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In  a cell, in which the permeabi l i ty  to a metabol i te  is a funct ion 
of  the concentra t ion of  t ha t  metaboli te,  s i tuat ions m a y  occur, in 
which the diffusion field will  exhibi t  cer ta in  assymet r ic  pa t te rns ,  
even though the  cell may  possess geometr ica l ly  spherical  symmetry .  
This  pa t t e rn  resul ts  in a polar i ty  of  the  cell. Moreover ,  the pa t t e rn  
being the resu l t  of  a dynamic  equil ibrium, i t  possesses the  p roper ty  
of  self-regulat ion.  Divid ing  the cell in two resul ts  in the appearance  
of a s imi lar  pa t t e rn  in each half-cell .  

Ano the r  case when such self  regula t ion  and polar i ty  occur is 
g iven by considerat ions of  the  action of  the diffusion forces upon 
colloidal par t ic les ,  which affect ca ta ly t ica l ly  the metabolic  reactions.  
A simple aase is t r ea ted  mathemat ica l ly .  

The problem of biological self-regulation offers many different 
aspects. One of the most fundamental of these, and at the same time 
one of the most difficult is that of the development of regulation eggs. 
Most drastic interference with the visible internal structure of these 
eggs may leave them still capable of producing normal embryos (Har- 
vey, E. B., 1932, 1936). Such self-regulation has perhaps been the 
phenomenon, upon which claims of the existence of non-physical ele- 
ments in biology have been based. While much has been written on 
the physical aspects of self-regulation and it has been pointed out, 
that even relatively simple physico-chemical systems may at times 
possess the property of self-regulation, yet all these general consid- 
erations and analogies do not bring us much nearer to the solution of 
the problem. If  we are to incorporate eventually these phenomena 
into the field of mathematical biophysics, we must proceed by study- 
ing theoretical models, which are su~iciently specific to be applied not 
only to the phenomenon of selfrregulation in general, but to some def- 
inite biological case of it. Of course, when such a model is developed, 
it is by no means to be regarded as the explanation of the particular 
phenomenon, for which it is intended as a model. Most likely there is 
a large number of different possible explanations. It  is only by study- 
ing systematically all theoretically possible cases and by a comparison 
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of the mathematical  deductions f rom each of those cases with avail- 
able experimental  data, tha t  we may  in the fu ture  arr ive at a decision 
as to which, if any, of the theoretically studied si tuations actually 
occurs. 

With  this in mind, we shall now investigate a problem, which is 
suggested by  such observations,  as for  instance those by E. B. H a r v e y  
(1932, 1936) on centr i fuging Arbacia eggs. Subject ing them to a 
force 10,000 t imes that  of grav i ty  not  only produces a definite s trat i-  
fication of the content  of the  egg, according to the specific gravi ty  of 
the  different constituents,  but  results eventually in a breaking up of 
the egg in two and even in four  parts,  each pa r t  containing different 
visible components.  Yet, when fertilized, all four  par ts  can give rise 
to normal embryos.  

The early differentiat ion of the fertil ized egg indicates definitely 
the preexistence of some sort  of nonuniformities.  At the same time 
these nonuniformit ies  obviously cannot be connected with or  even re- 
lated to the visible material .  Moreover, wha tever  latent  nonuniform- 
i ty pa t te rn  may  have existed in the normal egg, the breaking of the 
la t ter  into four  par ts  of very  different gross  consti tution mus t  have 
resulted in each pa r t  acquiring again the same latent  pat tern,  which 
characterized the original normal egg. 

A suggestion has been made that  the pa t te rn  responsible for  the 
early differentiation is contained not in the cell volume, bu t  on the 
surface in the cell membrane  (Weiss, 1939). The la t ter  being of  a 
much more rigid nature  than the more liquid inter ior  of the egg, the 
centr ifugal  forces used in the experiment  may  not  be sufficient to up- 
set the inner s t ructure  of the membrane.  Since there is a direct  mi- 
croscopic evidence for  a superficial localization of the early noticeable 
differentiat ion of the egg (Weiss, 1939), it appears  of interest  to 
investigate this possibili ty more quanti tat ively.  

