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A model of the processes oecuring in the exchange of a drug between 
cap i l l a ry  p lesma,  ex t r ace l l u l a r  space  and in t race l lu la r  s p a c e  is  deve l -  
oped. Th i s  l eads  to an in t e r e s t i ng  s e t  of d i f ferent ia l  d i f fe rence  equa-  
t ions ,  one of which i s  an in tegrod i f fe ren t ia l  equat ion ,  another  a par t ia l  
d i f fe ren t ia l  equat ion .  Under cer ta in  condi t ions ,  t he se  may be s impl i f i ed  
to a s e t  of ordinary d i f fe ren t ia l  equa t ions .  The  app l ica t ion  of L a p l a c e  
transform t echn iques  to the so lu t ion  of these  equa t ions  i s  d i s c u s s e d .  

i. Introduction. Mathematics plays a fundamental role in the phys- 

ical sciences because it furnishes the possibility of setting up 
realistic models of physical phenomena which can then be treated 
by uniform techniques. 

This has not generally been true of the fields of biology and 
medicine. Often the realistic models have defied the state of the 
art of mathematics, or the oversimplified models that have been 

treated have furnished little insight into actual biological phenomena. 
The present paper is the first of a series of papers in which we 

wish to study qualitative and quantitative aspects of chemotherapy. 

Specifically, what we wish to study is the distribution of a com- 

pound in the organs of the body after its injection into the blood 
stream. 

These problems are similar in many respects to a class of prob- 

lems arising in mathematical economics in connection with mul- 

tistage production processes and generally in the domain of "in- 
put-output" analysis. The biological problems are, however, in 
many ways more complex. 
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It turns out that the study of either dynamic or static (steady 
state) behavior of the organs of the body, arranged in series-par- 
allel networks, bears a certain resemblance to the operation of 
complexes of interdependent industries, and also to the cascade 
processes encountered in isotope separation or in the operation of 
oil refineries. These matters will be discussed subsequently. Here, 
in this initial paper, we shall study a relatively simple system con- 
sisting of the heart and one organ. 

At the moment, we are concerned with the purely descriptive 
phase of the study of these life processes. As we shall see, one 
of the advantages derived from the formulation of mathematical 
models on even this moderate plateau of realism is the light it  throws 
on the need for further experimental work which will yield the data 
required for actual numerical results. 

At the moment, we wish to consider only the analytic aspects. 
Subsequently, we wish to formulate multi-organ models and apply 
analogue and digital computing techniques to the solution of var- 
ious linear and nonlinear sets of equations which arise from them. 

Following this phase of our program~ we wish to turn to our pri- 
mary objective, the study of control aspects of these processes. 
Our ultimate aim is to determine chemical injections with optimal 
specific properties. 

From the mathematical point of view, the study of these prob- 
lems is quite interesting due to the presence of novel features not 
usually found in the study of mathematical physics or mathematical 
economics. To begin with, there are a number of difficulties pres- 
ent at the very outset when we attempt to set up a mathematical 
model. Next, we find that the built-in periodicity and time lag fur- 
nished by the circulation of the blood leads to differential difference 
equations involving partial derivatives. Furthermore, the time lag 
appears in the boundary conditions! Although these can be treated 
by Laplace transform techniques under certain simplifying assump- 
tions which yield linear equations, more detailed models yield non- 
linear equations. The numerical solution of large-scale systems 
of differential difference equations is not a trivial matter. In par- 
ticular, the computer memory requirements may become excessive. 
The equations resulting from the Laplace transformation are also 
of interesting type. They are integrodifferential equations with 
boundary conditions of two-point type. 
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The quest ion of determining what type of s teady s tate  resul ts  
hinges upon the investigation of the character is t ic  roots of quite 
complicated transcendental  functions. Although the method of L. 
Pontrjagin (1955) can be used in some cases ,  in others, the matter 
is still  unresolved. As we shall see ,  physical  reasoning can some- 
times be employed. 

