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The system of differential equations proposed by V. Volterra, de- 
scribing the variation in time of the populations N r of interacting species  
in a biological association, admits a Liouvillets theorem (when log N r are 
used as variables) and a universal integral of "motion."  Gibbs' micro- 
canonical and canonical ensembles can then provide a thermodynamic 
description of the association in the large. The =%emperature" measures 
in one number common to all species the mean-square deviations of the 
Nr from their average values. There are several equipartition theorems, 
susceptible of direct experimental test, a theorem on the flow of ~heat"  
(the conserved quantity in an isolated association) between two weakly 
coupled associat ions at different temperatures, a Dulong-Petit law for 
the heat capaci ty ,  and an analog of the second law of thermodynamics 
expressing the tendency of an association to decline into an equilibrium 
state of maximal entropy. The analog of the Maxwell-Bolt2wnann law is a 
distribution of intrinsic abundance for each species which has been 
successfully used by ecologists  for interpreting experimental data. A 
true thermodynamics develops upon introducing the idea of work done on 
an association through a variation of the variables (such as physical 
temperature) defining the physical and chemical environment. An ergodic 
theorem is suggested by the agreement of ensemble and time averages in 
the one case where the latter may be found explicitly. 

I. Introduction. 
I t  has  of ten been  no t iced  that  the s c i e n c e  of  popula t ion  dynamics  

ough t  to be capab le  of  some descr ip t ion  in s t a t i s t i c a l  or thermo- 

dynamic- l ike  terms such as i s  provided for the Newtonian mechan i c s  

of a sys tem of pa r t i c l e s  by the theory of  s t a t i s t i c a l  mechan i c s .  

For example A. J .  L o t k a  ( ]925)  has  remarked " . . .  what i s  needed  

i s  an a n a l y s i s .  . .  that  shal l  e n v i s a g e  the uni ts  of a b io log ica l  

populat ion as  the e s t ab l i shed  s t a t i s t i c a l  mechan ic s  e n v i s a g e  mole- 

cu les ,  a toms and e lec t rons ;  tha t  shal l  deal  with such ave rage  ef- 

fec ts  as  popula t ion dens i ty ,  popula t ion pressure ,  and the l ike,  
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after the manner in which thermodynamics deal with the average ef- 
fects  of gas concentration, gas pressures,  . . . .  " Some such sort of 
analysis  has indeed found expression in various systems of differ- 
ential, or integro-differential, or other kinds of equations, which 
supposedly control the population numbers of the interacting spe- 
c ies  in a biological associat ion.  Notable examples are to be found 
in the works of V. Volterra (1931, 1937). 

Now quite clearly these theories are of the nature of s ta t is t ical  
theories in that they lay no claim to a power of detailed and pre- 
c ise  prediction about the population numbers of any single well- 
defined biological associat ion,  but at bes t  are concerned with 
average or most probable numbers. Implicitly they refer to ensem- 
bles of similar biological associat ions  and in experimental tes ts  
assume that the one system under tes t  is not appreciably different 
from some kind of most probable system. Thus the theories are 
characterized at the outse t  by a high phenomenological content at- 
tempting to describe directly the behavior of such a most probable 
system. This is  evidenced by the absence of means of finding 
fluctuations from most probable population numbers; and by the ap- 
pearance of numerous parameters, such as "coef f ic ien ts  of self- 
accret ion,"  which remain unevaluated from any se t  of first princi- 
ples but must be found from an experimental observation of tes t  
systems,  much as the decay constant  of a radioactive element re- 
mains an empirical constant  when there is no underlying quantum 
theory to account for it. 

In short, the theories of population interaction are the s ta t i s t ics ,  
or a part of them, in the form of surmises and empirical laws, with- 
out the mechanics.  They are loosely thermodynamic-like to this 
extent, but not at all of a stat ist ical-mechanical  nature. This is 
of course inevitably so because  of the colossal  complexity of the 
mechanics over which the s ta t i s t ics  must be done. 

Yet one might still ask of s ta t i s t ics  that it speak further about a 
biological associat ion.  For, s tar t ing now with a phenomenological 
description, such as Volterra 's,  one finds another order of com- 
plexity as soon as the number of interacting species  exceeds  even 
a few: the equations are not amenable to expl ici t  solution by avail- 
able methods. The situation becomes somewhat analogous to that 
in the c lass ica l  mechanics of many interacting particles,  where 
between the known laws of motion and the knowledge of the motion 
hangs a deep mathematical fog, penetrated faintly but importantly 
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by a few conservation laws. It is lust in such a state of ignorance 
that there is room for statistical considerations, for statistical 
mechanics proper. Can then biological associations of many inter- 
acting species as whole entities, like whole mechanical systems 
of many degrees of freedom, be characterized in their entirety by 
equilibrium states in the thermodynamical sense? by a tendency to 
decline into such states? by variables of state, ,such as tempera- 
ture and entropy? by an equation of state? 

