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The twent ie th  century has  w i t n e s s e d  a geomet r i za t ion  of p h y s i c s ,  that  
i s ,  a reduct ion  of the bas i c  concep t s  of p h y s i c s  to geometr ic  concep t s .  
The  topo log ica l  approach to biology,  r e c e n t l y  proposed and to some ex-  
tent  deve loped  by the author,  is a smal l  s t ep  in the d i rec t ion  of geo-  
metr iza t ion of biology,  but i s  unable to a ch i eve  the main purpose  of such 
a geomet r iza t ion  of biology,  namely,  the reduct ion  to geomet r ic  concep t s  
of such purely  b io logica l  concep t s  as  inges t ion ,  d iges t ion ,  a ss imi la t ion ,  
e tc .  To ach i eve  th is  purpose we must find geomet r ic  s t ruc tu res  or s p a c e s ,  
in which d i f ferent  geomet r ic  proper t ies  s t and  to each  other in the same 
formal log ica l  r e la t ion ,  as  the di f ferent  c o n c e p t s  of b io logy s tand to each  
other.  If th is  were p o s s i b l e ,  then a s e t  of geometr ic  theorems could be 
" t r a n s l a t e d "  by an appropr ia te  ' ~ g l o s s a r y "  into a s e t  of b io log ica l  laws.  

While not  offering a so lu t ion  to th is  p roblem'  the p resen t  paper i l l u s -  
t ra tes  the p o s s i b i l i t y  of such  an approach on s e v e r a l  examples .  Cer ta in  
new types  of topo log ica l  s p a c e s  are in t roduced,  which are used  for il-  
lus t ra t ion  purposes  only. It  is  shown, however ,  how from a theorem about 
such  s p a c e s  a ve r i f i ab le  b io log ica l  p red ic t ion  could be made,  if t hese  
s p a c e s  were to be taken s e r i ous ly .  

A pos s ib l e  app l ica t ion  to biology of E.  Ar t in ' s  theory of braids is  
out l ined.  

The study of mechanics began much earlier than that of any other 
branch of physics.  Although Newton was the father of contemporary 
analytical mechanics, yet different mechanical laws, like those of 
the levers or those of flotation of  bodies, have been known and 
were studied since the days of Archimedes. This historical situa- 
tion developed among physicists  the attitude to consider mechanics 
as the basic branch of physics.  The fundamental concepts,  and 
even the fundamental laws of mechanics, became to be regarded as 
something self-evident. Newton referred to his laws as the "axioms 
or laws of motion," and it was only at the turn of this century that 
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Henri Poincar~ pointed out that these were neither self-evident 
axioms nor experimental laws, but what he called useful conventions. 

Of the other branches of physics, the phenomena of sound were 
relatively early and easily shown to be of a mechanical nature. 
Thus acoustics became a branch of mechanics. The second half 
of the nineteenth century witnessed a similar "mechanization" of 
thermodynamics. Attempts to "expla in"  in mechanical terms the 
phenomena of light and of electromagnetism, especially the latter, 
proved, however, to be unsuccessful.  When it was demonstrated 
that propagation of light is a periodic phenomenon, it was natural 
to interpret it as a wave motion in some invisible and even "im- 
ponderable" medium, and the concept of universal ether was cre- 
ated. As is welt known, this concept became more and more fraught 
with difficulties and self-contradictions. 

Yet all the great physicists of the 19th century bel ieved--nay,  
were almost convinced-- that  all phenomena of physics are me- 
chanical in their nature. Faraday thought of the electromagnetic 
field in mechanical terms; Maxwell found his equations by a series 
of unsuccessful attempts at interpreting electromagnetic phenomena 
as manifestations of mechanical ones. The equations were estab- 
lished and proved their worth by their enormous predictive value 
only, however, to show that they were the inspirational guess of a 
genius rather than a logical consequence of a mechanistic picture. 
Yet, outstanding physicists like L. Boltzmann and others continued 
the unsuccessful efforts to reduce Maxwell's equations to Newton's 
laws of motion. 

Inasmuch as Maxwell's work established the identity of optical 
and electromagnetic phenomena, showing the former to be only a 
branch of the latter, the difficulty of interpreting mechanically 
Maxwell's equations only further increased the difficulties of a me- 
chanical interpretation of optical phenomena. 

Towards the turn of the century the notion began to crystallize 
that perhaps electromagnetic phenomena not only cannot be reduced 
to mechanical ones, but that actually they are the basic phenomena 
of physics to which all other phenomena, including mechanics, may 
be reduced. This idea was especial ly suggested by the discovery 
of the electromagnetic mass of the electron, predicted theoretically 
by H. A. Lorentz and subsequently verified by several experimenters. 

The notion, however, did not look to be a happy one to the 19th 
century classical physicists. The notions of electromagnetic field, 
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electric and magnetic vectors did not have the property of immediate 
intuitive self-evidence, which the mechanical notions of motion, 
mass, acceleration, and force seem to possess.  It  was not under- 
stood that this self-evidence of the mechanical concepts was only 
an apparent one, due to the centuries of familiarity of the physicists 
with those concepts. This self-evidence was nothing more than a 
habit of thinking; but even the great scientists have frequently 
found it difficult to free themselves from long established habits of 
thinking. The laws of human psychology are very much the same 
for the scientist  and for the layman! 

It was in 1909 that Hermann Minkowski, inspired by the profound 
discovery by Einstein in 1905 of the relativity of space and time, 
indicated a way of reducing physical phenomena to something 
which is outside of physics, even outside of any other natural 
science, namely, pure geometry. Minkowski showed that the basic 
concept of mechanics, and possibly of all physics, the concept of 
motion, may be interpreted as an orthogonal transformation of a 
system of coordinates in a four-dimeosional hyperspace with one 
imaginary coordinate. Inspired by Einstein, this discovery in its 
turn eventually led Einstein to the creation of the General Theory 
of Relativity, in which not-only the concept of motion, but also 
concepts of acceleration, mass, and force, and especially the no- 
tion of gravitation received a geometrical interpretation in a four- 
dimensional non-Euclidean hyperspace. 

True enough, a complete geometrization of physics is still a 
relatively distant goal. One of the stumbling stones is again Max- 
well 's  equations. However, the difficulties now appear to be of a 
different kind; they are more of a mathematical than of a conceptual 
nature. Begin,ing with the ingenious--though unsuccessful at- 
tempt by Herman Weyl (1920)--attempts at a reduction of electro- 
magnetic phenomena to geometric concepts have continued, and 
Einstein 's  own later contribution (Einstein, 1953) seems to carry 
a great deal of promise. 