The reader versed in biological  and physicaI  matters will see  
that we have omitted a number of ef fects  in our treatment. Our ex- 
cuse is a simple o n e - - t h e  probIem is a complicated one even at 

this level.  
In Section 2 some physiological  considerat ions are provided by 

way of background. This leads to a model of a one-organ being in 
which we seek to determine the concentration of a drug as a func- 
tion of time and position, where the concentration sa t i s f i e s  a cer- 
tain partial differential  equation along with appropriate initial and 
boundary conditions. The role of the Laplace  transform in effect ing 

a solution is indicated. It is then shown in Sections 9 to 11 how 
many essen t ia l  features of this original model can be preserved, 
though the problem is much simplified, through the introduction of 

a st i l l  further simplified model. Final ly  in Section 12, we show 

how to formulate equations for the si tuation in which a drug is in- 
jec ted  into the blood stream, enters  the extracellular  space,  and 
finally enters the intracellular space  where it takes part in a re- 
versible  chemical reaction. 

2. Physiological considerations. Except  for two specia l  cases ,  
we may consider  the various organs of the body as being in contact  
with the c losed-ci rcui t  circulation as in Figure 1, with the various 
organs or regions of the body in parallel.  

As an introduction to the quanti tat ive s tudy of this system, we 
consider  the dras t ical ly  simplified case  of a single region with a 
c losed-circui t  blood supply. We defer consideration of mixing in 

the circulation until we take up the many-organ model (Jacquez,  
Bellman, and Kalaba, 1959). We feel that this case  will i l lustrate 
the e s sen t i a l  assumptions required to construct  the model. 

The region involved cons is t s  of many simply connected spaces ,  
living ce l ls ,  of various roughly similar shapes  and s izes ;  each is 
separated by its boundary, the cell  membrane, from a watery fluid, 

the extracellular fluid, which fills the space outside the cel ls .  The 
blood supply to this region enters via a number of tubes,  arteries,  
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FIGURE 1. Diagram of para l le l  arrangement  of body organs in re la t ion  
to blood supply .  

which branch into the small arterioles.  Each of the many arterioles 
gives  rise to many, small, thin-walled tubules ,  the capi l lar ies ,  
which pass  in many directions through the extracel lular  space and 
finally join into venules  which combine to form the veins which 
carry the blood from the region. Exchanges  between the blood and 

and the cel ls  of the region occur by diffusion between the blood and 
extracel lular  space  and between extracellular  space  and intracel- 
lular space. 

Although capi l lar ies  vary somewhat in dimensions,  we may take 

the average capil lary to be .0004 cm in radius and .04 cm long. All 
the capi l lar ies  to a region are not a lways open with the number 
through which blood is flowing at any one time depending on the 
s ta te  of the t i ssue .  Thus, for a rest ing muscle only 5 capi l lar ies  
per sq. mm may be open, while for stimulated muscle  as many as 
190 capi l lar ies  per sq. mm may be functioning. We consider  only 
s i tuat ions in which the number of capi l lar ies  open is roughly con- 
stant. The blood flowing through the capi l lar ies  cons i s t s  of a sus-  
pension of cel ls  in fluid, the plasma. The exchanges  we will be 
concerned with will be between the plasma and extracel lular  space,  
so we will speak in terms of  the plasma flow to a region. 

We may now construct  our model. The fully rigorous approach 
would be to write the differential equations of material balance 
taking into account  the flood flow rate for each capillary, filtration 
and diffusion across  capil lary walls and diffusion in the extracel- 
lular space,  and introducing the geometrical relat ions between all 
capi l lar ies  in the region and the distribution of extracellular  space  
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in relation to cel ls  and capi l lar ies .  The expl ic i t  s tatement of such 
a program is suff icient  to indicate its steri l i ty.  A macroscopic 

viewpoint may be more useful.  If one takes a cross  sect ion of a 
region, the capil lar ies  in the cross  sect ion will be roughly uniformly 
distributed with their flows in various directions.  From a macro- 
scopic viewpoint,  such a distribution tends to smooth out any dif- 
fusion gradients.  The normal rotation of functions among various 
capi l lar ies  so that capi l lar ies  without any flow open up while others 
shut down can only add to this leveling process .  Filtration across  
capil lary wails  may be neglected s ince  it is a minor process  com- 
pared to diffusion, for molecules smaller in s ize  than inulin (Chinard, 
Vosburgh, and Enns,  1955; Pappenheimer,  Renkin, and Borrero, 