Our object in this note is to point out the possibility of affirma- 
tive answers by sketching a construction of statistical mechanics 
on top of a phenomenological population dynamics taken as given. 
The tools for this are ready to hand in Gibbs ensemble theory, the 
population dynamics being that advanced by Volterra (1937). 

The Hamiltonian form given to his dynamics by Volterra is what 
in the first instance suggests a statistical development imitating 
that familiar in physics.* While such a program can be executed 
in principle it is in practice formidable and not very profitable. 
This occurs because of a certain artificiality of the Hamilton 
formulation. The starting Yolterra differential equations in the 
population numbers, Nr, of the different species r in biological 
associations are of the first order; these Volterra then makes into 

dX, 
second-order equations by writing Nr-- d--t- and subsequently in- 

troducing a Lagrangian and other apparatus of classical  mechanics 
to arrive again at first-order Hamiltonian equations. These are 
twice as numerous as the starting equations, but of course half of 
the "constants  of the motion" other than the Hamiltonian are al- 
ready known. That is, the final differential system comes into 
existence with a large, but false, amount of information embedded 
in it. 

In studying now the motion of the system point in phase space 
the extraneous constants of motion are a heavy burden of con- 
straints, leading in this context to appreciable mathematical dif- 
ficulties. Moreover in erecting a statistical mechanics a separate 
"temperature" must be introduced for each of the many constants 
of motion (Grad, 1952) so as to accord them in the statist ics their 

*S. Takenaka (1941) has observed that Liouvilte's theorem holds in 
Volterra's Hamiltonima formulation; this is just a well-known property of 
the formulation itself. 
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due weight as elements of knowledge of the system. Thus the 
s tat is t ical  mechanics is cluttered with at least  as many statist ical  
parameters as degrees of freedom in the original first-order dif- 
ferential equations; and the purpose of a stat ist ical  inquiry is very 
nearly defeated. The Hamiltonian rendition, in other words, forces 
us to survey our genuine ignorance through a tangle of confusing 
and trivial information. Finally, disregarding the excess  constants 
of motion, the Volterra Hamiltonian is structurally complex enough 
to discourage stat ist ical  considerations around it alone, lacking in 
particular the important feature of being a "sum-funct ion" 
(Khinchin, 1949). 

To proceed at once from the starting Volterra equations is there- 
fore plainly desirable, i f  not absolutely necessary.  Now, the s~a* 
t ist ical  mechanics customary in physics, that form of it elaborated 
by J. W. Gibbs (1902), rests  on the Hamiltonian form of the equa- 
tions of motion only weakly, a lmost  incidentally, the role of Hamil- 
ton's equations being to make evident the two corner-stones of the 
stat is t ical  development: Liouvil le 's  theorem and energy conserva- 
tion. It will appear that the initial Volterra equations readily 
admit a Liouvil le 's  theorem and a universal constant of the "mo- 
t ion" somewhat like the Hamiltonian of c lassical  dynamics; and 
then a s tat is t ical  analysis  of some simplicity, parallel to Gibbs', 
becomes feasible.  Herewith we find a lesson for physics as well 
as from physics,  an example of how much broader is the s tat is t ical  
side of s tat is t ical  mechanics than the mechanics which calls it 
into existence. 

There are, clearly, important objections to this proposed pro- 
gram. The description of interacting biological species  offered by 
Volterra is surely only an approximation, probably quite crude, to 
a very complicated state of affairs, and it may seem improperly 
speculative m build further on it. However the Volterra equations 
contain at leas t  qualitatively some important biological truths, and 
in certain cases  a reasonably accurate depiction of experimental 
findings. Conceivably the position is roughly like that in statisti-  
cal mechanics or kinetic theory when based on the highly idealized 
picture of atoms as small Newtonian billiard balls, the picture 
being not so much incorrect as incomplete, but adequat~ to give 
valid concepts and results.  It must not be forgotten of course tha~ 
the equations am already stat is t ical  in character, as remarked 
earlier, so that in using Gibbs' ensembles on top of them we are 
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really contemplating an ensemble of e n s e m b l e s - - s o m e  kind of 
grand ensemble.  

More significant perhaps is the object ion that no useful purpose 
is  served by a s ta t i s t i ca l  Volterra mechanics,  that there is no need 
for it. For we are not faced in the population-biology, as we are 
in physics ,  by macroscopic observables  and laws which make com- 
pelling an explanation of how they are actuated in terms of the 
microscopic variables.  That  is ,  the population numbers, Nr, in a 
biological  associa t ion,  or a few of them, are the data which are 
experimentally determined, and these are the microscopic var iables  
themselves in the proposed scheme. This puts us in the posit ion 
we would be in in phys ics  if our observat ions on a gas consis ted 
in measurements of the coordinates or momenta of a few of the gas 
atoms rather than the gas temperature or pressure.  

The analogy here gives some answer to the object ion posed: the 
non-observation of macroscopic variables  and laws does not nec- 
essar i ly  mean that they do not exis t  or that it is  poin t less  to in- 
vent or discover  them. One can eas i ly  visual ize  in the case of a 
detailed knowledge of the posi t ions  of a few gas atoms that there 
remains point to the introduction of thermodynamic concepts .  In 
effect  the behavior of a few microscopic coordinates samples and 
bears  the impress of the operation of the larger system in which 
they are immersed; in this sense  the large system i s  observable  
and its  s ta t i s t ica l  workings of legitimate concern. 