But even to the limited extent that geometrization of physics has 
been achieved, it  proved to be important. Not onIy has it shown an 
unusual predictive value both in physics and astronomy, but it  is 
different from the old attempts to reduce physics to one of its 
branches in that the reduction of actual natural phenomena is made 
to purely mathematical concepts. Those concepts are creations of 
the human mind, and basically are therefore much more intuitive 
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than the physical  oness even though a visual izat ion of multidi- 
mensional spaces  may be barred to us. Bas ica l ly ,  what modern 
physics  doess is to map the observable  phys ica l  phenomena iso-  
morphically onto an abstract  geometric structure.  Certain concepts  
of physicss like motion s accelerat ion s etc.  s map on purely geo- 
metrical concepts  of coordinatess curvatures etc.  The theoreras of 
geometrys which es tabl ish  metric relations between different geo- 
metrical conceptss then lead direct ly to laws of phys ics  by the use  
of a sort of g lossary  or dict ionary which shows the name of the 
physical  concept  that is to be subst i tuted for the name of a geo- 
metric concept .  A ~translat ion ~ of physical  laws into geometric 
theorems and vice versa is  thus poss ib le .  

Corapared with physics  in ag% biology is almost a newborn baby. 
Whenever we experience outs ide of ourse lves  any manifestat ions of 
life we do it  only through i ts  physical  manifestat ions.  Certain 
introspect ive psychological  exper iences  s as well  as the more im- 
mediate contact  with life than with the nonliving s may have led 
some biologis ts  to assume that phenomena of biology are bas ica l ly  
different from those of the nonliving physical  world. An utterly 
u se l e s s  and time-wasting argument ensued between the v i ta l i s t s  
and the mechanistss which are now better ca l led  phys ica l i s t s ,  as 
to whether phenomena of life are something sui generis, nonphysi- 
cal in nature, or are bas ica l ly  reducible to the laws of physics .  As 
remarked above, the only ob jec t ive ly  scient i f ic  study of life can 
be made through the study of i ts  physical  manifestat ions.  This  
holds a lso for the so-cal led mental phenomena. We can know what 
another person thinks only by his telling us,  or writing its which 
are both physical  actss or we may infer about his thoughts from 
some other of his overt  behavior,  which again must be physica l ly  
manifested if we wish to observe it. Therefore the scient if ic  study 
of biology has become a study of  different very special  physico- 
chemical s i tuat ions,  with the applicat ions of the methods of both 
experimental and theoretical  phys ics .  This  approach has proved 
to be of tremendous s u c c e s s .  As to whether all phenomena of 
biology can be explained in terms of contemporary (1955) phys ics  
is a question which cannot be answered by any general specula-  
tion. All we can say  that attempts at such explanation, when made 
competently, have been hitherto crowned with s u c c e s s .  It is~ how- 
ever~ impossible  to deny that a biological  phenomenon may be dis- 



THE GEOMETRIZATION OF BIOLOGY 35 

covered which cannot be explained in terms of physical  laws known 
at present.  But far from proving anything " u n p h y s i c a l "  about life, 
such a discovery will merely mean the need of an extension of 
phys ics  (Rashevsky,  1934, 1955b), lus t  as the imposs ibi l i ty  of ex- 
plaining some spect roscopic  phenomena in terms of c l a s s i c a l  phys- 
ics  has led to i ts  extension by introducing quantum mechanics.  No 
one will ever call quantum mechanics " u n p h y s i c a l . "  

If phys ics ,  in i t s  present  or in i ts  extended form, is to be re- 
duced to geometry, then i t  follows from all the above that eventual ly  
a geometrization will be a lso  the fate of biology. When we come 
to consider  this poss ib i l i ty  more c lose ly ,  we notice one very es- 
sential  difference between some laws of biology and the laws of 
phys ics .  All phenomena of phys ics  are quantitative in nature. 
They not only can be measured, but even more, un less  they are 
measured, very lit t le if anything s ignif icant  can be said about  them. 
Many biological  phenomena are also quantitative in nature, and the 
biologis t  is now becoming used to both measurement and mathe- 
matical analysis .  But very many biological  phenomena, and per- 
haps the most bas ic  of them, are not quanti tat ive but relational .  

Yet very definite s ta tements  can be made about them, and their 
importance is unquestionable.  

As has been pointed out elsewhere (Rashevsky,  1954), the re- 
sponse  to a stimulus by a paramecium, followed by a locomotion 
toward food; the ingestion of the food, followed by digestion; the 
resulting absorption and assimilat ion of the digested products on 
one hand, and the defecat ion of undigested residue on the o t h e r - -  
all those individual biological  p roces ses  stand in bas ica l ly  the 
same relation in the paramecium as they do in a human being. The 
p roces se s  of stimulation, locomotion, digestion, e tc . ,  in a higher 
organism are much more complicated than in a protozoan and con- 
s i s t  of many more partial " s u b p r o c e s s e s . "  But the corresponding 
complicated processes  in a higher organism can be mapped in a 
many-to-one way onto the p rocesses  of a one-celled organism in 
such a manner that the bas ic  relations remain invariant. 

If we wish to descr ibe mathematically the above si tuation,  we 
need a different mathematical apparatus from the one used hitherto 
in physics  or in mathematical biology. Such an apparatus is pro- 
vided by topology, which is a geometry of relations rather than of 
quanti t ies.  To use this apparatus we must find some method of 
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describing an organism in terms of some topological spaces or 
complexes. The word "organism" itself suggests that a graph 
used as an organization chart of the organism may be employed to 
advantage. Such considerations led us to the formulation of a 
general principle, the principle of bio-topological mapping (Rashev-- 
sky 1954): 

The graphs which represent the organization charts of dif- 
ferent organisms are such that they all can be mapped on the 
graph or graphs of one, or at most very few, primordial or- 
ganisms. The graphs of all organisms are obtained from the 
graph of the primordial organism by the same geometrical 
multiparametric transformation, the graphs of different organ- 
isms corresponding to the different choices of the parameters. 