1951). The flow rates for various capi l lar ies  are not necessa r i ly  

the same. We do not introduce this in the present  treatment but 
assume one average flow rate. These  considerat ions sugges t  the 
most important assumption of the model, that is, at  any time the 
concentration of a material exchanging between the plasma and the 
region is uniform in the extracel lular  space.  The approximate va- 
lidity of this assumption is implied by the experimental evidence  
that the t i ssue-blood exchange rates  for inert gases  (Jones ,  1950) 
and small ions (Corm and Robertson,  1955; Dobson and Warner, 
1957; Freis ,  Higgins, and Morowitz, 1953) are limited by blood flow 

to a region and not by molecular diffusion. Thus we may concep- 
tually lump all of the capi l lar ies  into one the length of which is l, 
the average length of a capillary. As with the flow rates,  we dis- 
regard the effect  of any poss ib le  distribution in the lengths of cap- 
i l laries.  The ef fec t  of this will be considered in a future paper. 
As shown in Figure 2, this capil lary contains a volume Rp of plasma, 

has a surface area A of contact  with the well-stirred extracellular  
e 
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FIGURE 2. Model of a closed circulation with a single organ. 
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space of volume Re, and has a volume flow rate of c. Theext race l -  
lular space  is in contact  with the intracellular space of volume R~ 
and surface area Ai. 

G. W. Schmidt (1952, 1953) has considered a model similar in 

some respec ts  to ours for the exchange of a subs tance  between 
blood and extracellular  space,  but has not expl ic i t ly  introduced 
the problem of recirculat ion or of the poss ib le  reaction of the sub- 

s tance with a component of the intracellular space.  R. E. Smith 
and M. F. Morales (1944) and Morales and Smith (1948) have treated 
the problem of the exchange of an inert gas between capil lar ies  and 
t i s sues .  W. C. Sangren and C. W. Sheppard (1953) have presented 
calculat ions  on a model which assumed rapid mixing in the direction 

perpendicular to the axis of the capillary but no mixing longitudi- 
nally. Considering the anatomical distribution of capi l lar ies  and 
extracel lular  space  this does not seem to be a phys ica l ly  reasonable  
assumption. 

We consider  first the s implest  case ,  that of diffusion of a com- 
pound into the extracellular  space .  The compound is assumed not 
to enter the intracellular space.  We shall  subsequent ly  consider 
both diffusion p rocesses ,  as well as an active transport process .  

3. N o t a t i o n .  To reduce some of the foregoing ideas to mathemati- 
cal form, let us introduce the following definitions: 
u(x,  t ) - -concent ra t ion  of drug in mass per unit volume at x in the 

capillary at the time t 
v ( t ) - - s p a t i a l l y  uniform concentration of drug at time t in the 

extracel lular  space 
c - -vo lume  rate of plasma flow in the capillary bed 
k - -permeab i l i ty  constant  for capil lary walls in units of It - I  

/ - - l e n g t h  of capil lary 
R - - p l a s m a  volume in capillary 
R : - - v o l u m e  of extracellular  space  

Ae- - to t a l  surface area for diffusion between plasma artd extra- 
cellular  fluid 

" r - - the  time for a particle to travel around the circulation from 
1 to 0. If R is the plasma volume other than that in the 
capillary,  c ' ~ - - R .  We neglect  mixing in the heart  and 
large ve s se l s .  This will be considered in a subsequent  
paper. 
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4. Derivation of basic equations. Let  us now derive equations 
connecting u(m, t) and v(t) .  From conservation principles, we ob- 
tain the relation 

R R 
-P-u(x,  t + h)dm = P u(x,  t)dm + (u(m, t) - u ( x  + dm, t)) hc 

l l 

A k (1) 
e 

+ - - i -  (v ( t )  - u (x ,  t ))  hdx .  

The second term on the right-hand side arises through the motion 
of the blood in the circulation and the las t  through diffusion into 
the extracel lular  space.  Lett ing h and dx tend to zero, we obtain 
the equation 

R kA 
P ~ (v - u).  (2)  --(u t = - c u  + Z 

where u t and u denote partial derivatives with respect  to t and x. 
Examining the rate of change of the compound in the extracellu- 

lar space,  we obtain the relation 

kAeh fo l I~ ~ ( t  + h) = I~e~ ( t )  + Z [ u ( z ,  t)  - v  (t)] d z .  (3)  