Though the following considerat ions have no perfectly firm founda- 
tion, and their usefu lness  be only partly apparent at this juncture, 
i t  is  hoped that they may exhibit, however crudely, some possi -  
b i l i t ies  for a fresh mode of understanding of biological associa t ion.  

2. Volterra' s Mechanics. 
The equations proposed by Volterra to describe the behavior in 

time of n biological  

N 1 ,  N 2 ,  �9 �9 �9 , ,Nn, are 

dN, 
dt 

spec ies  in interaction, having populations 

1 
(1) 

The first  term on the right-hand side expresses  how each spec ies  
propagates if lef t  to i t se l f  in a given environment and no other 
spec ies  interacts  with it. It provides an exponential fall or r ise  
of N, in time according as the coeff icient  of self-accret ion e,(na- 
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tural birth minus death rate) is negative or posit ive.  The remaining 
terms express  the interaction of spec ies  r with all other species  
s, stating that the increase or decrease  of Nr per unit time is  ef- 
fectively proportional to the number of encounters per second be- 
tween r and any s, ,taken to be measured by the product NrN ,. To 

account for the one-sided nature of the encounters, wherein if r 
gains because  of the encounter then s must lose,  the interaction 

parameters ~sr are antisymmetric; otr~ = -  ~sr. The posit ive quan- 
tifies fir -1  are Volterra's "equivalent  numbers" such that in the 
binary encounters r,s the ratio of the number of s ' s  lost  (or gained) 
per second to the number of r 's gained (or lost) per second is  

A particular interest  a t taches to the stationary states of the 
biological associat ion,  these for which all dNr/dt vanish and for 
which the population numbers N, have the steady values qr defined 
by 

,,/3r + asrCs = o. (2) 
s 

At some cost  in generality we shall assume these equations to 
have a unique solution with all q, posi t ive,  poss ib le  only if  the 
number of spec ies  is  even and if all er do not have the same sign. 
This is perhaps the most interesting and important case.  The more 
general c a se s  need a separate investigation outside the scope of 
the present one. 

Voltorra has shown in an elegant discussion that the Nr are vari- 
able between finite posi t ive limits; that at l eas t  some, often all of 
them, f luctuate  continually without damping out; and that their time 
averages are the steady values q, and so are independent of their 
initial values. These  characteris t ics  are most congenial to our 
aims. 

Le t  us rewrite equation (1) as 

dNr 
= + ( 3 )  

Nr tit ~.ds 

and then introduce e,/% from equation (2) and also the new depend- 
ent variables 

N~ N, 
vr -=log --; Nr =-qre "r, v,  = log - - .  

q~ q~ 
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This gives the equations of "motion" 

/~rJr = ~ ( x s r q ~ (  evs - 1), 
$ 

in the form we shall use. 

127 

d~ 

=-dt ' (4) 

An omission in the above equations is a self-interaction term, 
Otrr~r , of the Verhulst-Pearl type. Such terms have been shown 
quite generally by Volterra (1931) to give a kind of frictional damp- 
ing of the otherwise undamped oscil lat ions about the stationary 
state. The system dies down to this state eventually; the remote 
future of the system is foreseeable; and the scope for a stat ist ical  
analysis is much narrowed. Also, with these terms no constant of 
the motion is  available. We continue to assume them to be negli- 
gible, limiting ourselves to systems showing bounded and un- 
damped motions ("conservat ive"  system in Volterra's phrase). 
The restriction to even numbers of species seems artificial, but as 
Volterra has noted i t  is probable that uneven systems decay into 
even ones. 

3. S ta t i s t ical  Mechanics; Microcanonical Ensemblvs .  

The purpose of having introduced the particular variables v, is  
to secure  a Liouvil le 's  theorem. Consider a large number of cop- 
ies,  a Gibbs ensemble of biological associat ions each of the same 
character and each controlled by the same differential equations 
(4) but having all variety of initial values of v ,  In the Cartesian 
space of the Vr (phase space) the configuration of each copy is 
represented by a point, ,the ensemble by an ensemble of points. 
The points are propelled in phase space by the motional equations 
(4). When taken to be sufficiently numerous the points constitute 
a fluid of, say, density p(v l ,  v 2 , . .  �9 , v , )  at a point (vl, v 2 , . . . ,  v,), 
and velocity u = ( ~ ,  ~ 2 , . . . ,  ~,) at this point. Since fluid is 
neither created nor destroyed we must have the hydrodynamical 
equation of continuity 

ap =_ o p w  0 (p~),) 
- - +  d i v # V  - - + - -  =0, 
at at z.., avr 

Expanding the derivatives under the summation sign gives 

ap ap c)r = O. 
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But the latter sum vanished according to equation (4), which tel ls  

that ~r is independent of vr(~rr = 0). There follows Liouvi l le 's  
theorem of the conservation of density in phase, 