It has been shown that a topological biology developed on that 
basis with the addition of some special hypotheses has a definite 
predictive value. Not only is it possible to derive the known facts 
- - t h a t  the more complex organisms possess a lesser regenerating 
ability for lost organs (Rashevsky, 1955c) and possess a greater 
adaptability (Rashevsky, 1955d), but it is also possible to derive 
the total number of possible different organisms (Rashevsky, 1954; 
1955a). The number thus found is about 100 times the actual num- 
ber of known species. Whether this means that nature has pro- 
duced hitherto only about 1% of all possible organisms or that 
some of the special hypotheses must be modified within the gen- 
eral principle cannot be said at present. The important thing, 
however, is that topological biology predicts something that can 
be verifie~l by observation and thus offers a stimulus ~ new ex- 
perimental work. This is even better illustrated by the prediction 
of a relation between the number of t issues,  the number of organs 
and the number of distinct biological functions (Rashevsky, 1955d), 
as well as by an estimation of the total number of hormones to be 
discovered in organisms of different degree of differentiation (Ra- 
shevsky, unpublished). An extension of combinatorial topological 
considerations to organic molecules (Rashevsky, 1955e; Karreman, 
1955) has led to biochemical conclusions which are in principle 
verifiable. 

The above approach is to some extent a move in the direction 
of a geometrization of biology. How does it relate to the geometri- 
zation of physics? Topological considerations have hitherto 
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played no part in the discussion of the four-dimensional hyper- 
space onto which the physical phenomena are isomorphically 
mapped. The metric properties of the four-dimensional hyperspace 
is all that mattered. In many instances the metric of a space de- 
termines its topology. If this were true generally, we would expect 
that topological relations of the four-dimensional universe would 
be derived from its metric, such that they may lead to the descrip- 
tion modo geometrico of the basic biological relations. We then 
would have the following possibility of reduction: biology --* phys- 
ics --~ geometry. However, as we have seen on a previous example 
(Rashevsky, 1954, p. 345), a situation may be conceivable in which 
life is a manifestation of " loca l"  topology of the universe, in such 
a way, that while biological phenomena will always follow the 
laws of physics, they may not be reducible to those laws, while 
both physics and biology will be reducible to geometry. 

However, the geometrization of biology, as attempted by topo- 
logical biology, is still something very different from the geometri- 
zation of physics. In the former we do not interpret in geometrical 
terms any of the biological functions, such as digestion, assimila- 
tion, etc. We may perhaps say that we eliminate from biology the 
elusive concept of "organization," and substitute for it the geo- 
metrical notion of the topological properties of the graph of an 
organism. But except for that, we still manipulate with such con- 
cepts as digestion, assimilation, locomotion, stimulation, etc. We 
consider those concepts as given, and all we do is to study topo- 
logical relations between those concepts, in an abstract space. 

The geometrization of physics goes much further. It interprets 
the basic concepts of physics in geometrical terms. It eliminates, 
in a sense, those concepts from physics. It does not merely seek 
formal geometric relations between different masses, velocities 
and accelerations. This has been done long ago by classical 
kinematics and does not constitute a mapping of physics onto 
geometry. 

If we wish to achieve the same thing for biology, we must go 
much further than topological biology has done so far. It seems 
that combinatorial topology is hardly the adequate apparatus for 
our purposes and that recourse to set  topology will have to be 
made (Rashevsky, 1955d). 

The whole universe, physical and biological, is a set of "ele-  
ments," the word element not being used in the chemical sense. 
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In order to avoid confusion with the chemical connotation of the 
word element, we shall use i t  in quotation marks when se t  theoreti- 
cal connotation is implied, and without quotation marks when the 
chemical connotation is used. Perhaps the most basic  way of 
looking at it is to consider the universe as a se t  of world lines.  
We may, however, consider as " e l e m e n t s "  of the se t s ,  groups of 
the world l ines,  or their points of intersect ions,  or other configura- 
tions. Different chemical reactions may be considered as the 
" e l e m e n t s "  of the set.  In any case,  however we define the "e le -  
ments"  of this set,  the biological phenomena are a subse t  of it. 

What are the characterist ic  properties which make us recognize 
an organism as such? Perhaps the most [)asic thing about an or- 
ganism is that  it se lects  certain " e l e m e n t s "  from the inorganic 
environment even if those elements form parts of other subsets .  
Once a select ion is made, those selected " e l e m e n t s "  are organ- 
ized in a definite pattern eventually becoming themselves "e le -  
ments"  of the organism, and leading to a duplication of the latter. 
In this case the " e l e m e n t s "  are the different chemical molecules, 
radicals ~ or complexes. 

This process of select ion is accompanied by a loss of some 
" e l e m e n t s "  of the organism. This loss may be a complete break- 
down into waste products, or i t  may be consti tuted by the secretion 
of a molecule of a digestive enzyme which " a t t a c k s "  a food par- 
ticle and se lect ively  breaks off it  the desired molecular configura- 
tion. Usual ly the secretion of a digest ive enzyme is not con- 
sidered on the same level as a catabolic breakdown. But logically 
they both resemble each other, and they both may be necessary  for 
the process of selection.  For while in some microorganisms, like 
nonmotile bacteria,  the select ion goes on at  a purely chemical 
level; in higher organisms it  is more complicated. The sight of 
possible food; the locomotion towards it; the breaking up of food 
either by teeth, or by hands,  or by hand-made machinery; the pick- 
ing up and consumption of the proper parts of the food- -a l l  this 
const i tutes a process of select ion,  and for many such processes 
in higher organisms the energy released by catabolic processes is 
needed. Thus everywhere in the process of select ion some loss  
of its const i tuents  by the organisms seems essent ia l .  

Any select ion process implies rejection of the unwanted material. 
Digestion, followed on one hand by absorption, on the other by 
defecation are only the logical aspects  of the se lect ion process. 
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Thus these three very basic biological functions may be described 
in terms of select ion.  And as we have jus t  said,  a number of other 
biological functions, which acquired typical ly  biological names, 
are also bas ica l ly  logical aspects  of the process of selection.  

If we could interpret selection geometr ica l ly- -or  more specifi- 
cal ly topolog ica l ly - -we  would thus reduce some biological con- 
cepts to geometric ones. 

