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A N O T E  ON A B S T R A C T  R E L A T I O N A L  B I O L O G I E S *  
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C O M M I T T E E  ON M A T H E M A T I C A L  B I O L O G Y  

T H E  U N I V E R S I T Y  OF C H I C A G O  

It is shown that the c l a s s  of abs t rac t  block diagrams of ( ~l,~ )-systems 
which can be constructed out of the objects and mappings of a particular 
subeategory Go of the category G of all  s e t s  depends heavily on the 
structure of G0~ and in particular on the number of se ts  of mappings 
H(A, B) which are empty in 50 .  In the context of ( ~,~ ) -systems,  there- 
fore, each particUlar category GO gives rise to a different '~abstract  
biology" in the sense  of Rashevsky.  A number of theorems il lustrating 
the relation between the structure of a category ~ 0 and the embeddabili ty 
of an arbitrary mapping ~XE~ 0 into an ( ~ , ~ ) - s y s t e m  are proved, and their 
biological implication is d iscussed.  

In p rev ious  work (Rosen ,  1958a; 1958b; 1959) we have  shown 
how to c o n s t r u c t  a c l a s s  of m e t a b o l i c  mode l s  which we h a v e  ca l l ed  
( ~ , ~ ) - s y s t e m s ,  and with  which we s u p p o s e  the  r eader  to  be  f ami l i a r .  
The  def in i t ion  o f  the a b s t r a c t  b lock  diagram of  a s y s t e m  of  th is  

type ,  as  p r e s e n t e d  in R o s e n  1 9 5 8 b ,  1959, m a k e s  s e n s e  over  an 

arb i t ra ry  s u b c a t e g o r y  ~0 of  the c a t e g o r y  ~ o f  a l l  s e t s .  In our pre- 

v ious  s t u d i e s ,  we h a v e  a l w a y s  s upposed  a c a t e g o r y  G o to  be g iven  
in i t i a l ly  and he ld  f ixed t h r o u g h o u t  the d i s c u s s i o n ,  and we then  
p r o c e e d e d  to i n v e s t i g a t e  the p rope r t i e s  of ind iv idua l  (~ ,~R)-systems 
formed from the o b j e c t s  and mapp ings  in ~0. 

T h e r e  are,  howeve r ,  p rob lems  of c o n s i d e r a b l e  b i o l o g i c a l  i n t e r e s t  
which canno t  be  app roached  by means  of  " l o c a l "  s t u d i e s  of  th is  

type .  In the p r e s e n t  note ,  we s h a l l  cons ide r  in de ta i l  one  such  
ques t i on ,  which  may roughly  be s t a t ed  as  fo l lows:  under what  con-  
d i t ions  can  an a rb i t r a ry  componen t  be embedded in an ( ~ , ~ ) - s y s t e m ?  
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We shall  s ee  that problems of this nature depend very sens i t ive ly  
on the structure of the category in which we are working. In fact,  
we shall  s ee  that each subcategory Go of G gives rise to a differ- 
ent c lass  of (~ ,~} ,sys tems,  and thus to a different " a b s t r a c t  
b io logy , "  in the sense  of Rashevsky  (1956, 1961}. In the present  
context,  it thus becomes clear that the relation between the struc- 
ture of a category Go and the class  of (~ ,~) -sys tems  which can be 
formed from the objec ts  and maps of Go is one of the central prob- 
lems in relational biology. 

Le t  us now return to the question enunciated above,  and let  us 
proceed informally for a moment. Given a mapping 0r : A ----, B in an 
arbitrary but fixed subcategory Go of the category of all se ts ,  what 
does it mean to say  that ~ is embedded in an (~ ,~) -sys tem? By 
definition, a must be a map in the abst ract  block diagram of an 
(~ ,~) -sys tem,  sat isfying the axioms se t  down in Rosen 1959, p. 115. 
However, there remain two poss ib i l i t i es  for the role played by 0r in 
an (~,~)-system: if the range B of ~x is of the form H(X, Y), where 
X and Y are objects  in Go, then a may play the role of a " g e n e t i c "  
component; in our previous terminology, we may write ~ .~ Cf for 
some "me tabo l i c "  mapping f of the system. If this is not the case ,  
then ~ i tse l f  plays the role of a " m e t a b o l i c "  mapping f. 

Let  us first suppose that 0r is to play the role of a " m e t a b o l i c "  
mapping f, and let  us see  under what circumstances we can find an 
(~ ,~)-sys tem (always constructed out of objects  and maps in G0) 
which contains f. By definition, we know that there must be a 
map Cf the range of which conta ins  fo However, it may well b e  the 
case  that in G0, every se t  of maps of the form H(X,H(A,B)) is 
empty. If this s i tuat ion obtains,  then it is clear that the mapping f 
can never be a " m e t a b o l i c "  mapping of an (~ ,~) -sys tem in the 
category ~0. 

