glichkeit, das Verhalten des gesamten Systems dutch die Eingabe 
zu beeinflussen und. es durch die Ausgade zu berechnen). 
Hinsichtlich. der notwendigen und ausreichenden Bedingungen ftir die Beobachtungsm6glichkeit 
und Kontrollierbarkeit von stark verbundenen Zellensystemen werden zwei neue Lehrsiitze bewiesen. 
Auf  Grund dieser Lehrs/itze wird ein Kriterium fiir die strukturelle Identizierbarkeit aufgestellt, und 
es wird eine digitale Rechnereinsatztechnik f[ir dieses Kriterium angegeben. 
Gewisse typische Spurenmaterialanalysen-Experimente an biologischen Zellensystemen werden 
analysiert um zu beurteilen, wie viele und welche Parameter des beriicksichtigten Modells 
durch die gewiihlten Eingabe/Ausgabe-Experimente berechnet werden k6nenn. 
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