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A mathematical theory of the process of the exchange of substances 
between the blood in the capillaries of a homogeneous tissue and the extra- 
cellular space, and between the extracellular space and the cells is devel- 
oped. An ideal geometry of the tissue is assumed, based to some extent on 
recent anatomical work concerning the functional distinction between 
two types of capillaries, the arteriolo-venular and the true capillaries. 
Equations are developed relating the concentration in the arterial blood 
to the mean capillary concentration, the concentration at the waU of the 
capillary in the extracellular space, and the average concentration in the 
extracellular space, and also relating the cellular concentration to the 
average extracellular concentration. The solutions of the equations are 
given for certain special cases and numerical results obtained. I t  is shown 
that the average extracellular concentration is a sensitive function of the 
permeability of the capillary wall and also is strongly influenced by the 
diffusion coefficient of the extracellular space. Furthermore, it is shown 
that the speed with which the average extracellular concentration ap- 
proaches the steady state is largely a function of the permeability of the 
capillary wall. 

I. Tntroduction. Most ceils of organisms with closed circulatory systems 
must depend upon the system to bring to their local environments mate- 
rials necessary for their maintenance and to remove their diffusible prod- 
ucts from such environments. Since most cells are separated from the 
blood and lymph capillaries by a connective tissue matrix (Gersh, 1952), 
the efficiency of the supply and removal of substances (for any given ar- 
rangement of the capillaries) must depend partially on the characteristics 
of the ground substance of the connective tissue, and upon the amount of 
substance through which diffusion may occur, relative to the amount of 
fibrous and other material which is inert with respect to diffusion. 

The aim of the present work is to analyze the influence of the inter- 
stitial matrix and capillary permeability upon the exchange of substances 
between the cells and the blood. Many approximations and idealizations 
seem necessary to obtain results which may be compared with experiment. 
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However, as N. Rashevsky (1948) has pointed out in another connection, 
even if we knew exactly the geometry of a given tissue and knew precisely 
the blood flows, diffusion coefficients, etc. necessary for the calculation of 
the exchange relations, and could solve the exceedingly complex boundary. 
value problem so presented, the results would still be of limited usefulness. 
This is true because the geometry, etc. of the solved problem would be 
special cases of an almost unlimited number of possible geometries. The 
analysis which is developed here assumes as known certain tissue parame- 
ters and certain data concerning blood flow in the capillaries, which are 
known only inexactly, or not at all. However, these data seem necessary 
for a detailed study of the exchange relations and are definitely data which 
could be obtained by experiment. The need for such data may stimulate 
work aimed at obtaining them. But, even in the absence of exact measure- 
ments, certain relations become evident and certain tentative conclusions 
may be drawn. 

In the following, a brief discussion is given of the labile character of the 
tissues and of the extracellular matrix, then blood-tissue fluid exchange is 
described. Next, consideration is given to some experimental and theo- 
retical work on blood-tissue molecular exchange. This is followed by a 
consideration of the anatomy of the capillary bed. On the basis of the pre- 
vious discussion, a tissue model is then presented and equations governing 
the blood-tissue exchanges are formulated. Some applications of the solu- 
tions are considered, and a discussion of various implications of the results 
is given. 

H.  The extracellular matrix and tissue changes. I. Gersh (1952) has re- 
cently discussed the characteristics of the ground substance of the connec- 
tive tissue. The ground substance is shown to be labile, and its plasticity 
is related in some cases, to the action of certain connective tissue cells. 
Changes in the ground substance organization are shown to be related to 
tumor growth, regeneration, cyclic effects of endocrine glands, capillary 
permeability, immunological phenomena, and to calcification of cartilage, 
bone, and teeth. 

Other work (Ruzick, 1927; Hurst, 1933; Gellhorn and Regnier, 1936; 
Pearce, 1936; Lowry et al., 1942a, b, 1946; Horvath, 1946; Berg, 1947; 
Rhoades, 1948) indicates that the local environment of cells may change 
as a result of aging, tumor growth, regeneration and irradiation, and that 
these changes may in some cases be correlated with the rate at which cells 
may exchange substances with the blood. In this connection the work of 
L. Friedman and E. O. Kraemer (1930) on the diffusion of various sub- 
stances in gelatine gels may be mentioned. These workers found that the 
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magnitudes of the diffusion coefficients of several nonelectrolytes in a 
10% gelatine gel were only about one-half of their values in pure water. 