Le t  us suppose ,  however,  that at  l e a s t  one set  of the form 
H(X, H(A, B)) is not empty in Go. If in particular we let X - B, and 
find that H(B, H(A, B)) d ~ in Go, then f can be embedded into the 
(~ ,~) -sys tem consis t ing of the pair of mappings If, el},  where 
CfeH(B, H(A,B)). Thus, we see  tr ivial ly that, if the set  of maps 
of the form H(3, H(A,B)) is not empty, then any map f :  A----* B can 
be embedded into an (~ ,~)-sys tem.  

On the other hand, if H(B, H(A,B)) is empty, but H(X, H(A, B)) 
is not empty for some object  X ego,  we can proceed by adioining 
to f any mapping Cf in H(X, H(A, B)). The pair If, e l l  is not now an 
(~ ,~)-sys tem,  s ince  the se t  of outputs of f does  not provide inputs 
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to (I)f. However, we may attempt to adjoin to the pair If, (I)f} some 
further mappings g, whose ranges provide appropriate inputs to (I)f. 
In order to accomplish this, we must once again require that not 
all se ts  of the form H(Z,X) be empty in G0.  If this condition is 
fulfilled, s o  that the appropriate mappings g can be found, we shall 
have to adjoin appropriate mappings (I)g. Once again it may be the 
ca se  that not all the (I)g receive  an input from the " me t abo l i c "  
mappings f, g, so that we may have to adjoin further " me t abo l i c "  
mappings h (if this is poss ib le  in Go), further " g e n e t i c "  mappings 
(I)h, and so on. Under what conditions can we be sure that this 
process  always terminates ~o give us an (~ ,~) -sys tem after a 
finite number of such adiunctions? 

Next, let  us turn to the case  in which the initially given mapping 
r162 : A ---) B is to play the role of a " g e n e t i c "  mapping. This means 
that B is of the form H(X, Y), where X, Y are obiects  in Go, as we 
noted earlier. If-Y 4 A, however, we find ourselves  back in pre- 
c i se ly  the same situation as has just  been d iscussed;  the detai ls  
of this situation may therefore be left  to the reader. 

The heurist ic d i scuss ion  presented above leads us to expect 
that it is ,  in some sense ,  the relative abundance of empty se t s  of 
mappings in a category Go which limits the c lass  of (~ ,~) -sys tems 
that can be formed from the objec ts  and mappings in Go. Let  us 
now attempt t o  see  whether this expectat ion can be made precise.  

Definition: A sequence  A1, A2, As, . . .  of objects  in a category 
Go will be called normal if no pair A~, A~+I recurs infinitely often 
in the sequence.  The category Go will be called normal if every 
normal sequence  of objects  in Go has  the property that the assoc i -  
ated sequence  H(A1, A2), H(Au, As), . . .  contains only a finite 
number of empty se ts .  

Theorem 1: If Go is a normal category,  then every mapping ~ e Go 
can be embedded in an (~,~)-system in Go. 

Proof: We begin by proving an auxiliary Lemma. 

Lemma: If Go is normal, then to each object  X e  ~0 there corre- 
sponds at leas t  one object  Z e G0 such that H(Z, X) is not empty. 

Proof: Let  Z1, Z2, Za, . . . ,  be a sequence  of pairwise dis t inct  
ob jec ts  in Go. Consider the sequence  Z1, X, Z2, X, Z~, X, . . . .  
It follows immediately that not all the se ts  H(Z~, X) can be empty, 
and thus the Lemma follows. We note in passing that we have ac- 
tually proved much more than is asser ted in the Lemma, but s ince  
we shall not require the full generality which is obtainable,  we 
shall not pursue the matter further here. 
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Let us now return to the proof of the main theorem. We suppose 
that the hypotheses enunciated above are satisfied, and that there 
exis t s  a mapping f:  Xo ----* ]70 in @0 which cannot be embedded into 
an (~/,3{)-system in @o. (We shall  consider  here only the case  in 
which f is a " m e t a b o l i c "  map; the case  in which the given mapping 
is a " g e n e t i c "  map differs from the " me t abo l i c "  si tuation only in 
minor de ta i l s ,  and is lef t  to the reader.) Since by hypothesis  f i s  
not embeddable into an (~l,~)-system, we must have in particular 

H(]7o, H(Xo, ]7o)) --- 6. (1) 

However, we know from our Lemma that there exis ts  an obiect  Y I 
in @0 such that H(Y1, H(Xo, Yo)) ~ O. Hence to the given f, we can 
correspond a mapping CfeH(Y1, H(Xo, Yo)). Our Lemma now tel ls  
us that there ex is t s  an ob jec t  X1 e@0 such that H(Xa, Y,) ~ 6. Let  
~ , e l l (X1,  Y1). 