It  must  however  be remembered,  tha t  while there is good evi- 
dence for  a more  solid-like consistency of the egg membrane  as com- 
pared with the interior  of the  egg, ye t  the membrane  certainly cannot 
be considered as a solid bag, containing a liquid interior.  Fo r  in such 
a case a force s t rong enough to break  the egg into par ts  would simply 
tear  the solid membrane,  leaving the inter ior  to flow out. The micro- 
photographs  taken by  E. B. Ha rvey  (1932, 1936) and reproduced by 
P. Weiss (Weiss, 1939, p. 191) show tha t  under  the  influence of the 
centr i fugal  force the  egg elongated and then divided by  constriction 
in the middle. In other  words  the membrane  at the equatorial  region 
fuses together  as only a liquid would do. I f  however  the  membrane  
is merely a ve ry  viscous liquid, sufficiently s t rong forces would upset  
its internal s t ructure  also. 
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I 
Let us consider a spherical cell of radius ro cm., producing a sub- 

stance at  a constant  rate q gm cm -3 sec -1. Let  the external  concentra- 
tion of the substance be Co gin cm -3 and the external diffusion coef, 
ficient De be very large, so tha t  we may put  De = co. This merely sim- 
plifies the calculations, wi thout  introducing any essential l imitations. 
Let  the internal  diffusion coefficient be D cm 2 sec -1. Assume fur ther ,  
tha t  the membrane of the cell is not uni form in its physical constitu- 
t ion and tha t  therefore its permeabil i ty is not the same at  every 
point. Let  the s t ructure  of the membrane possess an axial symmetry ,  
thus impar t ing  a polarity to the cell. Let  a t  one pole the permeabil i ty 
have the value kl cm sec -~, while at  the other pole let tha t  value be 
h~ cm sec -~. Due to such a nonuniform and asymmetr ic  distr ibution 
of the permeability, the distr ibution of concentration of the produced 
substance within the cell will also not be spherically symmetric.  In 
par t icular  the concentration inside the cell at  the membrane will vary  
f rom point to point. 

To calculate the average concentration distr ibution in such a cell 
we shall use the usual approximation method (Rashevsky, 1940). Let  

hi denote the a v e ~ u g e  permeabil i ty in one hemisphere (Fig. 1), while 

FIGURE 1 

denotes the average permeabili ty in the other one. Correspond- 
ingly we shall denote by cl and c2 the a v e r a g e  concentrations a t  t h e  

m e m b r a n e  inside the cell in each hemisphere. Denoting by c the aver- 
age concentration within the cell, we have 

~ - -  el  
2D - -  -- h~ (c~ - -  Co) ; (1) 

ro 

- -  e2 
2D - -  -- h~ (c~ - -  c~) ; (2) 

4 ( ~ -  cl c - -  c2 
-~ nro3q ~ 2nro 2 • 2 D  - -  ~-  2nro 2 • 2 D  ~ (3) 

ro ro 
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Equations (1) and (2) give: 

2Dc @ roh~Co 
C 1 

2 0  @ roh~ 
Hence 

2De -~- roh~co 
; c~ = (4) 

2D @ ro~ 

- roh~ (~ - -  C o )  - roh~ (~ - -  Co) 
c - -  e~ = ; c - -  c~ = (5) 

2D ~- roh~ 2 0 - ~  ro~ 

Introducing equation (5) into equation (3), we find after  rearrange- 
ments: 

- r ~ q  (2D -~- tomb1) (2D -~ rob2) 
c = Co + - -  (6) 

3 D 1~ (2D @ ro~) ,@ h~ (2D -{- roh~) 

For hi 
duces to 

qro q r o  2 
c =  Co ~ - - ~  ~- 6 - - f f  ' 

I ? 

as should be the case*. 
Equation (6) introduced into equation (4) gives 

2roq 2D ~- ro]~2 
(~z ~ C o - ~ - - -  

3 h~(2D@ roh2)@ h2(2D@ro/~l) 

= h2 = h ,  that is for a uniform membrane, equation (6) re- 

(7) 

(8) 
2roq 2D -~- roh~ 

c: = Co-t 
3 hi (2D-~- rob2) ~ -  ~ (2D @ roh l )  

Thus an asymmetry of the cell membrane will result in an asym- 
metry of the diffusion field within the cell. For the approximate cal- 
culation of this field we considered two discrete average values hi and 
f~ of the permeability. The actual value of the permeability is as. 
sumed to vary continuously along the meridian. If this variation is 
monotonic, then a division of the cell into several parts by sections 
parallel to the equator will produce smaller cells, each having a similar 
polarity. 

We have here a model which may reproduce some of the prop- 
erties of actual cells. Yet this model does really not show any regula- 
tion. It is essentially a "mosaic" model, the mosaic being attributed 
to the membrane and possessing a rather  simple pattern. The above 

* The equations derived for  a spherically symmetrical  cell previously (Rash- 
evsky, 1940) differ from equation (7) in the values of the numer ica l  coefficients, 
which are  respectively 2/9 and 1/9. This is due to the fact  tha t  we considered 
there actual ly a cylinder whose length equals i ts diameter. 
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considerations suggest  however  an interest ing possibility of actual 
regulation, which we shall mention here. 