I I I .  Blood-tissuefluid exchange. E. H. Starling (1895-96) formulated the 
hypothesis that the exchange of fluid between the blood and the inter- 
stitial spaces depends of the balance between the hydrostatic pressure 
excess of the blood, which tends to filter fluid into the tissues, and the col- 
loid osmotic pressure excess of the blood, which tends to filter fluid from 
the tissue into the blood. The mechanism depends on the relative imper- 
meability of the capillary wall to the blood colloids, and on the low hydro- 
static pressure of the extracellular fluid. Both points are confirmed ex- 
perimentally (Pappenheimer et al., 1948, 1951; Field et al., 1932; McMas- 
ter, 1946). The work of E. M. Landis (1927, 1934, 1946), J. F. Danielli 
(1940), and J. R. Pappenheimer et al. (loc. cir.) has confirmed the details 
of Starling's hypothesis. 

While Starling's hypothesis, as discussed above, accounts for blood- 
tissue fluid exchange, and, together with a consideration of the lymphatic 
system, adequately accounts for the maintenance of blood volume, etc., 
the exchange of many substances between the blood and the extracellular 
spaces occurs so rapidly that only diffusion through the capillary wall 
seems to provide a mechanism which could give the required speed. 

I V .  Blood-tissue molecular exchange. That the process of filtration 
through the capillary wall of substances in solution {n the blood plasma is 
not rapid enough to account for the observed rate of transfer across the 
wall follows directly from the estimates of the maximum filtration rates 
observed. Pappenheimer et al. (1951) calculate that the ratio of the rate of 
transfer by diffusion to the rate of transfer by filtration during very rapid 
filtration is about 116 for glucose, 83 for raffinose, and 27 for inulin, when 
the extracellular concentration is zero. The ratio becomes equal to unity 
only when the ratio of the concentration in the extracellular space to the 
concentration in the capillary is about 0.99 for glucose and raffinose and 
0.96 for inulin. Furthermore, the work vf C. Hyman et al. (1952) provides 
direct evidence that even when a tissue is becoming edematous the rate of 
capillary exchange is not measurably affected. 

Much experimental work has been devoted to the features of blood- 
tissue exchange (Dominguez et al., 1935-36; Manery et al., 1939a, b, 
1941a, b; Hevesy and Jacobsen, 1940; Hahn and Hevesy, 1941; Gellhorn 
et al., 1944; Kruh~ffer, 1946a, b; Flexner et al., 1948; Morel and Marois, 
1949; Jones, 1951; Pappenheimer et al., loc. cir.; Renkin, 1952). 

The experimental work mentioned above, with the exception of that of 
Pappenheimer et al. and of Renkin, was done with intact animals, and the 
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exchange relations observed are greatly complicated by the fact that vari- 
ous organs receive in any time interval very different amounts of blood per 
unit volume of the organ. Thus H. B. Jones (lot. cir.) gives as the volume 
of blood per unit volume of tissue per minute received by the various or- 
gans of a man of approximately 70 kg. weight: thyroid, 3.0 to 10.0; kidney, 
5.0; brain, 0.50; marrow, 0.15; liver, 1.10; muscle, skin, fat, and bone, 
about 0.026. The work of Gellhorn et al. (1944) mentioned above also in- 
dicates that an injected substance is removed from the blood by the or- 
gans with the larger perfusion rates and restored to the blood as the sub- 
stance is gradually transferred to the organs with the lesser perfusion 
rates. I t  seems apparent from this data on the blood perfusion rates of 
various organs that the large differences in these rates may mask changes 
due to other differences between the tissues of various organs. In experi- 
ments in which the blood concentration of an injected substance is fol- 
lowed in an intact animal such seems to be the case. Work such as that 
of Pappenheimer et al. (loc. cir.), which partially avoids these complica- 
tions by perfusing a relatively homogeneous tissue, may provide data re- 
flecting more clearly the influence of the capillary permeability and the 
extracellular matrix upon the blood-tissue exchange relations. 

The experimental data on blood-tissue exchange is usually described 
quite accurately by a sum of exponential terms, with two such terms be- 
ing sufficient in many cases, although occasionally one is adequate (Flex- 
ner et al., loc. cir.), and sometimes as many as five terms are needed (Jones, 
loc. cir.). 