Dp cgp = 
- - + Z  0, (5) 
Dt c)t Ov~ 

stating that as  one goes along with the motion of one system point 
the density in i ts  neighborhood remains invariable. In particular 
it may be noted (Tolman, 1938) that a constant density of phase 
points (uniform ensemble) stays constant; there is  no tendency of 
the motional equations to enrich one part of phase space over 
another. Another consequence, or equivalence of Liouvi l le 's  
theorem, is Gibbs '  principle of conservation of extension in phase, 
to the effect  that an element of volume of phase space, though 
changing i ts  shape, maintains a uniform size as the motions of i ts  
points unfold, so long as i ts  boundaries are marked by the same 
points. 

There are variables other than vr providing a Liouvi l le ' s  the- 
orem; in fact a large c lass  of them amongst which something re- 
sembling the transformation theory of dynamics may be built. But 
for our present  purposes the vr suffice. A helpful feature of their 
definition is that their range of variability, unlike the N~, is over 
all posit ive and negative numbers. 

Next we reconstruct  in v language an important integral of the 
motion introd,,ced by Volterra. In equation (4) multiply throughout 
by qr(e v r -  1) and sum over all r. Because  of the antisymmetty 
of the ~rs there is left only 

2 . ~ r q r i ,  r(e '~r - 1) = O. 

With rr -flrq~ for convenience, an integration gives 

G =~--~ rr(e vr - vr) = constant. (6) 

This is  the only general integral that is visible.  It is  a universal,  
single-valued constant of the motion. That i t  is a sum of terms 
relatirtg to the separate spec ies  in associat ion is  a considerable 
advantage, allowing a natural specification of the "components"  
of the system in the sense usual in s ta t is t ical  mechanics. We 
shall call  gr the members rr(eVr-vr) and refer to " the  g "  of an 
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associat ion or of a few, or one, of  i ts member species .  The equa- 
tions of motion may be written " canon ica l l y "  in terms of G as 

y s ,  a ,  s '  Y' ' 

which are loosely reminiscent  of the Hamilton equations. 
Each Gr has the minimum value rr, occuring for vr= O, and in- 

c reases  monotonically for v, increasing posit ively or negatively;  
the total G = EG r has the absolute minimum value Err (by a slight 
change of the variables vr, it could be arrange d that the minimum G 
is zero). A surface of constant  G in phase has all the necessary  
mathematical properties we need; i t  enc loses  a simply-connected 
region of finite volume and is as smooth as wanted. 

We define according to Gibbs an ensemble in s tat is t ical  equi- 
librium (stationary ensemble) as one for which ap /a t  = 0. The 
properties of such ensembles are then the same at all t imes. Of 
special  in teres t  are ensembles with densi t ies  which are functions 
of G alone. These  are stationary and sat isfy Liouvi l le ' s  equation 
(5) as may be directly verified. The ensemble average of any func- 
tion f (v l ,  v2, . . . ,  Vn) of phase coordinates is defined to be 

fpfdr 
7= 7 7' 

the integrals being over all of phase space,  p is thus of the nature 
of a probability density.  

Le t  us admit at this point the fundamental s ta t is t ical  hypothesis 
that, for purposes of finding expected values of variables of inter- 
e s t  for an associa t ion about which there is only limited knowledge, 
equal extensions in phase corresponding equally well to this 
knowledge be assigned equal a priori probabilities. This is simply 
to say that for a s ta t is t ical  survey we contemplate all possible cop- 
ies of a system compatible with what information we have about it, 
and in ignorance beyond this point weigh all copies equally; the 
phase space appropriately populated with system points is then 
jus t  machinery for conducting the survey. It may be noted that a 
separate s ta t is t ical  hypothesis  is not needed for some purposes if 
an ergodic theorem, ensuring the equality of time averages over a 
single system and phase averages over a suitable ensemble of 
systems,  can be es tabl ished (t~r Haar 1954:, 1955). We shall later 
have an indication that there may be such a theorem. 
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Suppose now that our knowledge of a biological associat ion is 
only that its G is constant at some value Go. Then to equal re- 
gions on the surface G = ~ we give equal probability, that is, we 
choose 

p = p0 a(G - Go), 

where 3 stands for the delta function, ,zero everywhere except  at 
the point where i ts  argument vanishes and there so large that an 
integral of 3 over a region containing this point is unity (p0 is  an 
unimportant numerical constant). This defines the microcanonical 
ensemble of Gibbs. In a well-known computation we may represent  
an element of volume dr as dSdn = element of area on a surface of 
constant  G x increment of length normal to the surface; the latter 
is dG/IVG l where dG is the difference in G-values of two neigh- 
boring constant-G surfaces;  thence equation (7) specia l izes  to 

dG . dSdG 

L "/L _- f]~-~ i ~  I (s) 

(IvGl' j/. 
The integrals are surface integrals over G = Go. 