Le t  us make the next logical step. Selection implies the divi- 
sion of the " e l e m e n t s "  of some subset  in two c lasses :  those se- 
lected and those rejected. Division in two c l a s ses  is not at  all 
uncommon in topology. Thus a point of the one dimensional space 
of real numbers induces a Dedekind cut, and, therefore, a division 
of all other points in two c lasses .  A closed Jordan curve in F~ 2 
divides all points of E 2 in two c lasses :  the inner and the outer 
ones. Both cases  are examples of a subset  M of a space S dividing 
S - M  in two c lasses .  But those simple cases  do not help us any. 
As we have seen, the division by the organisms of the set  of "e le -  
ments"  which consti tute the environment of an organism in two 
c lasses  is contingent on the organism, considered as a set ,  losing 
some of its own " e l e m e n t s . "  Moreover, if one or more of the se- 
lected " e l e m e n t s "  are added to the subset  M which is the organ- 
ism, the relation between that subset  and the complement S - M re- 
mains the same: the organism continues to select .  That  second 
property is exhibited in the following example. Le t  M be a subset  
of S not closed in S. Then M divides all the points of S - M in two 
c lasses :  those that  are the l imit  points of M, and those that are 
not. Except for the very special  case in which the first c lass  is 
a degenerate subset ,  when some of the limit points of M are added 
to M the resulting subset  M" sti l l  divides the points of S -  M" in 
two c lasses :  those that are limit points of M', and those that are 
not .  

A particular case of the above offers some remote analogy to the 
first  necessary  property, that of a loss by breakdown. Le t  S be 
the space of real numbers and let  M be the subspace obtained from 
S by omitting all rational points in the closed interval (0, i). All 
rational points of S within that interval are limit points of M; those 
outside are not. The subspace M is not connected, however, and 
this loss of connectivity may be regarded as a remote analogy of 
a breakdown process.  In this example there is no division by M of 
S -  M in two c lasses ,  that is, no select ion,  without loss of con- 
nect ivi ty of M. 
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The above examples have, of course,  no sc ient i f ic  value what- 
soever.  They are used only to i l lustrate  a point which, if given 
an abs t rac t  formulation, may be diff icult  to make clear. Namely, 
if we can find a topological space ,  such that its different topo- 
logical properties stand in the same logical relation to each other 
as do different bas ic  biological concepts ,  then by subst i tut ing the 
names of those biological  concepts  for the names of the corre- 
sponding topological  properties,  we could, using again a glossary,  
t ranslate every theorem about such a space  into a corresponding 
biological  law, jus t  as it is done in the geometrization of physics .  
The purely mathematical study of the properties of such a properly 
chosen space  would yield us all the laws of biology, both already 
known and those not ye t  discovered.  If this ever becomes pos- 
s ible,  it would indeed be a triumph of geometry, more generally, of 
pure mathematics.  

This idea, suggested  by the twentieth century phys ics ,  may ap- 
peal to some and not appeal to others.  But even to those to whom 
it  may appeal,  it  s t i l l  is  of no use.  You cannot do much with a 
bare idea unless  you at l eas t  show how, in principle, the idea 
might be realized. Here we must consider  two logical poss ib i l i t i es .  

Topology is st i l l  a young sc ience;  yet ,  it has already ramified 
in many directions,  and a very great  variety of its aspec t s  have 
been studied. It is not precluded that the necessa ry  types of 
spaces  or other topological s tructures have already been s t u d i e d  
and only need to be taken over, but that thus far we have failed to 
perceive the proper possibi l i ty .  After all, the bas ic  apparatus of 
non-Euclidean geometry has exis ted  for a fairly long time; yet,  i t  
took Eins te in  to see  that  phenomena of phys ics  are isomorphic to 
some of those already well known geometric properties.  The ra- 
tional problem-solving and the reduction of n e w  si tuat ions to al- 
ready known ones h a s  psychological ly  and biophysical ly  some 
similarity with the discovery of a "h idden p ic ture"  as has been 
shown elsewhere (Rashevsky,  1948; Chapt. XLII). Thus,  we may 
hope that an inspiration by a mathematician or a mathematical 
b iologis t  may indicate the solution, which will appear rather ob- 
vious after it is discovered.  

But we cannot d iscount  the other possibi l i ty ,  namely, that ap- 
propriate topological spaces  have not yet  been s tudied and that 
the needs of biology may provide a stimulus to the topologist  to 
make new discover ies  in his field, jus t  as the needs of physics  
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have provided in the pas t  the st imulus for new mathematical dis- 
covories.  Gauss has actual ly credited physics  with many of his 
purely mathematical inspirations.  

But  here again we must be somewhat  more definite and therefore, 
even without hoping to formulate at  present  the necessa ry  purely 
mathematical problem and to descr ibe  the neces sa ry  type of topo- 
logical  space ,  give at l eas t  a few examples of the kind of thinking 
that may be required. Those examples we shall  give again as an 
illustration only. Their actual biological  and mathematical values 
are nil. But  they may serve,  as the French say,  "pour  fixer les  
i dSes . "  

L e t  us return again to the bas ic  logical  property of the organism. 
Certain " e l e m e n t s "  of the environment are se lec ted ,  that is, begin 
to belong to one of two c l a s se s  if some " e l e m e n t s "  of the organ- 
ism i t se l f  are detached from the latter.  Considering again the or- 
ganism as a subspace  M in the space  S and considering the "e l e -  
ments"  as points in these spaces ,  we may translate  the above 
logical  property into topological language. In order that M should 
induce a division of the points of S - M in two c l a s s e s ,  it is nec- 
e s sa ry  that some points of S -' M would p o s s e s s  some property P 
with respec t  to M, which others do not pos se s s .  In order that the 
division of the points of S -  M in two c l a s se s  becomes poss ib le  
only after M loses  some " e l e m e n t s , "  some points of S - M  must 
acquire the property P with respec t  to M only after certain points 
of M are removed. The s imples t  example of such a situation is  
offered by a c losed Jordan curve, from which one point, 0c (Figure 
1)~ is removed. Le t  such a Jordan curve with a point removed be 
the subspace  M in the space  S = E 2. It is ac tual ly  a Jordan arc, 
the ends of which are separated by the point c~ only. Thus M is a 
s ingle connected subspace  of E 2. The point ~ does not belong to 
M, but  belongs to S - M. Let  property P cons is t  of making M con- 
nected.  Since M is already connected,  therefore ~ does not pos- 
s e s s  property P. But if we remove from M any other point, say  fi 
(Figure 1), then M becomes non-connected, and (x acquires the 
property P. 