Invoking our Lemma once again, 
such that the se t  H(Y2, H(X a, Y1)) 
that we cannot have ]72 ffi Y1, for 
that the system of mappings 

we can find an object  ]72 in @0 
r 6. Let  us observe,  however, 
otherwise it is  readily verified 

If, gl, el ,  r  

where '$g,eH(Y,,H(Xx, Yl)), would be an (~/,~)-system containing 
f, contrary to our hypothesis .  Hence we must have 

H(Y1, H(X1, ]71)) --- ~, (~) 

Knowing that Y2 is dist inct  from Y1, our Lemma assures  us that 
there ex is t s  an object  X2 in @0 such that tt(X2, Y2) is not empty. 
Le t  g2 all(X2, Y2). Once again, we notice that if the set  H(Y2, 
H(X2, Yu)) were not empty, we could find an element Cg, in that 
se t  such that the system 

{f, gl, g2, ~f, Cg,, Cg, t 

is an (~,}~)-system containing [. Therefore we must have 

H(Y2, H(X2, Y2)) = 0. (3) 

Invoking our Lemma again, we can find an object  Ya ~ Y2 such that 
H(]7a, H(X2, ]"2)) ~g ~}, and an object  Xa such that H(Xa, Ya) 4 s and 
proceed exact ly  as before. We continue this process  ad infinitum, 
constructing the objects  Xn, Yn in the obvious manner. 

Consider now the sequence of obiects  

]70, H(X0, ]70), ]71, ]-/(Xl, ]71), ]]2, H(X2, ]72), . . .  (4) 
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which is a sequence  of pairwise disjoint  ob jec ts  in Go. Comparing 
the relations (17, (2), (8), . . .  with the initial hypothesis  on G0 
leads to an immediate contradiction, from which our theorem follows. 

Theorem 1 may be regarded as an answer to the question, "when  
can an arbitrary mapping of a category G0 be embedded into an 
(~ ,~)-sys tem over the ca t egory?"  We might, however, have asked 
ourse lves  the more general question: given any arbitrary finite 
family of mappings of a category G0, under what conditions can 
this family be embedded into a (connected) (~ ,~)-sys tem over the 
category? It is by no means evident  a priori that the embeddabili ty 
of arbitrary single mappings implies the embeddabil i ty of finite 
families of mappings. However, in the present  si tuation,  we can 
readily verify that the technique employed in the proof of Theorem 1 
can be modified to yield a proof of the more general 

Theorem 2: Under the hypothesis  of Theorem 1, if ~ - {0c1, 0r 
�9 . . ,  ~n I is a finite family of mappings in G0, there exis ts  a con- 
nected (~ ,~)-sys tem in which ~ can be embedded. 

Proof: Suppose that no such (~l,~)-system exis ts .  Jus t  as in 
the proof of Theorem 1 above, we begin by adjoining mappings to 

in an attempt to make the augmented system ~" take on the 
structure of an (~ ,~)-sys tem.  By hypothesis  we know that ~" is 
not an (~ ,~) -sys tem,  from which it follows as before that certain 
se ts  of mappings must be empty in Go. We then adjoin further 
mappings to ~" to obtain a new augmented system ~ " ,  which again 
cannot be an (~ ,~)-sys tem,  and from which we find a further col- 
lection of empty se ts  of.mappings in ~o. Proceeding in this man- 
nor, we shall ult imately be able to construct  a sequence  of objec ts  
in the category ~0 which viola tes  our initial  hypothesis  on Go. 
The detai ls  of the argument are somewhat complex but involve no 
new principles,  and are therefore left  to the reader. 

Let  us note that the converse of Theorems I and 2 is false; that 
is,  the embeddabil i ty of every mapping (or finite family of mappings) 
in a category G0 into an (~ ,~)-sys tem over Go does not imply that 
Go sa t i s f i e s  the conditions of Theorem 1, nor even the weaker con- 
dition appearing as the conclusion of our Lemma above. However,  
certain instructive partial results  in this direction may be s tated.  
The following two results  are typical; as they follow immediately 
from the definit ions,  the proofs are omitted: 

Theorem 3." If every mapping 0r a~0 is embeddable in an (~,~)-  
system, and if A, B are objects  in Go such that H(X, H(A, B))--0 
for each object  X e ~o, then li(A, B) ~. ~. 
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Theorem ~: If every mapping cx e ~0 is embeddable in an (i0l,~)- 
system, and if there exists  an object  X e ~0 such- that f ~  every ob- 
object  Z we have H(Z, X) - t~, then H(X, H(A, B)) ,.. ~ for every pair 
of objects A, B in ~0. 