The integral represents the net gain in the drug in the extracel lular  
space during the time h. This leads to the equation 

k A  i z R ~  (t) = 5 - -  u (m, t) d~ - k A y  (t), (4) 

valid for t > 0 , 0 < m < l .  
To approximate an intravascular injection we 

rectangular concentration wave enters the capil lary at t = 0. 
Thus,  we have for initial conditions,  

u(~ ,  o) = v(O)  : O, 

while for boundary conditions, we have 

~ Uo, 0 <t  <_.t 1 
u(0,  t ) :  -]G, t l < t < _ .  ~ 

t . u  (l ,  t - T),  t > ~, 

where R / c  < t 1 < "~. 

assume that a 

(5) 

(6) 
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The restrictions on t 1 are introduced in order to approximate an 
injection of duration less than one circulation time. The assump- 
tions involved in the derivation of the equation are probably less 
justified if we attempt to describe events of very short duration, 
particularly at the beginning of the process. This would be true of 
an injection of such short duration that the volume of plasma oc- 
cupied by drug represented a small fraction of the volume of the 
capillary bed. For this reason the volume of plasma occupied by 
drug (ctl) is made larger than the volume of the capillary bed, (Rp). 

5. Discussion. The problem of equations (2), (4), (5), and (6) is 
of an interesting and rather unique type. In particular is this true 
of the boundary condition, involving as it does a time difference. 

To resolve this system of equations, we shall proceed formally 
under the assumption of existence and uniqueness of solution. Our 
principal tool will be that general factotum of analysis , the Laplace 
trans form. 

6. 8olution by Laplace transform--l .  To simplify the notation, let 

y --~-, 

O= ct. 

Substituting in (2) and (4), we obtain the equations 

Rpu o = - u y  + K (v - u ) ,  

for 0 > 0, 0 <_y <_1. 
The initial conditions then become 

u ( v ,  o) = o, 

v (0 )  = O, 

while the boundary conditions become 

'Uo, 0 < 0 < 01, 

u(O, 0)= ~ 0, O, < O < T, O, = ct ~, T = cZ 
[ 

Lu(1, 0 -  T), t > r. 

(7) 

(s) 

(9) 

R ~  (0) -- K udy - Kv, (10) 

Here K is the dimensionless constant kAe/c.  

(11) 

(12) 
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Introducing the functlons 

L [u(y, 0 ) ] -  u(y ,  O)e-SOdO--U(y,  s), 

L [v (0)] = Jo v (O)e-*~ -~ V (s), 

(13) 

we see that  (9) and (10) yield the equations 

R s U  = - Uy + K (V - V), 

R sV  K f l  e = U (y, s)dy - KV.  
30 

(14) 

(15) 

The boundary condition in (12) transforms into 

Y(O, s )  = u--~~ [1 - e-S~ + e - r S U ( 1 ,  8). 
8 

(16) 

7. Solution by Laplace t rans form-- l l .  Eliminatifig V, we see  that  
U ,  as  a function of y, sa t i s f i es  the integrodifferential  equation 

K2 foo t u + ( s R  + ~)  v 81L + K v (v ,  8)dr -- O, (17) 

with the boundary condition 

= _ _  - e - T s u  U(O,s )  u~ [1 e - ' e ' ]  + (1, s). 
8 

O s )  

Let  us suppress  the s .dependence  momentarily and consider  the 
problem of solving a l inear functional  equat ion of the form 

fo (v (y) + aw (y) = b w (y)dy, (19) 

w (o) = c + dw (1). (20) 

A rigorous d i scuss ion  would take us too far astray,. Le t  us assume 
the ex is tence  of a unique solut ion and see  how to obtain it. Set  

fo w (y)dy = m, (21) 
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Then the solution of 

d) (y) + aw(y) = bm 

i s  given by 

b m  
w (y) ~ fe-aY + - - ,  (28) 

a 

where f is a constant  of integration. To obtain a relation between 
f and fi, we return to (21). The resul t  is 

fit-----[ + ~ : ,  
a 

o r  

/ (1  - e - a )  
fi = (25) 

( a  - b )  

To determine the remaining constant~ f~ we turn to the boundary 
condition of (20). Having obfained the value of f in this way, the 
function w (y) is completely determined,. 