Instead of a c losed Jordan curve with one point removed, con- 
sider the structure shown in Figure 2, in which the points 0r ~2, 
and 0r s are removed. As a subspace  M of S = E 2, i t  is  connected. 
If, however, we remove the point /3 from M, it breaks up into four 
components,  and the set of points (oil, ~ ,  %) acquires the prop- 
erty P.  Thus the removal of one point, fit makes M divide the 
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different subse t s  of S - M  in two c lasses :  one c lass ,  consis t ing 
only of one e l e m e n t - - t h e  s u b s e t  (~1, ~2, (xs)--has the property P; 
the other does not. The subse t s  of the two different " c l a s s e s "  
are not all disjoined.  Thus the subse t  (~z, ~9, cx4) does not have 
property P,  but (~1, r ~4) n (cxl, c~ 2, ocs) ~ 0. 

In a similar space  like the one shown in Figure 2, but having in- 
s tead of 4 l ines n + 1 lines connected by the point /3, the removal 
of the point fl will make a se t  of n points of S-M acquire the prop- 
erty P,  where n is an arbitrary posi t ive integer. 

We shall  call  such subspaces  of E 2, as those  shown in Figure 2, 
A n-  spaces .  Now connect  an infinite number of )~n- spaces  in a 
manner shown in Figure 3, in which all )t n = )t 2. Considered as 
subspace  M of E 2 - S  the space  thus obtained is connected,  non- 
compact, dense in i t se l f  and nowhere dense in S, and not c losed in 
E 2, s ince  all the oc points are its limit points.  It sa t i s f i es  the four 
Hausdorf axioms. It has the property that the removal of any f~i 
makes a se t  of points (cx~, ~ , . . .  cx~) acquire the property P. Any 
subspace  of S that has this property we shall  call a h - s p a c e .  
The number of points f~i is countably infinite, and so is the number 
of se t s  of S - M that can acquire the property P.  

We can make the h - space  shown in Figure 3 bounded in S = E ~" 
and derive a more complicated k -  space .  To achieve this, take 
the spiral with the equation in polar coordinates p, 0: 

0 - 1  
p = - - ;  0 ~ 1 .  (1) 

0 

At equal, or unequal intervals ,  along the line (1), which begins 
at p - - 0  and approaches asymptot ical ly  the circle p = 1, ,attach to 
it k n-  spaces ,  as they are attached in Figure 3 to the line AB, 
(Figure 4), making the s ize  of each h -  space smaller,  as  the 
windings of the spiral become closer,  so that no ) t -  space  would 
be intersected by the line (1). Then take spirals  given by: 

P =  0 ; 0 ~ 1 + - ,  (2) 
m 

where m is an arbitrary integer different from zero. The spirals  
(2), obtained for different va lues  of m, lie all between the windings 
of spiral (1) (Figure 5). Attach to each spiral (2) a h~ - s p a c e ,  
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at  f ini te  in te rva l s ,  d e c r e a s i n g  the s i z e  of  ~,n - s p a c e s  as the m 
i n c r e a s e s  and as the sp i r a l s  come c l o s e r  to each  o ther ,  t f  m in- 

c r e a s e s  to inf ini ty ,  in the  l imit ,  we ob ta in  a s - s p a c e ,  which l i e s  
all  within the  c i r c l e  of  radius  t .  I t  has  a coun tab ly  in f in i t e  number 
of  fi poin ts  and there  i s  a coun tab ly  inf in i te  number of  s e t s  of  
po in ts  of S - M (M = h; S = E 2) which can acquire  proper ty  P .  Th e  

h - spa c e  in ques t ion  is  not  compac t  b e c a u s e  a s e q u e n c e  of  equi- 
d i s t an t  poin ts  along any of  the spira l  l ines  does  not  have  a l imit  
poin t .  As s u b s p a c e  ~ / o f  E 2, the ~ - s p a c e  is  c o n n e c t e d ,  d en se  in 
i t s e l f  and nowhere  dense  in E ~ = S. I t  s a t i s f i e s  the  four Hausdorf  
ax ioms.  
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In the h - s p a c e  considered above, the card ina l  number of the 
se t  of f~ - points,  as well as of the se t  of sets  that can acquire the 
property P, is l~0, whereas the cardinal number of the points of the 
whole )~ - space is N, that of a continuum. 

We now shall  construct a different space M, in which the re- 
moval of one point makes an infinite se t  of points of S - M acquire 
property P. Consider the family of circles in E2: 

_ + _ -  ( 3 )  

where cx = ~ or (x is an irrational number between 0 and ~. 
The cardinal number of the se t  of such circles is S. Each circle 

intersects  the line y = 0  at x = 0  and at  the point x = 2 ~ .  Remove 
in each circle the point ~ = 2a .  The space M obtained by this re- 
moval from the family of circles (3), considered as a subspace of 
S = E 2, is connected. Removal of the point 0, which we shall 
designate by f~, from M makes it not connected, and in order to 
make it connected with the point 0 removed, we must add to it all 
the points x = 2cx. Hence the se t  of all irrational points in the 
interval (0,1), whose cardinal number i s  N, acquires now property 
P.  We shall  call this space M a )t" - space.  

Le t  us now consider the family of circles (3) not in the plane 
z = 0 ,  but in a plane z =  irrationaI number, and 0 < z <1 .  Remove 
in each plane all the points of intersection x = 2a and connect the 
outermost circles,  those corresponding to c~ = ~, by any line l 
parallel to the z - axis, except  the z - axis i tself ,  passing through 
that outermost circle. 

Such a se t  of circles with points removed as indicated, con- 
sidered as a subspace M of E ~, is connected and bounded in E s. 
The removal of any point f~ with irrational z -  coordinate on the 
line 1 destroys the connectedness of M, and the se t  of points 2a 
which correspond to that z -  coordinate acquires the property P. 
The space so constructed we shall call the )t'" - s p a c e .  

The following theorems can be readily proved about the h, h" and 
)~'" - -  s p a c e s .  

The intersect ion of two ~, ()C, X") spaces  is not a ~., )~" or 
h'" space,  and is always not connected. 

As we have emphasized already, the above examples of " f a n c y "  
topological spaces are of no value either biologically or topologi- 
cally and are used only to i l lustrate  a point. We shall  now use 
them for such an il lustration. 
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An organism, as we have seen,  se lects  from the environment 
some " e l e m e n t s "  which have some special  properties with respect  
to that  organism. The select ion of a se t  of " e l e m e n t s "  becomes 
possible only after the organism loses some other set  of its own 
" e l e m e n t s , "  and, in general, a specific s e t  must be lost  in order 
to make the select ion of a given se t  possible.  The select ion,  as 
we also have seen,  is logical ly equivalent to inducing the division 
of all the " e l e m e n t s "  of the environment in two c lasses :  those 
that possess  certain properties, and those that do not. 