Taking for example f to be 

r ,  = v ,  0-;-;-- " - l o g  ~,  

we note first that s ince  

oa ~ : IVGI 3 ~ 
V G :/' av--~ ' 

(~ denoting a unit vector in the vr direction and ~ a unit normal 
vector to the surface G = constant), the direction cosines of ~ are 

. .  __aG / I v o l  
n �9 V r  = a , o r  
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so that 

aG dS 
-- v , ( a .  ~ , )dS  -- ~ . v , d S  

[vt denoting the vector to the point (0,, . . ,  0, ~r, 0, . . . .  0)]. Then, 
calling the denominator in equation (8) A0, the ensemble average 
of Tr is 

1__ f~. = r0 - - a 0 J  v, as 1 fdivv, a , = -  
A0 J A0 

for all r, here we have used Gauss' divergence theorem and repre- 
sented the volume enclosed by G O as r 0. 

This result is analogous to the equipartition theorem of physics. 
In words, the mean T for any species is the same as for any other; 
or, the total T of the biological association in the mean is equally 
distributed amongst all species. Were the association ergodic, 
"mean" here would refer to "time average for one association." 
Unlike the situation in physics, .this equipartition result should be 
susceptible of experimental test. The quantity T will be recog- 
nized to be a loose analog of kinetic energy. 

Another interesting result follows from the calculation of the 
average of 

D r  = OVr = rr 

By a manipulation similar to the previous one we get 

-Or • --1 f = Ao J Ao div ~rdr = O. 

The ensemble average of N, is  q~. 
As has been mentioned, the  time average of Nr is also gr. This 

follows at once from equation (3) upon integrating from time 0 to 
time t, 
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whence taking t large and remembering that hl remains bounded, it 
i s seen th at 

time averages of theNs = lira - ~ Ns(t)  dt 
J0 

all sa t isfy  the same equation (2) as the qs- 
The suggestion is that the system under study may be ergodic, a 

single system point in general travelling over the surface G o com- 
prehensively enough as eventually to cover nearly all parts of it, 
so that looking at it for a long time is tantamount to looking at a 
Gibbs ensemble covering the surface at one time. The suggestion 
is  strengthened by a glance at Poincar6 's  recurrence theorem in 
mechanics (Chandrasekhar, 1943) stating that under quite general 
conditions, sa t is f ied here, the system point starting at a given 
point will wander back to this point arbitrarily closely (not exactly) 
and infinitely often. This seems at l eas t  necessary  for ergodicity; 
otherwise there would be regions of phase space that would be 
avoided relative to others during the long-time motion. 

A valuable consequence of Poincar~ 's  theorem in the present  
context is  that all species,  not iust  some as proven by Volterra, 
must in general exhibit undamped osci l la t ions;  for the only alter- 
native to continual oscil lat ion is  a tendency of the N toward finite 
limits, and such a tendency in any N clearly will not permit the 
system point to return near a given starting poin'. In Volterra 's  
discussion of small osci l la t ions of an associat ion about its sta- 
tionary state is  found a case  in point. 

It will be evident, from the fact that experimental data relate to 
perhaps a few se lec ted  spec ies  whose populations are observed as 
a function of time, that an ergodic theorem in the population dy- 
namics has even a more important position than in c lass ica l  me- 
chanics. We shall adopt the surmise that biological associa t ions  
are ergodi c. 

4. Canonical  E n s e m b l e s .  

We may ask now about the behavior of a part, ,or component, ,con- 
sist ing in, say, only v of the total n species ,  o f  an associat ion.  
The component does not have i ts  G constant throughout time but 
exchanges G with the rest  of the association, o n l y  the total G 
being conserved. Corresponding to the points on the surface G -- Go 
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in the microcanonical distribution are points in the sub-space  of 
dimension v representing configurations of the component. 

How are these  component points distributed? The answer is a 
bas ic  proposition in s ta t i s t ica l  mechanics: they are distributed 
according to the law 

pv= e 0 ' 

defining Gibbs '  canonical ensemble. The factor (Gibbs'  phase 
integral) 

~' L cv e O = - Z =  dr  v 

is just  such as to normalize the distribution, 

Pv dry : 1. 

p v ( v l , v 2 , . . .  , vv )dr  v represents  the probability that a member of 
the ensemble (which is in s ta t i s t ica l  equilibrium) chosen at random 
will be found in the volume element dr v around ( v i , % , . . . ,  vv). 
For the mean value of any function of phase we have 

-f = l i p  v dry" 

The distribution is  characterized by the constant  0, i t s  modulus,  

rather than by G (which here is  not constant) as  in the micro- 
canonical distribution. 