The time constants of the exponential terms have been interpreted in 
terms of total capillary wall area, and the over-all permeability coeffi- 
cients of the capillary wall, neglecting the distribution process in the tis- 
sue, and frequently neglecting the differences in the blood perfusion rates 
of the various tissues. Thus T. Teorell (1937a, b) reviewed the work of 
several earlier investigators and provided a theoretical model for blood- 
tissue exchange which does not distinguish between tissues with respect to 
their perfusion rates. 

However, the work of I. Bloch (1941, 1943) and of R. Smith and M. 
Morales (1944a, b) and of M. Morales and R. Smith (1944, 1945a, b, 1948) 
does take into account in a detailed fashion many important tissue param- 
eters and provides a rational interpretation of the experimentally deter- 
mined coefficients. The work of Smith and Morales particularly seems to 
provide a rationale for the investigation of the exchange of lipid soluble 
substances which takes into account the most pertinent physiological fac- 
tors. 
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The work of N. A. Michels (1936), B. W. Zweifach (1936-37, 1939, 
1940a, b, 1950) and R. Chambers and B. W. Zweifach (1940, 1944, 1946, 
1948, 1949) on the functional anatomy of the capillaries has made clear 
that the capillary bed of most tissues is composed of two types of capil- 
laries, whose functional significance must be taken into account in any 
complete theory of the blood-tissue exchange. 

V. The capillary bed. The work of Chambers and Zweifach (loc. cir.) has 
disclosed that, functionally, the capillary bed consists of central channels 
with side branches. Starting at the smallest arteriole, the central channel 
is composed of a metarteriole, with a discontinuous array of typical muscle 
cells along it, imparting vasomotion to the vessels which are about eight 
to fifteen microns in diameter. Next comes the proximal portion of the 
arteriolo-venular or a-v capillary with atypical muscle cells which cause 
changes in the diameter of the a-v capillary only under abnormal con- 
ditions. The distal portion of the a-v channel is invested with a coat of 
connective tissue. These a-v capillaries fuse to form nonmuscular venules 
about fifteen to twenty-five microns in diameter; these venules have a rela- 
tively heavy coat of investing connective tissue. Branching off the proxi- 
mal muscular portion of the central channels are precapillaries which have 
a proximal muscle-invested portion about twenty to thirty microns in di- 
ameter. The true capillaries anastomose freely and return to the distal por- 
tion of the a-v channels or to the nonmuscular venules. The angle at which 
the first of the precapillaries branches from a given a-v capillary is more 
than ninety degrees. Later branches leave at successively smaller angles, 
and the true capillaries return to the a-v channels at a very slight angle. 
The junction of the a-v and precapillaries is marked by endothelial folds 
which act as sphincters, apparently controlling the flow into the true 
capillaries. The true capillaries show only passive changes in diameter, 
which result from changes in the blood flow through them. Figure 1, based 
on the work of Zweifach, gives a schematic representation of the capillary 
anatomy. 

The a-v channel normally has a continuous rapid blood flow through it, 
subject to recurrent vasomotion which consists of an irregular series of 
partial contractions of the metarteriole and the precapillary sphincters at 
intervals varying from thirty seconds to three minutes. Even when active 
flow through the true capillary is cut off, the capillary still has a fluid 
in it .  

The angle of branching of the precapillaries from the central channel, 
and the relatively large diameter of the proximal portion of the precapil- 
lary, is apparently such as to maintain within the true capillary a more or 
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less uniformly low hydrostatic pressure; perhaps less, for the greater por- 
tion of its length, than the colloid osmotic pressure of the blood. 

Thus Zweifach and Chambers accept the general concept of Starling's 
hypothesis--that filtration from the capillaries occurs where the hydro- 
static pressure exceeds the colloid osmotic pressure--but shift the locus of 
action so that filtration from the a-v capillary is believed to occur along 
most of its length, and absorption from the tissue spaces occurs along most 
of the length of the true capillary. 

The ratio of the number of true capillaries to the number of a-v capil- 
laries is a tissue characteristic and varies from less than 1 in the skin to 
more than 10 in the skeletal muscle (Zweifach, 1936-37). 