Suppose that  the permeabil i ty  h of the membrane  is i tself in- 
fluenced by  the concentration c of the metaboli te in its vicinity. Such 
a supposit ion is biologically ra the r  plausible. Let  this influence be 
such, that  an increase of c results in a decrease of h .  Let  the perme- 
abili ty be originally uni form all over the membrane.  Then the diffu- 
sion field will possess spherical symmetry.  Let  now the concentrat ion 
become, because of some disturbance,  slightly higher  at  one region of 
the membrane.  This will result  is a decrease of permeabil i ty  in tha t  
region, thus creat ing a condition similar  to the one discussed above. 
But  in tha t  case the concentrat ion c at  the membrane  will be larger  
in the region with smaller h .  This can be readily seen f rom equations 
(8) ,  which give: 

2~o2q ( ~  - -  ]~1 )  
cl - -  c~ = _ (9) 

hi (2D ~- ro~)  -L- h: (2D + ~ 'oh i )  

Equat ion (9) shows, that  when hi < ~ ,  then cl > c~. Thus the re- 
suit ing change in permeabil i ty  will result  in a fu r ther  increase of c at  
tha t  place, thus enhancing the asymmetry .  We may ask whether  un- 
der  such conditions stable asymmetr ic  configurations may  not be ob- 
tained. 

Mathematical ly the problem reduces to the following. Let  h be a 
prescribed function of c ,  h = f (c) .  We then have hi ---- /(Cl) and 

h2 ---- f(c~).  Denote the r ight  hand side of the first equation (8) by 
ul(hl, h~) and t h e  r ight  hand side of the second equation (8) by 

u~ (~1, h~). Then, since hi and h~ are functions of cl and c~, we find 

tha t  u~(/h, 7%) ---- u l [ f ( c l ) , f ( c 2 ) ]  ~-- Vl(Cl, C:2) ;and similarly u~(h ,  h~) 
= v~ (cl, c~). We must  now look for  stable solutions of the system of 
equations:  

Cl ~ Vl (C, C~), 
(~o) 

c~ ~ v2 (01, c2), 

other  than cl ---- c2, which corresponds to a spherical symmetry.  It  can 
be shown that  when f (c)  is monotonic, only spherically symmetr ic  so- 
lutions are  possible. Physical ly this is due to the fac t  tha t  when an 
asymmetr ic  configuration is obtained in a manner  described above, 
then any slight increase of c at  the lower end will result  in a decrease 
of  h a t  tha t  end, with a result ing fu r the r  increase of c ,  until it reaches 
the same value as at  the higher end. However  we cannot  a priori ex- 
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elude the possibility tha t  for  some special types of the function f (c) 
asymmetr ic  solutions of the system (10) may exist. The problem now 
is to investigate whether  this is possible and if  so, for  what  forms of 
f (c).  Fur the rmore  we shall have to ascertain, tha t  if such possibilities 
exist, the necessary form of f (c)  is biologically plausible or at  least 
possible. 

For  given hi and h2, the values cl --= u~ ( ~ ,  h~) and c2 = u~ (hi, h~), 
as expressed by equations (8), are obtained by considerations of ma- 
terial  balance in a s ta t ionary  state. Therefore when cl > Ux, cl will 
decrease until it  reaches the value Ul. Conversely if  Cl < u l ,  c~ will 
increase until it reaches the value u l .  A similar th ing holds for  c2. 
Therefore the conditions of stabili ty require tha t  any small increment  

of c~ would result  in a lesser increment  of Ul (~ ,  ~ )  or, which is the 
same, of v~(cl, c2), so tha t  ~v~/~c~ < 1 ; and similarly ~v2/~c~ < 1. 
For  the symmetrical  case, when c~ = c~, it  may happen tha t  the con- 
figuration will be stable for  a simultaneous equal increase or decrease 
of c~ and c~, but  unstable for  an increase of cl accompanied by a de- 
crease of c~ or vice versa. 

I f  asymmetr ic  stable solutions of the system (10) exist for  some 
forms of f (c), and if  they exist for  a sufficiently large range of values 
of to ,  then we have a case of a t rue  self-regulation. No ma t t e r  how 
we divide such a cell, whether  equatorially or meridionally, no ma t t e r  
how we st i r  up its content, the cell or each par t  of it wi thin the ad- 
missible range of to ,  will automatical ly reconsti tute the asymmet ry  
of the diffusion field. 