The importance of the canonical ensemble in phys ics  comes from 
the fact  that i t  i s  a representat ive  ensemble with a capaci ty for 
describing not i so la ted  sys tems with a fixed energy bu t those  which 
are in thermal equilibrium with their surroundings, continually ex- 
changing energy with them. In the theoretical  construction the 
residual system, that of n - v degrees  of freedom lef t  over from the 
original one when the component v is  separated for individual 
study, holds the posit ion of being the " h e a t  ba th"  in which the 
component is immersed. The modulus 0 represents  the thermody- 
namic temperature, and ~b the free energy of a system in thermo- 
dynamic equilibrium. Through this same door we enter into a 
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'thermodynamic' description of biological associat ion.  It is in- 
teresting to see  that in our case  the decomposabili ty of G does not 
lead to the awkwardness of introducing some " sma l l "  G of inter- 
action between components to provide G-exchange between them, 
as occurs in mechanics when the Hamiltonian is split into parts. 
This is inherent in the Volterra equations; the rigorous separation 
into components in general does not keep them from interacting. It 
is not implied of course that a weak interaction cannot be intro- 
duced between otherwise noninteracting associat ions.  

Another important feature of the canonical ensemble is that 
when the number of  degrees of freedom of i ts  members is large a 
great preponderance of them have C's  in the immediate vicinity of 
~" (the canonical mean G), and, ,not unexpectedly, canonical aver- 
ages are substantially the same as microcanonical ones on the 
surface G -- G-. This i s  easy to prove in a familiar computation if 
G is sufficiently small, ,when 

i v2~ G, = ~ r ( e " ~  - v r )  -~ r , ( 1  + y ~ ,  

and G = constant is an ellipsoid; for larger G an approximate com- 
putation shows the same thing (effectively what i s  involved is a 
sufficiently rapid ascent  of the volume enclosed by success ive ly  
larger constant-G surfaces). The canonical ensemble thus a lso 
has the aspec t  of a mathematical strategem to simplify the calcu- 
lation of microcanonical averages. Under the adopted ergodic 
hypothesis  we can then regard canonical averages as time aver- 
ages also. Of course the number of  biological degrees of freedom 
seldom will rival the number of mechanical ones commonly en- 
countered. But it may nonetheless be substantial;  when insub- 
stantial the canonical approximation to the microcanonical en- 
semble weakens and a more precise  analys is  of component systems 
is needed; or, .for isolated systems with an insubstantial  number of 
degrees of freedom the microcanonical ensemble, and the thermo- 
dynamic description provided by it ,  may be employed. 

We must in any event emphasize the importance in the present 
s tat is t ical  mechanics of fluctuations from expectation values.  It 
will be appreciated also that time averages and relaxation times 
for attainment of equilibrium, practically speaking, refer here to 
intervals of time of a completely different order of magnitude than 
those frequently met in physics.  
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Dropping now the subscript v we compute the canonical average 
of 0,, 

f r __~ 

ao -~ 
= Ov~ e dr dr 

(.") li " f ~ v ,  --0- - T d v "  = - 0 dr ,  

/f~" - - 0 [exp - rr(e '~r - Or)].." dvr 

=0.  

As before, ,the mean Ntis appropriately q,. 

age of Tr we find 

_ a G  - ~  
Tr = Or Ovr e dr dr 

0 ~, -4+" 

=0.  

Similarly, .for the aver- 

- T  + 0 dv dr ,  

This gives not only the earlier resul t  of equipartition of T but an 
insight into the meaning of the ' temperature '  0 of biological 
associat ion.  

A more perspicuous view of 0 comes from the average of OF, 

= rr 2 - i = e S dr dr 
J \Ov,] 

= - 0 L ~  a _ .  + 0 a,,--3-d~ do,, 
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02 Gr OGr 
but, ,since o'vr-~ =C~Vr + ~'r, this becomes 

for 
= Orr, 

or, /or all species r, 

l/Or ) OG~ 
dr, e - ~ -  dv, 

OVr 
+ Or r 

o v 2  ( i ,  - 
= - - =  rr ( N , -  q,)2. 

r~ ~rr q~ 

In other words the temperature measures,  .in one number common 
to all species ,  the mean square deviations of the populations from 
their stationary values  qr, and vice-versa. Zero temperature cor- 
responds to the completely " q u i e t "  stationary state of biological 
associat ion.  The temperature is, .so to speak,  ,a kind of indicator 
of the level of excitation of the associat ion from i ts  stationary 
state.  I ts  greater significance is, ,according to an es tabl ished 
theorem, ,that it tel ls  the preferred direction of flow of G from one 
associa t ion to another weakly coupled to it: on the average the 
associat ion with higher 0 will lose G and decrease  i ts  0, and in- 
versely for the low-0 associat ion.  This result, perhaps in the 
quantitative form following from a knowledge of the " h e a t "  ca- 
paci t ies  (see below), but at l eas t  qualitatively, may be amenable 
to experimental test .  

We might perhaps here conveniently introduce a definition of the 
thermodynamic s tate  of equilibrium of an associat ion as that for 

which the mean Dr2/rr has the same value for all species .  
Together with Z Tr, the ~ Dr2/rr is partitioned equally among all 

spec ies  on the average. 
The Gibbs phase integral is, ,with a _---~, 

= H - - ,  e a.~rNr dNr 
Nr 90 \ 

= H(rrIX) - ~'raI"(r r ~)=-H Z r. 

aGr e-- dvr 
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What is the probabifity that one sp ec i e s  will have i ts  vr in vr, 
vr + dvr? From either an integration over all coordinates but Vr, or 
from taking a component to be the one spec ies  r, this is 

G s  

e o dvr 
P,  d v  , = 

Zr 

or, in terms of n r -  Nr/qr. 