Upon carrying out this program we find, after considerable com- 
putatiorL, that 

- e-'T-~ + a :-6 

[e-~ b --- ' : ) . - I  
x + a ( a - b )  _1' 

where 

K 2 S2ReR p + Ks (R e + l~p) 
a=  sRp + K, b ---sR + K '  ( a -  b)= sR + K ,. (27) 

e e 

~8. Solution 
u(v ,  o) 
u ( v ,  8), 

by Laplace transform--Il l .  The desired solution 
is obtained by taking the inverse Laplace transform of 

1 I u (y, o) = ~ u (y, s )e  ~* ds ,  (2s)  
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where c is a contour lying to the right of all  the poles of U(y, s) 
considered as a function of s. 

One pole will always be at s -- 0~ corresponding to the steady- 
state solutior~. It is easy  to see on physical  grounds~ but difficult  
to es tabl ish  by analytic techniques,  that the other poles will have 
negative real parts,. The inversion of equation (26) is a difficult  
program analytically,. However, we may check the s teady-s ta te  so- 
lution by evaluating the residue at the pole s -- 0, which yields ,  in 
view of equations (26) and (27), 

lira s U ( y , s ) = u  o c t l  (29) 
s ~ o  R e + Rp + c~  

The same result  can be obtained on physical  grounds from a con- 
servation condition as follows: 

c t  1 (30) lim u ( x , t ) = u  0 
t~o~ R e + /~p + C T  

9. A s imp l i f i ed  model .  In an effort to relieve some of the mathe- 
matical difficult ies associa ted  with the previous model, let us 
handle the z-dependence in a simplified form. We note that  the ap- 
pearance of the integral in equation (3) implies that diffusion into 
the extracellular space is determined by the difference between the 
spatial  average concentration in the capillary and the concentration 
in the extracellular space,. We assume there is a certain concen- 
tration of the drug at the arterial end of the capillary and another 
at the venous end. The diffusion into the extracellular space is to 
depend on the difference between the average of the venous and 
arterial end concentrations and the concentration in the extracellu- 
lar space.  This again makes the diffusion dependent on a value of 
the plasma concentration intermediate between the concentrations 
at the ends of the capillary. Figure 3 i l lustrates  this situation. 

! - I 
FIGURE 3. A s i m p l i f i e d  m o d e l .  
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u l ( t )mconcen t r a t i on  of the drug at the arterial end 
u2( t )mconcen t ra t ion  of the drug at the venous end 
v ( t ) - -concen t ra t ion  of the drug in the extracel lular  space  

The equat ions which describe the development  of the process  
are: 

'Uo, 0 <t <t l ,  
u~( t )=~O,  t 1< t  <__ z ,  

( ? ~ ( t  - z ) ,  t > z ,  

where Rp/c < t 1 < "r.. 

g ~ (t) = kpA 

(31) 

f ul(t) + u2(t) v (t)l , (32) 
e 2 

+ u2(t) v (t)l  . 

E E ] l?p 1(0) +2a~(O --(u l - u 2 ) - K  1+2 u2 ~ (36) 

Iu- l(t) + u 2(t) t I u1(t) (33) R 2 =c(u  1 - u 2 ) - k p A  e 2 

Making the subst i tu t ions  0 = ct and K = kpAe/c, one obtains 

~ u 0 ,  0 < O _< 01, 

ua(O)-- ~ 0 ,  01 < 0 < T, (34) 

ku2(O - T), O > T, 

where O l = ct x , T = c~:. 

R~(O) -- K ful(O) + u2(O) (35) 

With the init ial  condit ions 

u l ( 0 )  = u2(0) = ~ (0) = 0. 

The approximation to the original se t  of equat ions is poor for 
p rocesses  of duration less  than the capil lary t ransi t  time; this is 
part icularly true for those periods when the square wave is enter- 

ing or leaving the capil lary bed, for then ul + u2 is a poor approxi- 
2 

marion to 1/1 u(x., t)dt. This  is also a poor approximation for 
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K very large. For K > 2 this model leads to negative concentra- 
tions in the plasma leaving the capillary bed for some short  period 
as the square wave enters the capillary bed. This may be seen 
from the following argument. 

F o r t  =O, u2(O ) = v ( O ) = O  

Thus equation (33) reduces to 

l?p kpA~ 
- C  r  = c u  o - 2 u ~  (37) 

which rearranges to equation (38): 

cu  o ~ ( 0 )  = ~ (2 - ~). (38) 

Thus if K > 2, ~2(0) < 0, and since u2(0 ) = 0, this would give nega- 
tive values for u2(t ) for some short interval at the s tar t  of the proc- 
ess,. In the following sect ion we assume K < 2. 