The h, h',  and k'" - spaces are, from a logical point of view, se- 
lecting the specif ic  sets  from the environment S -  M upon losing 
other specific se ts .  We have here a description of a biological 
phenomenon in topological terms. Or we may put it t h i s  way. If 
we make the " e l e m e n t s "  of an organism, which must be los t  in 
order to make a select ion from the environment, correspond to the 
,8 - points of the A, h', or h'" ~- space and the se lected " e l e m e n t s "  
to the ~ - p o i n t s ,  then the logical  relation between the loss  of 
" e l e m e n t s "  by an organism and its select ion act ivi t ies  are mapped 
isomorphically on the topological relations between the cxand fl 
points. 

In an organism the loss of an " e l e m e n t "  is compensated by the 
addition of the properly se lec ted  " e l e m e n t s "  of the environment. 
If, after we remove a f l - p o i n t ,  we add the corresponding r 
points, we compensate by this addition for the loss of the ~ -  
point and restore the original connectedness of the ~, k' ,  or ) t " -  
space.  

Now, to continue the i l lustration,  let  us just  for a moment imag- 
ine that the A, A" and A " - s p a c e s  would be used not only for il- 
lustration, but so to say, taken seriously.  

The select ion of " e l e m e n t s "  of the environment through loss 
of some of its own " e l e m e n t s "  is a basic property of the organism. 
We have  seen that an intersect ion of two k, h',  or k " - s p a c e s  is 
not a connected space,  and it does not possess  the property of se- 
Iection which the A, k',  and k " - s p a c e s  possess .  Le t  us trans- 
late the theorem into biological language. It reads thus: the com- 
mon part of tlyo organisms is not an organism and does not i t se l f  
se lec t  the proper " e l e m e n t s "  from the surroundings. Since a cell 
is an organism, we may restate  the above as follows: The com- 
mon part of two cel ls  does not possess  the abi l i ty  of se lec t ing 
proper elements from the environment by losing some of its own 
elements.  
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But the only poss ib le  common part of two cel ls  could be the 
cell membrane which separa tes  two adjoining cel ls .  Hence from 
topological  considerat ions,  we reach the biological  conclusion that 
the cell  membrane in such ca se s  does not make a se lec t ion of 
proper material from the environment in a manner which the cell as 
a whole, and poss ib ly  some of i ts  parts ,  do. Whether this is true 
or not, i t  is certainly an experimentally verif iable conclusion.  

The above example i l lus t ra tes  how the approach sugges ted  in 
this paper, if properly made, can lead to verif iable predictions.  

Very many object ions  can be raised agains t  the X, )~', and h " -  
spaces .  Inasmuch as they are used only for i l lustration, we do not 
need to worry about the numerous poss ib le  object ions.  One point, 
however, may be mentioned perhaps as poss ib le  suggest ion for the 
directions future research may take. 
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F I G U R E  6 .  

The number of " e l e m e n t s "  of which an organism is composed is 
very large but finite, whereas the number of points in the h, h', and 
h " - s p a c e s  is infinite. Moreover in the h -  space  the cardinal 
number of all points is l~, while the cardinal number of ~ -  and 
c~-poin t s  is l~ 0. We may say  that only an infinitesimal fraction 
of the total number of points of the h - space  take part in the " s e -  
l ec t ion"  process .  This is certainly not so in a biological  system. 

It seems to be desirable to study spaces  with a finite number of 
points. As an example used again for i l lustration purposes only, 
let  S be the space  formed by the points  in a plane arranged in an 
infinite square lat t ice (Figure 6) and in which the neighborhoods 
are defined as follows: the neighborhood of a point cons i s t s  of 
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that point and of the four adjacent  points which lie on the lines 
of the l a t t i c e .  Thus the neighborhood of point 1 in Figure 6 is 
const i tuted by the points 1, 2, 3, 4, 5. With neighborhoods so de- 
fined, S is connected because  there ex is t s  no partition S = A]B 
such that A n B = A • B = 0. The subspace  M, which cons i s t s  of 
the points marked by heavy dots,  is a lso  connected and has a 
finite number of points. The removal of point ~ l  from M makes the 
points ~1 and 0c 2 of S - M acquire the property P; while the removal 

t and 2 of S - M  acquire the of the point f19 makes the points (z9 ~2 
property P .  More complicated spaces  of that kind can be readily 
constructed.  
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F I G U R E  7. 

The following las t  example shows the poss ib i l i ty  of having 
spaces  which, as a result  of a se lec t ion  followed by addition of 
t he  se lec ted  " e l e m e n t s "  (assimilat ion in biology), may duplicate 
themselves. The biological in teres t  of such spaces  is quite ob- 
vious.  

Consider in S = E 2 the space  M shown in Figure 7a. From the 
point of view of combinatorial topology, M is a tree with the bi- 
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centers  b and e (Konig 1936, p. 64). We shall  consider it, however, 
from a se t  topological  point of view as a subspace  of S = E 2. M is  
irreducibly connected about its subspace  

C = A u B ,  (4) 

where A and B denote respec t ive ly  the segments ac and dr: 

A = ac; B = df  . (5) 

Hence the segment be, which we shall denote by D, may be defined 
a s  

o = M - c .  (6)  

The end points of O are cut  points of A and B respect ive ly .  They 
divide A and B each in two components: A', A" ,  and B',  B " .  If we 
remove from M either a point or a nondegenerate subse t  of 0 which 
does not contain the cut points of A and B, then M l o s e s  its con- 
nec tedness ,  and any Jordan arc in S = E 2 which joins the se ts  A 
and B has the property P.  In Figure 7b, line b'e" has, for example, 
the property P.  

Let  us, however, remove from M two points fia and f~2, which 
are not end points of M and which are contained in A', A" ,  B',  or 
B " ,  and such that fia and f~2 are not .contained both in the same 
one of the above four subspaces .  Thus in Figure 7c, f~x is con- 
tained in A" ,  f~2 in B'; in Figure 7d, fix is contained in A', f~2 in 
B' .  The removal of f~l and fi2 from M separa tes  M into three com- 
ponents,  one of which contains D [expression (6)] and the other 
two which do not contain it. Denote the first  component by M', the 
other two by M'" and M'" .  The component M" is homeomorph with 
M; the components M'" and M"" are not. 