P (nr) dnr = 

a T  r - -  1 - ( z T  r n r nr e dnr 

(Xrr- a~'r ~((Xrr ) 

This is analogous to the Maxwell-Boltzmann distribution law. It 
is exactly the distribution of the ' intr insic abundance'  of a spec ies  
assumed by Corbet, F i sher , .  and Williams (1943; also Kendall,  
1948) to deduce the probability 

at at - 1 
= i l o g  1 + (9) 

that a catch of individuals in time t contains ju s t  i individuals,  in 
the limit that  

N 
N --> 0, C~r --) 0, - -  = a = finite. 

(xr 

These  authors found i t  necessa ry  to take this limit to comprehend 
the experimental data on ca tches  of but terf l ies  and moths; some 
meaning of  the then obscure  but important shape-determining pa- 
rameter ~r (k  in Kendal l ' s  notation) and of the limit 0or --~ 0 (0 >> r) 

here becomes clear. We may say, perhaps, ,that the observat ions 
were on spec ies  of low " in t r ins ic  temperature" r compared to that 
(0) of the equilibrium s ta te  (one evolved over a long period of time) 
of the encompassing biological  associat ion;  quite poss ib ly  0 was 
bigger than a great many r ' s  for different spec ie s  of that assoc ia -  
tion. The remarkable succes s  of the resul t  (9) would seem to be 
in some measure an experimental verification of the present  scheme. 

The moments of order p of n r are 

r (cr + p) 
nZ - p, 

r 

and in particular ~ / q r - - 1  again. In the limit 0--~ 0 ( (x -~ . . )  
t hese  moments all are unity, expressing,  ,as is  necessary ,  that 

P (nr) ---) 8 (n - 1) 
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When ctrr > 1 the most probable n~, cal l  it [n,], i s  

1 0 
[n~] = 1 .... 1--, 

F r F r 

which always is less  than ~r- For ar t  ~ 1 the most probable n~ is 
0, indeed P(nr  = 0) = ~ (CCr, < 1). The distribution in general as- 
signs appreciable weight to N's less  than q~. This is understand- 
able in view of the fact that the surfaces of constant G have a 
relatively large lobe in the region of v, < 0 compared to the smaller 
lobe for all vr> 0; then under the ergodic hypothesis we expect 
phases points generally to spend more time in the first region than 
the second. The importance of having introduced the "canon ica l "  
variables vr is here apparent. 

By ordering We species according to the sequence 

r l  ~ r2 ~ < . . .  <~ rig, 

we may distinguish two categories. At a given temperature 0 the 
lower group having r's less  than 0 have predominantly very low 
populations most probably; the upper group with r's exceeding 0 
most probably have appreciably higher populations. 

Turning now to the evaluation of the conventional thermodynamic 
variables we have for the " f ree  energy" ~b 

- ~ b  ~ = l o g Z ,  

log F(rr ~) _S"~ br, 
~b = ~'~'r~ log rr ~x Ct 

or, ,with xr =- rr ff~, 

log F 
-:-" = log zr  ' 
r r ~'r 

The "internal  energy (G)" is 

0 log Z 
G=  ac~ 

G, 
- -  = log ~, § 1 - q0 ( zr ) ,  

g r  
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where q~ (z) = d log F (x)/dz is  the digamma function. 
The "hea t  (G) capacity" is 

ad a~- 
c . . . .  c~ 2 -  

ao a(x 

q0"(~) denoting d~/d~, the trigamma function. The "entropy" is 

_ G - C ,  a 
S= 6 = l o g Z - ~ l o g Z  

The behavior of the single-species contributions to these vari- 
1 0 

ables as functions of - -- - or of x are shown in the figures (Fig- 
f 

ures 1-4). All but ~b,/rr increase monotonically with increasing 
temperature. Or alone tends for large 0 asymptotically to a limit, 
Or = 1 , - -whence  an analog to the Dulong-Petit l aw, - -and  comes 

1 linearly as 0 vanishes, whence no analog to the to the value 
Nemst  heat theorem. Sr increases in magnitude ffithout bound in 
the limits of both small and large 0, the state of lowest ( - ~ )  
entropy being the stationary state of association, 0 =0.  

In the limit of high temperatures, 

- - - - ~  - - - l o g  - - +  1 - c p ( 1 )  = - -  - 0 
l"r f r  rr rr 

Therefore in this limit G is equipartitioned amongst all species.  
At small 0, 

ar 10 1 
- - - - , 1 + - - , .  ~ - T , - . ~ 0 ,  
r r 2 r r 

so that 

is equipartitioned. Altogether then ~ Gr - -  Grmtn is equipartitioned 
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FIGURE 1~ Single-species oont~ibution to internal energy9 g iv ing G a,9 
f lmction of association temperature 8 for f ixed in t r ins ic  temperature r. 
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FIGURE lb. Single-species G as function of r for fixed 8. 



giving the final equilibrium temperature 0 of two equilibrium as- 
sociations A and B at initial temperatures 01 and 82 > 01 when 
placed in weak interaction~ has the corollary 

v 8 OS +PA 01 
1.' A ( 0  -- 0 1 )  = I~B ( 0 2  -- 0 ) ,  0 = 

V~ + VA 

for all temperatures sufficiently high or all sufficiently low (vA and 
v B denoting the number of species in each association). 