In physical  terms, these theorems asser t  that no "Garden of 
E d e n "  objects or mappings, which cannot be fabricated by the ef- 
fective procedures available in the base category ~0, can play a 
role in a theory of (~,~t)-systems. 

There is one further aspect  of the influence of the structure of 
the base category on the embeddability of mappings of the category 
into (~ ,~)-sys tems which must be considered. Namely, given an 
arbitrary mapping ~r in the category, what can be said about how 
many mappings o c c u r i n  the smallest  (~,~i)-system in which (x can 
be embedded? It is readily seen that if ~o is a category in which 
H(B, H(A, B)) is not empty for any pair of objects  A, B in ~o, then 
every mapping f:  A---* B in the category can be embedded into an 
(~ ,~)-sys tem of the form If, (I)f}, where we have r 
Conversely,  if  So is such that for every pair A, B we have H(B, 
H(A,B))--~J, then there can exist  no (~ ,~)-sys tems of the form 
If, r and the question as to the minimal s ize of an (~,~)-system 
containing a given mapping i~ ~0 is a highly non-trivial one. We 
can see roughly that the more empty sets  of mappings there are in 
~0, the greater will be the size of the minimal (~ ,~)-sys tems which 
can be formed over ~0. Moreover, there will, in general,  be a kind 
of * 'quantizat ion" in the size of these (~ ,~) -sys tems,  in the fol- 
lowing sense :  we know that, if Go sa t i s f i es  the hypothesis of 
Theorem 1, then, given an arbitrary (~ ,~)-sys tem h and an arbi- 
trary mapping ~ gA in ~0, there exists  (by Theorem 27 an (~,~t)- 
system A" such that the set  of mappings [~, A 1 can be embedded 
into A'. If N, N" are the number of mappings in A, A" respect ively,  
it may be possible to preassign an integer k such that we always 
have (N ' -N)> k; moreover, k may be taken arbitrarily large by 
suitably choosing the category G0. It is clear,  therefore, that the 
relation between the structure of a category ~o and a number k of 
the type just  described furnishes important information about the 
se t  of (~ ,~)-sys tems constructible in G0. It would be most in- 
structive to be able to derive a relation between the number of 
empty sets  in the category ~0 (for example by imposing a condition 
such as the hypothesis of Theorems 1 and 2 above) and the magni- 
tude of k. No such results are present ly available, although stud- 
ies in this direction are currently in progress.  It seems to be 
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crucial in such studies to take account not only of the number but 
also the distribution of the empty sets in Go, which is tantamount 
to putting a topology on ~0. 

We. must now briefly discuss the biological significance of the 
results obtained above. First, we have seen that once a base 
category ~0 has been chosen, the class of (~,~}-systems which 
can be formed from the objects 
termined by the structure of Go. 
question in the present note, we 

and mappings in Go is rigidly de- 
Although we have not explored the 
can readily see that non-equivalent 

categories will in general give rise to different classes of (~,~)- 
systems. In the terminology of abstract biology, this means that 
the class of relationally distinct unicellular systems depends on 
the nature of the category of discourse, and further serves as an 
index of the structure of that category, In. the case of real biologi- 
cal organisms, the mappings must represent some type of physi- 
cally effective proc0sses, so that, following completely abstract 
studies of the type indicated above, it may be hoped that a properly 
instituted investigation of physically effective processes may 
throw some direct light on the class of organisms which are ca- 
pable of existence. 

In the same way, purely abstract questions concerning the em- 
beddability of arbitrary mappings into (~,~)-systems may ultimately 
have a considerable bearing on questions related to the origin of 
life. More generally, the relation between the structure of an ab- 
stract category and the associated class of (~,~)-systems affords 
a natural tool for the ultimate study of protobionts and elementary 
biological forms whose existence at some stage in the transition 
from the inorganic to the organic world has repeatedly been postu- 
lated, but to which access by experimental or by previous theoreti- 
cal approaches seems to be impossible. It becomes most important, 
therefore, to have at our disposal extensive results in abstract 
biologies of the type considered above, so that as information con- 
cerning the actual category of "physical ly  effect ive" processes 
becomes available, we may be able to obtain useful insights into 
fundamental questions of organic structure. 

The author wishes to thank Dr. Peter H. Greene for pointing out 
a number of inaccuracies in the first draft of the manuscript. 
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