10. Solution 
trans form s 

by Laplace transform. We introduce the Laplace 

L [ul(O )] = U1(8), (39) 

L [u2(O )] = U2(s ), (40) 

L [v (0)] = V (s). (41) 

In view of the equations of Section 9, these transforms sa t is fy  
the equations 

Ul(s) = u-9-~ [1 - e -~e ' ]  + e-sTua(8), (4:2) 
8 

R s l , ' ( s ) = K  U s ) + ~ _ 7 . ( s  , (43) 
2 

RPU~ = u'(s) - Ug"(s) - K [U~ 8) 

(441 
u~(8--2) - v ( 8 )  . 

2 

Rp8 
[U1(8 ) + U2(8)] - 

2 

If next we solve the system of equations (42), (43), and (44) using 
Cramer's rule, we find that the determinant P(s) which occurs in 
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the denominator  is 

0 ( 8 )  = 

1 - e  - s T  0 

K K 

+ - 1  1 + - - +  - K  
2 2 

, ( 4 5 )  

o r  

D ( s )  = - - -  

K 2 

+ (K + s,?) 
2 

K 2 

- -  e - s T  + (K + s_,r~e) 
2 

+ e - s T  _ 

2 

+ + . 

2 

(46) 

Since u l ,  uu, and v are bounded,  on p h y s i ca l  g rounds ,  D ( s )  can- 
not  have any roots with pos i t ive  rea l  parts,. The  origin,  of cour se ,  
is a zero,  as one s e e s  by in spec t ion .  Th i s  g ives  r i se  to the con- 
s t a n t  term in the inverse  t ransforms .  

An inves t i ga t i on  of  the p rec i se  loca t ion  of the roots  of  D(s )  

would provide va luab le  information concern ing  the asympto t i c  be- 

havior  of the funct ions  u l ,  u2,  and v. We con jec tu re  tha t  the root ,  
other  than the or igin,  which l ies  c l o s e s t  to the imaginary  ax is  in 
the a-plane  l i e s  on the nega t ive  rea l  axis,. If this  is so,  then the 

- a ~ t  
funct ions  u l ,  u2, and v have the form a 1 - a 2 e  , for t--*~r 
where a s is the root., and a 1 and a 2 are the r e s id u es  at  ze ro  and a s 
r e s p e c t i v e l y .  Expe r imen ta l ly  t hese  cons t an t s  could be de termined 
by recording the concen t ra t ions  as  funct ions  of time and then se-  

l ec t ing  the cons t an t s  to provide the b e s t  f i t  to the exper imenta l  
c u r v e s .  

The location of the least negative root of D(s) can easily be ac- 
complished graphically. Equation (46) can be rewritten as 

- - - R R  + s  + g  
2 e p e 2 

e sT = (47) 

+ 8  + e + + / ~  

so tha t  i t  is mere ly  n e c e s s a r y  to graph the exponen t i a l  curve of the 
lef t -hand s ide  and the ra t iona l  funct ion of the r ight-hand s ide and 
find their  i n t e r s ec t i on  po in t s .  One l i e s  a t  s = O, and the other  is 
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negative,  as an investigation of the roots of the polynomials in the 
numerator and denominator of the fraction in equation (47) shows.  
It can a l so  be seen that an increase  in T decreases  the rate at  
which equilibrium is approachedl, which is physical ly  quite reason- 
able. 

The location of the roots of exponential  polynomials such as oc- 
curs in equation (46) has been the objec t  of many invest igat ions 
(Ansoff and Krumhansl, 1948; Collatz,  1947; Hayes ,  1950; Lax,  
1948). In particular, we should like to call attention to the results  
of Pontrjagin (1942), which are described by R. Bellman and J .  M,. 
Danskin (1954) and are available in translation (Pontrjagirt, 1955). 

11. Numerical aspects. The system of equations (31) to (35) 
lends i tse l f  well to solution using a high-speed digital computer. 
The function u is known on the interval [0, T] ,  and v and w can be 
determined on this interval using the differential equations (32) and 
(33) along with the initial conditions of equation (35}. Then equa- 
tion (31) yie lds  u(t) for 1: _< t -< 21:, and so on. ~aving the time lag 
present  increases  the size of the computer memory required, but is 
otherwise innocuous. For more real is t ic  models, this increased 
demand for memory space could become important. 