The entropy, as in conventional statistical mechanics, measures 
higher for systems in equilibrium, represented by the canonical 
ensemble, than the corresponding quantity (- log p) for other states 
of the systems (represented by other than canonical ensembles) 

u 
'1" 
1.0 

.8 

.6 

.4 

.2 

0 .2 .4 .6 .8 LO 
_e 
q." 
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1 0 per degree of freedom and for high for low temperatures at 
temperatures at 0 per degree of freedom. We may note also that the 
general rule of mixing, 

cA  dO -- V--~ ( O ) - V-~a ( O , ) = ~--R, ( O ~ ) - V-~B ( O ) -- C B dO, ,  
81 

FIGURE 2a. Free energy per species for fixed r and variable 8. 
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FIGURE 2b. Free energy per species for fixed 9 and variable ~. 

having the same mean G. And in the well-known sense  of Gibbs'  
coarse-grained view of the density in phase, non-equilibrium sta tes  
tend to decline into equilibrium ones of maximal entropy. It must 
not be forgotten here that, because  the number of degrees of free- 
dom in a biological associat ion is  not so enormously large as that 
of physical  sys tems studied by the same methods, the tendency 
toward equilibrium may be expected to be somewhat obscured by 
not iceable  fluctuations. 

We have thermodynamic variables but no thermodynamics as yet. 
The previous considerations are really calorimetric rather than 
thermodynamic in character, as  the only independent variable of 
s ta te  is  the temperature 0 and the only process  contemplated is 
" h e a t "  (G) transfer from one system to another. The thing that is 
missing is  the concept of work. 

In mechanic s the Hamiitonian is laden with "external  parametecs" 
such as  the volume of the system and strengths of external gravita- 
tional or other fields acting on i ts  parts; when altered these pro- 
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FIGURE 3. Hea t  capsoity,  pe r  s p e c i e s  a s  funct ion of s s s o c i ~ i o n  
tempera ture  ~. 
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FIGURE 4. F, nt~ppy per  s p e c i e s  a s  funct ion of a~EK~oiation tempera ture  8. 
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duce alterations in the state of the system, .in fact they alter the 
system itself,  ,and so are variables of state.  What, ,in SchrSdinger's 
phrase (1952), .are these  " s c r ews ,  pis tons,  and what not"  by which 
we can squeeze on a biological associat ion? What indeed are the 
observables  other than the population numbers? They are the real 
physical and chemical variables of the milieu exterieur: physical  
temperature, pressure,  radiation and other field strengths, , and 
chemical abundances.  Physical  temperature particularly has a pre- 
eminent places being like the volume in thermodynamics, a univer- 
sal type of external Farameter and playing a universally important 
role. 

Consider therefore that the rr are functions of these exterior 
variables, ,say ai, and through them so is the G of an associat ion.  
In the customary way, define the generalized forces~ 

_ F~ -- Oai (e"~ - v~). 
?,  

Then the canonical mean F; is 

F~ = -  Oa--~ = -  Oa~ , 

F i T  ~ - ~  - -  

c)a i 

and plainly 

(log xr + 1 - q~ (Xr)), 

r, Or,; F~, ~ ~ log rr. 

(10) 

Equations 10 are loosely analogous m Dalton's  law of partial 
pressures  and const i tute a system of equations of state.  If there 
be a single equation of s tate i t  is  perhaps equation (10) with ai -- 
physical  temperature T. When the associat ion temperature 0 is 
large, because  of the equipartition of G we have 

_ _  0 

F T = - 0 Z ~ log st. 

For the sake of  illustration only we might suppose, ,in a crude but 
not impossible approximation that each rr(T ) = brT -Xr over some 
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limited range of T; then the equation of state reads 

v being the number of degrees of freedom in the associat ion.  This 
is analogous to the gas law PV = Nkr ,  with V~T,T,O the analogs 
of P,V ,T ,  though Frr of course is not a single datum of direct ex- 
perience as is  P. 

It is evident at this point that we are carried into thermodynam- 
ics  proper but without an adequate experimental frame of reference. 
To proceed further into a discussion of cycles  (like Carnot 's) in a 
T,O plane, of transport processes (like conduction of G in physical  
space, under some kind of Fourier conduction law), in short to 
elaborate further the interplay in the large of the biological and 
physical  worlds, seems perhaps possible but now premature. 

I am indebted to Dr. L. W. Phi l l ips  for his steady and mate r ia l  

encouragement, and to Dr. W. Opechowski for a stimulating 
discussion.  
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