TRUE VENULE 
ARTERIOLE CAPILLARIES 

FIGURE 1. Schematic diagram of capillary bed 

The unselective permeability of the capillary wall in most regions of the 
body is adequately explained by the "pore" theory (Chambers and 
Zweifach, 1947; Zweifach, 1940b; Pappenheimer et al., loc. cir.). According 
to this, the endothelial cells of the capillary secrete a cement substance, 
which binds together the endothelial cells and constitutes a matrix be- 
tween them which is porous. The matrix permits the passage of low molec- 
ular weight substances with little hindrance. A decrease in the calcium ion 
content or the pH of the perfusing fluid softens the cement and enhances 
its dissipation, and thus results in an increase in the rate of filtration and 
diffusion from the capillary. In addition to the layer of endothelial cells, 
the capillary wall has an endocapillary layer, which is very thin and non- 
cellular, lining the inner surface. This may be a layer of adsorbed protein 
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(Zweifach, 1940b). A closely adhering, investing layer of argentophil 
fibrils, the pericapillary sheath, covers the outer surface of the capillary. 

P. Rous et al. (1930, 1931), F. Smith et al. (1931, 1932), and Zweifach 
(1940) have observed what they interpret as an increase in the capillary 
permeability from the arterial to the venous end. Danielli and Stock 
(1944) have disputed the interpretation but not the observation. How- 
ever, the reasoning of Danielli and Stock does not consider the functional 
anatomy of the capillary bed as outlined above, and hence must be ques- 
tioned. 

11I. A tissue model for blood-tissue exchange. On the basis of the foregoing 
discussion, an idealized model of a tissue will be constructed and the ex- 
change between the blood and the tissue in such a model will be consid- 
ered. The considerations are restricted to the exchange of substances which 
are lipid-insoluble. Substances which enter the red cells in appreciable 
amounts, which are appreciably adsorbed on blood proteins, or which un- 
dergo chemical changes at appreciable rates in either the blood or the extra- 
cellular spaces--all such substances require special considerations which 
would considerably complicate the equations to be developed and hence 
are excluded from the present treatment. Lipid-soluble substances may 
pass through the endothelial cells of the capillaries and also through the 
walls of the smaller arterioles and venules. Hence such substances are also 
excluded. The model applies only to a homogeneous tissue whose blood 
supply and ratio of extracellular to cellular phases are everywhere con- 
stant.. The length of all capillaries, both a-v and true, will be taken as 
equal everywhere. The radii of the capillaries, and the number and loca- 
tion of the active capillaries will be assumed constant during the process 
considered. 

Since the capillaries form an irregular network with the arterial end of 
one capillary likely to be adjacent to the venous end of another, only vari- 
ations of concentrations in the extracellular spaces in a direction normal 
to the capillary axis are considered. 

Furthermore, the filtration rate along the capillary will be taken as con- 
stant, positive along the length of the a-v capillary and negative along the 
length of the true capillary. This is perhaps partially justified by the ob- 
servations of the gradient in capillary permeability mentioned above. 
Thus if the capillary becomes more permeable toward the venous end, the 
rate of filtration through the wall would be greater at the venous end, if 
the pressure were equal to that at the arterial end. But the pressure is 
lower, and hence, as an approximation, the filtration rate along the length 
of the capillary will be taken to be constant. 
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The number of parameters which must be taken into account is so 
large and the number of combinations of these occurring in the equations 
to be developed is so great that the Glossary of Symbols appended at the 
end of this work (see p. 258) may assist the reader in interpreting the 
equations. 

Distances along both the a-v and true capillaries will be designated by 
z. The length L is defined as the average functional length of the a-v 
capillaries, i.e., the length along which exchange between the blood and 
tissue may occur at an appreciable rate. At the arterial end z = 0 and at 
the venous end z = L .  The true capillaries form an irregular anastomosing 
network in which the length of any one capillary is not readily defined di- 
rectly. But the ratio of the total length of all active true capillaries in a 
homogeneous tissue, i.e., those through which blood is flowing, to the total 
length of all a-v capillaries in the tissue could be determined. This ratio, 
which will be designated by A, and called the activity ratio, is assumed to 
be known. Then in our model we replace the actual distribution of capil- 
laries by arrays consisting of one a-v capillary, of length L, and A true 
capillaries also all of length L, all in parallel. In the model, z = 0 where 
blood enters the true capillaries, and z = L where blood flows out of them. 