12. A model for intracellular penetration. As was stated earlier, 
we wish to consider the case  in which the drug enters the cel ls  
themselves and there reacts  chemically with subs tances  within the 
cel ls  to form new compounds. In general ,  these react ions may be 
reversible .  The situation which we wish to d iscuss  is shown 
diagramatically in Figure 4. 

The function u(x, t) is the concentration of the drug in the capil- 
lary at position x at the time t. The functions v(t) and w(t) repre- 
sent  the spat ia l ly  homogeneous concentrations of the drug in the 
extracellular  and intracellular spaces ,  respect ive ly ,  and z(t) is the 
concentration of the compound ED which is formed from the chemi- 

CAPILLARY 

ARTERY [ U{X.i') IIVEIN 
v(t ) "~EXTRACELLULAR SPACE 

FIGURE 4. An i n t r a c e l l u l a r  p e n e t r a t i o n  s c h e m a t i c .  
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cal union of the enzyme E and the drug D. We assume that both 
the enzyme E and the compound ED do not diffuse out of the intra- 
cellular space.  We do wish to include the possibi l i ty that there is 
an active transport process which tends to concentrate the drug 
intracellularly.  The transport term is assumed to be linear in the 
extracellular concentratior~. This is only a fair approximation even 
for low concentrations for the amino acid transport system (Heinz, 
1954; Jacquez,  1957). It is used for the time being to demonstrate 
the effect  of an active transport term,. 

The equations for this model become 

Rp kA 
- - u  = - c u  + e ( v _ u ) ,  (r  
t t ~ Z 

R q~ kAr fo z = 1 u(~, t )d z  - k A y ( t )  - mAi(v - w)  - navy,  (49) 

RiCo = m.4i(v - w)  +nAiv  + k2Riz  - k l R i w  [E 0 - z], (50) 

= k lw [E 0 - z]  - k2z .  (51)  

Equation (48) has been met before. In the next equation, the las t  
two terms measure the rate of decrease of ~ as a result  of both 
diffusion and transport into the intracellular space.  The las t  two 
terms in equation (50) measure the rate of increase of the concen- 
tration of the drug in the intracellular space as a result  of the de- 
composition 

E D ~  P + E ,  (52) 

and as a result  of the reaction 

E +D ~ ED. (53) 

In these equations~ z is the concentration of the compound ED.  
Following the idea of Section 9, a simplified version of this prob- 
lem could be considere4. 

13. D i s c u s s i o n .  The mathematical equations obtained from the 
model of drug distribution in a one-organ enti ty present obvious 
analyt ical  difficult ies.  As will be shown in our next paper~ these 
are multiplied many-fold when one attempts to link a number of 
such models via a circulatory system to give a model of a many- 



CHEMOTHERAPY:ONE ORGAN MODELS 197 

organ entity,. I t  is to  be expec t ed  that  modern computa t iona l  tech-  

n iques  will  help c la r i fy  the nature of the so lu t ion  to such  s y s t e m s .  

However ,  the purpose of  such  an en te rpr i se  is more than to ob- 
tain an exp l i c i t  mathemat ica l  so lu t ion  of a model.  As with all 

theor iz ing ,  i t  r epresen t s  an a t tempt  to gain unders tand ing  of a com- 

plex p roces s .  With this  added ins ight ,  we then return to e~peri-  

men ta t ion ,  and t e s t  var ious  h y p o t h e s e s .  The resu l t s  of this t e s t ing  
enable  us to build more complex models ,  l ead ing  to further experi-  

menta t ion .  We thus have a complex feedback  p roces s .  

The very  ac t  of se t t ing  up a mathemat ica l  model  points  the way 

to exper iments ,  to  the need to measure  the parameters  which appear  

in the equa t ions :  in this c a s e ,  the blood flow and blood volume of  

an organ,  the cap i l l a ry  permeabi l i ty  and area for d i f fus ion in an 

organ,  and the permeabi l i t ies  of  var ious  cel l  types .  Thus  even  the 

formulation of a model which is a crude approximat ion to rea l i ty  

may be useful  b e c a u s e  it p rov ides  a wel l  def ined b a s e p o i n t  from 

which to s tr ike out  in sea rch  of  new h y p o t h e s e s  and des igns  of  
exper iments .  
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