Now, after the removal of fll and f12 from M, any Jordan arc in 
S = E 2 which connects  M'" and M"" and whose end points are cut 
points of M'" and M"" has the property of reconsti tut ing a second 
space  M1, which is homeomorph to M. After performing thus a 
specif ied operation, which involves the loss  by M of two properly 
specif ied points f~1 and fi2 and the addition of a Jordan arc from a 
se t  of arcs se lec ted  by the loss  of fix and fi2, we now have two 
spaces  M" and Mx, each homeomorph to the original M. In Figures 
7c and 7d such arcs are, for example, b'e ' .  

Thus, removal of two properly located points from M imposes on 
certain Jordan arcs of S - M the property of duplicating the space  
M. The process  can be repeated again with M" and M 1 indefinitely. 
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It is true that the sizes of the subspaces which correspond to A', 
A"~ B', and B'" decrease with each "reproduction." However, we 
are interested here not in the metric, but only in the topological 
properties. And topologically all the "daughter spaces"  are ho- 
meomorph to the original space. Moreover, in spite of the reduc- 
tion in size, the cardinal number of the points contained in the 
"daughter spaces"  is always ~. 

By study of appropriate topological spaces, it thus may be pos- 
sible to map the properties of the simplest conceivable organism 
onto a proper topological space. Using then the principle of bio- 
topological mapping, it may be possible to construct, by proper 
transformations, more complicated spaces, which map continuously 
in a many-to-one manner on the simpler space, and the study of the 
topological properties of those spaces may lead us to the discovery 
of new biological properties of multicellular organisms. 

Continuing our fantastic excursion into the possible future of 
topological biology, we shall now take a look at another branch 
of topology which, perhaps, may also be destined to contribute its 
share to mathematical biology. 

With the present-day reduction of physics to geometry, the phys- 
ical events are represented geometrically by the intersections of 
the world lines of different particles. The metric characteristics 
of those intersections, or as the physicists call them, space-time 
coincidences, describe also the metric characteristics of the phys- 
ical events. Inasmuch as an organism is composed of physical 
particles and obeys the laws of physics, the living phenomena are 
also representable by the intersections of world lines of the par- 
t icles of which the organism is built. However, the characteristic 
and basic properties of life being of a relational character rather 
than of a metric one, it is the topological relations between the 
intersections of world lines that are important now. The branch of 
topology which comes close to the study of such types of relations 
i s  the theory of knots (Reidemeister, 1932) and especially its sub- 
division, E. Artin's theory of braids (Artin, 1925). 

Artin studies braids in a three-dimensional space, but an ex- 
tension to four dimensions seems to be natural and worth trying. 
Since again we shall use here some elementary notions of the 
theory of braids only for purposes of illustration, we shall confine 
ourselves to the three-dimensional case, studied by Artin. In fact, 
we shall consider even for simplicity only a degenerate two- 
dimensional case. 
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A braid is bas ical ly  a se t  of lines interwoven in a regular man- 
ner. Consider the three lines of Figure 8. Le t  them first  run 
parallel and then, at  a certain point, begin an orderly interweaving. 
Such an interweaving const i tu tes ,  as Artin has shown, a group. 
The elements of that group are defined in the following manner. 

(2 b 

G2 

G~ 
( 

~2 

G, 

G~ 

r d 
F I G U R E  8.  

Let  us number at any place of the braid the lines from left to 
right, I ,  2, . . . .  If the first  line crosses the second over it, as in 
the upper crossing of the Figure 8a, we denote this process by a~. 

If the first line crosses the second underneath, as in the second 
crossing in Figure 8a, we denote this process by a~ I. Clearly 

-i is the inverse of al, for, as seen from Figure 8a, a success ive  O I 

application of the two, ala-11, results  in the reestabl ishment  of a 
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si tuation which is homotop to the init ial  s i tuat ion.  It is seen from 
Figure 8a that  a mere homotopic deformation reduces 8a to jus t  a 
se t  of parallel lines which do not cross at  all. In a similar manner 
the relation between the second and the third line are denoted by 
a 2 and a~ 1, etc. If there are n l ines,  the number of a ' s  is n - l ,  
the las t  being a 1 , which describes the relation between the 
( n - 1 ) s t  and nth l ines.  The a ' s  consti tute the generators of a 
group, the braid group, and every braid can be described as a 
power of proper products of a ' s .  Thus what Artin refers to gra- 
ciously as the ordinary ladies '  braid is given by 

(o,o~1)m. (7) 

That this is so is intuitively clear from Figure 8b. 
Figure 8c represents a braid; the group-theoretical expression 

for which is 

(~,~o~')m, (8) 

while Figure 8d represents a braid 

(a, a2as) m . (9)  

The two examples show that the braid group is noncommutative. It 
is readily seen that braids of any complexity can thus be repre- 
sented.  

We shall considerably simplify the examples to follow by con- 
sidering a special  case,  d iscussed by Artin, namely, when it does 
not matter whether one line is above or below the other. Then the 

i ,  a~i ' s  are the same as a k s. The braid of Figure 8b now becomes 

(o, o2) (1o) 
and is represented in Figure 9. 

Artin considers all the lines of a braid as indistinguishable, 
which is the c a s e  when they are just abstract lines. If, however, 
each line represents the world line of a particle,  then if the par- 
t ic les  are dist inguishable physical ly ,  the l ines must be distin- 
guishable also. In a drawing we may represent them in different 
colors, or by full, broken, and dotted lines,  etc. 

A braid may be deformed homotopically and the metric relations 
in it, such as the actual  distance along a line between points of 
intersection,  will change. But the topological properties expressed 
by ( 7 ) -  (10) remain invariant. It  is, therefore, rather natural to 
consider the relational properties of the organism as corresponding 
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to the topological  properties of the four-dimensional braid of world 
l ines of the par t ic les ,  of which the organism is composed. A braid 
being a specia l  kind of a knot, i t  may well turn out to be l i terally 
true that life is a knotty problem! 

It is ,  however, readily seen that the concept  of an organism as 
a simple braid of world lines is utterly inadequate.  An organism 
undergoes continuous catabolism and anabolism. While the chemi- 
cal consti tution of an organism may remain relat ively constant ,  no 
const i tuent  atom or molecule remains in the organism for any 
length of time. Some molecules are continuously lost  and are jus t  
as continuously replaced by other similar molecules.  In terms of 
a braid, we have a braid which is constant ly unwoven and rewoven 
from other threads,  something like a "Be lg ian  l a c e . "  This ,  at  
f irst  glance,  seems to complicate the topological  problem tremen- 
dously.  Actually it does not. 