We asssume that the mean velocity of the blood entering the a-v capil- 
laries in the homogeneous tissue is vl(0) and that entering the true capil- 
laries is v~(0). Since we consider only substances in solution in the blood 
plasma, it is convenient to express the blood concentrations in terms of 
concentrations in the red cell-free, protein-free fraction fx(z)of the total 
blood volume which is in the a-v capillaries at any point z along the length 
of the capillary. Letf~(z) be the corresponding fractions of the blood in the 
true capillary. Since the blood entering the two types of capillaries may 
have different numbers of red cells per unit volume, even fl(0) and fi(0) 
may not be equal. Let rl and r2 be the radii of the a-v and true capillaries, 
respectively. 

We will assume that the bulk of the material filtered into or out of the 
capillaries is water, so that the changes in the volume of an element of 
blood or perfusate are due solely to water filtration. The product of the 
filtration constant by the net differences between the hydrostatic and 
osmotic pressures acting across the wall of the a-v capillary will be de- 
noted by P1. The corresponding quantity for the true capillary will be 
denoted by Ps. I t  is assumed that Px > 0 and P~ < 0 for 0 < z < L, 
where L is the length of the capillary. This assumption is in accordance 
with the concept of Zweifach and Chambers, discussed earlier, that filtra- 
tion from the a-v capillary occurs along most of its length, and that ab- 
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sorption of fluid from the tissue spaces occurs along most of the length of 
the true capillaries. 

Then the material balance equation for any element of length dz and 
volume ~rr~dz along the a-v capillary is: 

7r r~d/1 ( z )  d z = [ , r r lA(z)  v~(z) - , r r ~ A ( z + d z )  v l ( z+dz )  
(1) 

--  27rrlPld z] dt . 

The term on the left-hand side of the equation gives the accumulation of 
the fluid in the volume ~rr~dz, and the terms on the right are, in order, the 
amount of fluid entering the element, the amount leaving the venous end, 
and the amount filtering through the capillary wall. 

Simplifying (1) and using Taylor's theorem, we have 

O f l. = c9fl vl 2P1 
(2) 

Ot 0 z rx 

We will consider only the case where filtration is constant with respect to 
time. Then the solution of (2) is 

f x ( z )  v x ( z )  = fl(O) vl(0) -- 2Plz.  (3) 
r l  

Thus, according to the assumptions made, an element of fluid moves more 
slowly as it approaches the venous end of the a-v capillary. Similarly, we 
find for the true capillary, 

f 2 ( z )  v s ( z )  = f2(0) v2(0) - - 2 P 2 z .  (4) 
1" 2 

We now consider the variation along the length of the a-v capillary of 
a substance in the fluid of the blood. Let Kl(Z,t) be its concentration in the 
cell-free, protein-free fluid. The amount entering an element of volume of 
an a-v capillary, ~rr~dz, in time dt is 

z r r ~ f l ( z )  v x ( z )  K l ( z ,  t ) d t .  (5) 

The amount leaving the venous end of the  element is 

~rr~fl(z+dz) v l ( z + d z )  Kx ( z+dz ,  t) dr. (6) 

The net amount leaving through the capillary wall is 

2 ,r r 1 [ ( k 1 + d i p  ~ ) KI  ( z, t) -- k;E~ ] d zdt  , (7) 
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where kl and kl are, respectively, the average permeability coefficients for 
exit and entrance of the substance through the capillary wall (these co- 
efficients may be different in the blood vessels of the brain and other spe- 
cial tissues), d, is the distribution ratio giving the ratio of the concentra- 
tion of the substance in the filtrate to the concentration in the protein- 
free plasma, and E~ is the mean concentration of the substance in the 
extracellular fluid at the wall of the a-v capillary. The amount of the sub- 
stance accumulating in the element of volume is 

2 7rrldzd Kx ( z, t) .  (8) 

Since we have asumed that no inactivation or chemical changes occur in 
the blood, the material balance requires 

lrr~d zd K, ( z, t) 2 = [~rrl.f,(z) Vl(Z) K , ( z ,  t) 

- - l r r ~ f x ( z + d z )  v , ( z + d z )  K l ( z + d z ,  t) ]dt (9) 

-- [ 2~rr 1 (k I + diP,) K 1 ( z, t) -- 2~rrlk~E',] d zdt . 

Simplifying this, we have 

0 Kx 
d z - ~ i - =  f l ( z )  v , (z )  K l ( z ,  t) - - / t ( z + d z )  v l ( z + d z )  

(lo) 0 9 
dz .  