We have however ra the r  formulated a problem than  given a so- 
lution. A consideration of a different physical mechanisms leads us 
to a simpler solution of this type of problem. 

II 

Consider again a spherical cell, producing a substance. Let  how- 
ever now the permeabil i ty be a constant, h .  Let  moreover the cell con- 
ta in  a catalyst,  which inhibits the reaction, so tha t  the higher  the con- 
centrat ion n of the catalyst,  the smaller the rate of production q .  I f  
the molecules of the catalyst  are ra the r  large, or if  the la t ter  is pres- 
ent  in a colloidal state, wi th  a particle size > 2 • 10 .7 cm., then as we 
have seen elsewhere (Rashevsky, 1938), due to the action of the diffu- 
sion forces, these particles will show a pronounced nonuni formi ty  of 
distribution, their  concentration n being larger  in regions of smaller 
concentrations c of the diffusing metabolite. For  a produced sub- 
stance, when the negative gradients  are directed outwards,  the cata- 
lyst  will accumulate at  the periphery, decreasing there the rate of pro- 
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duction and still enhancing the gradient  of c .  However ,  for  a spheric- 
ally symmetr ic  dis tr ibut ion of the catalyst,  everything will remain 
spherically symmetr ic  and the a v e r a g e  ra te  of production q will be 
the same in any arb i t ra r i ly  chosen half  of the cell. I f  however,  for  

some reason, in one of the hemispheres  the average concentration c 
increases, this will result  in an increase of n in the other  hemisphere 

at  the expense of the first. This will cause a fu r the r  increase of ~ in 
the first hemisphere,  enhancing the asymmetry .  To investigate the 
possibilities in this case, let us first investigate what  effect a variat ion 
of q f rom point to point  in a cell will have upon the diffusion field. 

Refer r ing  again to Fig. 1, denote the a v e r a g e  concentration i n  

one  h e m i s p h e r e  by ~ ,  in the other  by c~. Denote the average rate  of 
production in the first hemisphere by q~, in the second by q~. We now 
have 

Cl ~ CO 
2D - -  --  h ( c ~ - -  Co) , (11) 

ro 

C 2 - -  e2 
2D - -  --  h(c~_ - -  Co) . (12) 

To 

The mater ial  balance equation is now however  somewhat  modified. 

Due to the different values of c in the two hemispheres,  there  will now 
be not  only an outflow of the metaboli te f rom the cell, but  also an in- 
ner  flow, f rom one hemisphere to another. Since the average gradient  

for  this flow is approximately  (cl - -  c ~ ) / r o ,  and the area through 
which the flow takes place is n r J ,  tha t  of the equatorial  circle, the to- 

tal inner flow is equal to nroD ( c l -  ~ ) .  We now have for  the first 
hemisphere 

2 
-~ nro3ql = 2urJ  • 2D ~1 - -  c~ - - r ~  {- nroD(c~ - -  c~) , (13) 

and for  the second 

2 c~ - -  c~ 
-~ nro~q~ = 2 n r J  • 2D  ro 

Equat ions (11) and (12) give 

2DCl H- rohc~ 
Cl = 

2D Jr- roh 

n r o D ( f l - - ~ ) .  (14) 

2Dc:  Jr  rohco (15) 
c 2 =  2D-[- roh " "  

Introducing (15) into equations (13) and (14) we find a f te r  rear- 
rangement :  
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3D (2D ~- 5roh) ~ = 3D (2D-~- r oh)~2 

-4- 12Drohco @ 2 (2D @ roh)rJq~ ; 

3D (2D @ 5r~k) ~ = 3D (2D-~- roh)~ 

@ 12Dr~hco ~- 2 (2D @ roh)ro~q~. 

Solving we find: 

- r J  (2D-~  roh) [ (2D ,@ roh) q,~ -~- (2D @ 5roh) ql] 
c~ = Co -~ 12Droh (2D ,~- 3roh) 

c~ = co-~- 

Hence 

r J  (2D ~- roh) [ (2D ~- roh) q, @ (2D ,@ 5roh) q~] 

12Droh (2D -~- 3roh) 

( 1 6 )  

(17) 

Put t ing  

n~ _ e_a(~l _ ~2) (20) 
n~ 

Denoting by n the average concentrat ion of the catalyst  in the whole 
4 

cell, and remember ing  tha t  the total amount  of the catalyst  ~ nrJn is 

constant,  we have 

n - - -  ( 2 1 )  
2 

~ ,  - -  ~2 = x ,  ( 2 2 )  

we have (MB, p. 67), for  the ratio nl/n2 Of the concentrat ions of the 
catalyst  in the two hemispheres  