At any point of a braid we may "pu l l  ou t"  a thread or line homo- 
topical ly without disturbing the topological  properties of the braid. 
Thus the braids of Figures 8b and 10a are topological ly the same, 
being homeomorph. We may make the loop larger and larger, and 
in the limit move the point a (Figure 10a) into infinity, still  pre- 
serving the topological  properties.  In the limit we obtain the situ- 
ation shown in Figure 10b, where the braid lo ses  a line (/i) and 
gains one (/2)" This can be done to any line of the braid at any 
point, except  a point of intersect ion.  In a finite four-dimensional 
world even the removal of the point a to infinity is not necessary .  
A mere removal to a suff icient  d is tance  is enough. 

Thus in our following d iscuss ion  we may disregard the constant  
unweaving and reweaving of the braid and consider  the c l a s s i ca l  
form of Artin. 

An organism usual ly  grows when it ass imi la tes  more molecules 
than it loses  to the environment. In terms of a braid this means 
that more lines are woven in than are unwoven. In the si tuation 
shown in Figure 10, for each line lost  there is one gained. We 
need, therefore, consider only the weaving in of the excess  l ines.  
This can be done in many different ways.  Since, as  we said above, 
the lines now are all p h y s i c a l l y  dis t inguishable,  we may, for ex- 
ample, postulate  that every line which is at any given posit ion on 
the outside of the braid " c a t c h e s "  a similar line unless  there are 
already two lines of that kind in the braid. Such a "~aught"  line 
then remains adjacent  to the other, making a "double  thread" of 
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identical  lines until all lines are duplicated. The process is il- 
lustrated for three lines in Figure 11. At a the full and the dotted 
lines each " c a t c h "  a similar one; at  b the broken line which here 
becomes an outside line, " c a t c h e s "  a similar line. After those 
two steps,  all lines are duplicated. If there are more than three 
l ines,  there will be more than two steps,  and the number of s teps,  
in general, depends on the structure of the braid, that is, on the 
structure of its group. Each time a new line is woven in, in this 
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way, a new generating element a is introduced into the braid group. 
When each line is duplicated, we must make some further assump- 
tion as to what happens. For example, we may assume that, from 
that  moment on, the braid is determined by the group of all 6! 
permutations of the six threads of which it now consis ts ,  the 
permutations being obtained by a prescribed sequence of trans- 
posit ions.  After a definite number of steps the si tuation will be 
reached in which we shall  have the sequence: full, broken, dotted; 
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full, broken, dotted. In other words, the original braid is now du- 
plicated in two similar ones. From this moment the interweaving 
may continue only amongst the f irs t  three and the second three 
l ines,  and thus the process  begins all over again with two identi- 
cal braids instead of one. We have here a topological  model of 
the duplication and continued multiplication of an organism through 
assimilat ion.  

Instead of the above assumptions about  the method of " c a t c h i n g "  
and weaving in of new lines,  we could have made an infinite num- 
ber of different ones which lead to an eventual duplication of the 
braid. The important part is that each se t  of assumptions leads,  
if t ranslated into biological  terms, to different verif iable conclu- 
s ions.  The number of s teps  between the beginning of the process  
and the duplication of every line depends,  as we have said, on the 
assumption made. So does the number of s teps between stage c of 
Figure 11, and the s tage at which the actual  multiplication begins.  
But each s tep  would correspond to some biological  process ,  s ince  
each s tep  represents  an intersect ion of two world l ines ,  a space  
time coincidence,  that  is a phys ica l ly  observable  phenomenon. 
Thus the number of physica l ly  observable  p rocesses  between the 
different s tages  of the life cycle  of an organism are predicted by 
the topological  assumptions made. 

Instead of assuming that the interweaving in separate  groups of 
three begins only when the si tuation 

full, broken, dotted; full, broken, dotted (11) 

is reached,  we may consider the c a s e  in which it begins at the 
s tage 

full, full, dotted; broken, broken, dotted. (12) 

This s tage will a l so  eventually be reached after a definite num- 
ber of s teps .  We have now a ca se  which biological ly  corresponds 
to an unequal division with differentiation. One of the new braids 
has now an exces s  of full l ines,  the other an e x c e s s  of broken 
lines.  We may now consider braids of second order, in which the 
role of l ines is played by the braids of the first  order. We may, in 
particular, consider the case  in which a braid with an excess  of 
full l ines interweaves with one that  has an exces s  of broken l ines,  
in the same way as the full line interweaves with the broken line 
in a f irst  order braid. In the second-order braid, which may repre- 
sent  a multicellular organism, some of the individual first-order 
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braids will stand to each other in the same relation as their cor- 
responding components (lines) stand to each other in the first- 
order braid. But this is jus t  the kind of relation which is found in 
biology (Rashevsky: 1955c). 

In a braid of the second order there may also be a sort of divi- 
sion of functions. In two dimensions only two first-order braids 
will be "on  the ou t s ide . "  Only those two can " c a t c h "  new lines 
from outside,  and, as in the case of Figure 11, those new lines may 
"move inward" by a process of interweaving. When such a line 
has moved completely inward so as to become adjacent  to an in- 
ward second-order braid, only then can the line be woven into that 
inner second-order braid. 

Thus the outer second-order braids may be said,  to use biologi- 
cal terminology, to specia l ize  in ingesting outside lines and to 
pass  them along to the inner braids. 

Again we repeat that all the above examples are not to be taken 
ser iously  in any way. They are used only to i l lustrate a point 
which is undoubtedly very  suggest ive for different possible direc- 
tions of future research both in mathematical biology and in pure 
mathematics.  The X - s p a c e s  seem to be new in topology; the  
theory of braids is an establ ished branch of the latter. As re- 
marked on p. 40, we cannot be sure that some already well de- 
veloped branch of topology does not carry in it  the solution of the 
problem of geometrization of biology. 

Should such a geometrization, as anticipated in this paper, ever 
become a reality,  it  will be the greates t  triumph of geometry and 
of pure mathematics in general. The doors to every science can 
then carry the inscription which appeared over P la to ' s  Academy: 

M~][ieL~ 0~y~6~LeTpLXO~ ~tO-tT60o 

This work was aided by a grant from the Dr. Wallace C. and 
Clara A. Abbott Memorial Fund of the University of Chicago. 
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