- - r o  ~ ( 2 D  ~ -  roh) (ql  - -  q2) 
c l  - -  c2 = ( 1 8 )  

3D (2D @ 3roh) 

The difference c~ - -  c~ vanishes for  q~ = q:.  When q~ > ql ,  then 

Now let us investigate the effect of such an asymmetr ic  concen- 
t ra t ion distribution of the metabolite upon the concentrat ion n of the 
catalyst. Denoting by V the volume of the  particle, by N - -  Avogra- 
dro's number,  and by M - -  the molecular weight  of the diffusing meta- 
bolite, and put t ing 

3 NV  
a -- (19) 

2 M '  
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we find from equations (20) and (21) 

n~ - -  n~ ---- 2n tanh � 8 9  (23) 

For  the effect of the catalyst on the reaction rate q let us con- 
sider the simplest possible relation, a linear one. 
Let 

q = qo - -  a n ,  (24) 

where a is a constant. Then 

q l  - -  q~ ---- a ( n ~  - -  n ~ )  . ( 2 5 )  

If  an asymmetric distribution is to be possible, it must be represented 
by a stable root of the equation, obtained by introducing (23) into 
(25) and then introducing the latter into (18). Putt ing 

ro ~ (2D Q- roh)  
---- A ,  (26) 

3D (2D-{- 3rok) 

we thus find 

x -~ 2 A a n  tanh �89 (27) 

If, as will usually be the case, a x  is rather small, we may expand the 
hyperbolic tangent keeping only the lowest nonvanishing power. Equa- 
tion (27) then becomes 

x = A a n a x  (1 - -  1 a2x2 ) , (28) 

which, besides x ---- 0, has a positive root: 

x* 2 / -3  ( A a n a  ---1)  
---- ~ ~ A--~a ' (29) 

provided 

A a n a  > 1.  (30) 

That the root (29) corresponds to a stable configuration is seen by 
graphing equation (28). The curve which represents the right hand 
side of (28), is nothing else but the right hand side of equation (18). 
By a similar argument as before we must have for stability 

__dAanax(llx2a~) < 1  for  x =  X* 
d x  

which is actually the case. 
The model discussed here does exhibit true selfregulation. No 
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mat te r  how the cell is divided or hew its content is stirred, the char- 
acterist ic  a symmet ry  of the diffusion gradient  will be automatical ly 
reestablished. By considering the presence of several catalysts  with 
different  particle size, and affecting different reactions, we may  ob- 
ta in  complex asymmetr ic  pa t te rns  of the diffusion field, which thus 
may  represent  a r a the r  intr icate  latent  self-regulating structure.  

I t  must  be noted that  the diffusion force per  unit  volume, 
--(RT/M) grad c may  be of the order of 107 - -  108 dyn. em -8, (Rash- 
evsky, 1938), which is not  only comparable,  bu t  even may  exceed the 
centr i fugal  forces used in the above mentioned experiments.  More- 
over while the effect of the  centr i fugal  forces upon a particle is pro- 
port ional  to the difference in specific weights  of the particle and of 
the surrounding liquid and vanishes when the two specific weights  
become identical, no such restr ict ion holds for  the effect of diffusion 
forces. The model discussed here may  in principle be muti lated be- 
yond the point when self-regulation is possible, by applying such a 
s t rong centr i fugal  force, tha t  all the catalyst  is driven into one cell 
f ragment .  But  this may  require centr ifugal  forces fa r  in excess of 
those available now. 

III  
Another  impor tan t  result  of this  s tudy is tha t  it leads us into the 

theory  of cell polarity. A cell like the one discussed in section II al- 
ways  possesses a "polari ty,"  and it  is known that  polari ty is r a the r  
the rule in cell biology. The asymmetr ic  distr ibution of the metabo- 
lite and therefore  of the diffusion forces will in general result  in 
asymmetr ies  of  all o t h e r  impor tan t  physical propert ies  of the cell. 
Aggregates  of  such polar  cells will themselves exhibit  polar proper-  
ties and a way  is thus indicated for  a mathematical  biophysics of dif- 
fe ren t  t ypes  of tissues. 

A polar i ty  considered in section II is of a dynamic nature.  But  
due to the i rreversibi l i ty of some biological reactions, i t  may  result  
a f t e r  a lapse of t ime in a permanent  polar i ty  of a stat ic nature,  as 
discussed in section I. 

The au thor  is indebted to Dr. A. S. Householder  for  a discussion 
of this paper  and checking of the calculations. 

The publication of  this  paper  was made possible by  a gran t  f rom 
the Rockefeller  Foundat ion to the Univers i ty  of Chicago. 
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