Upon using Taylor's theorem and (3) we finally obtain 

OK, O K , +  2 ( p _ d ~ P _ k , ) K l + 2  k~E~(t) (11) 
O t  - -  f l ( z )  VI(Z) O Z  r-~x 

Essentially the same considerations apply to the true capillary, except 
that the filtration here is assumed to occur from the tissue into the capil- 
lary. Hence the net amount of the substance leaving through the wall of 
the true capillary in time dt is 

27rr 2 [ k~K 2 ( z, t) - (k~ -- d~P~)E~ (t) ] d zdt . (12) 

Here k o and/~ are the average permeability coefficients for exit and en- 
trance of the material through the true capillary wall, d2 is the distribution 
ratio of the filtrate, and E~ is the mean concentration outside of the wall 
of the true capillary. Thus; by the same reasoning that produced equation 
(11), we obtain an equation for K2(z,t). This is 

OK2 OK2+ 2 ( p  2 . 
Ot -- f2 (z) v,(z)--~-z- -~2 2--k2) Ks+ (k~--d,P,)E' .( t)  (13) 
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We have neglected the radial concentration gradient in the capillary 
since it is likely to be very small. 

We now consider the concentration of the substance in the extracellular 
and cellular phases. We use the previously defined activity ratio A and 
assume that each a-v capillary is surrounded by a cylinder of tissue of 
average radius AR. The average extracellular concentration in this cylin- 
der will be called E1 and the average intracellular concentration in the 
cells of this cylinder will be called C1. Similarly we assume that each of the 
true capillaries in our model is surrounded by a cylinder of tissue of aver- 
age radius R, with an average extracellular concentration E~ and an aver- 
age intracellular concentration C2. If the number of a-v capillaries in an 
arbitrary volume V is N, and if we know A, L, and N, then the radii AR 
and R are given by the requirement that 

V = [A~R~+AR~]TrNL-bB=TrR2LNA ( A + l )  + B ,  (14) 

where B is the volume occupied by the blood vessels larger than capil- 
laries. The volume B is not likely to exceed about seven per cent of the 
total volume of any tissue. According to these definitions, AR + R is an 
approximate measure of the average distance between a-v and true capil- 
laries. 

We will also assume that the amount of material removed from the tis- 
sue by the lymphatic system is negligible; hence the considerations are 
restricted to tissues in which the lymphatic drainage during the time con- 
sidered is very small compared to the blood flow. 

The gradient of concentration of the material in the extracellular phase 
at the surface of the a-v capillary is approximately (cf. Rashevsky, 1948, 
pp. 15-23) 

2 (g~--E,) (15) 
AR 

where A R/2 is the approximate distance between the a-v capillary and the 
site where the true concentration may be supposed to be about equal to 
the average concentration. Then at the wall of the a-v capillary we have 

(E~--El) 2Vgl (16) 
[ (k l  + d , e  1) k E' l = A R  ' 

where K.~ is the mean concentration in the protein-free plasma, D is the 
diffusion coefficient in the substance of the extracellular space, g is a factor 
given by the ratio of the cell-free area through which diffusion may occur 
to the  total area (normal to the gradient of the concentration), and l is the 



240 GEORGE W. SCHMIDT 

ratio of the shortest distance between two points in the tissue to the dis- 
tance which must be traveled between the two points without crossing any 
cell walls. The equation implies that the speed of diffusion in the extra- 
cellular space is very great relative to the speed of transport through the 
walls of the cells. Similarly, at the true capillary wall, we have 

[k,K=2-- ( k '  2 -- d2P~) E ~1 = (E' 2 -- E~) 2 D gl R (17) 

The amount of the substance flowing into the cells in the region of the 
a-v capillary in time dt is approximately 

r (A  2R* -- r~) [ h ie  1 - -  h,C~ ] ~ d  zd t ,  (18)  

where hi and h~ are permeability coefficients for entrance to and exit from 
the cells, s/v  is the cell surface to volume ratio, and b is the fraction of the 
extravascular space occupied by ceils. The expression implies that the 
speed with which the substance distributes itself inside of the ceils is very 
great relative to the rate at which it crosses the cell wall. The amount of 
the substance flowing from the region surrounding the a-v capillary into 
the regions surrounding the true capillaries is given approximately by 

2 w A R  
(E, --E2) 2 D gl A----R --b----R d z dr. (19)  

Here 
2 (El--E2) 

A R  W R  

is the approximate gradient at the boundary of the region and 2 ~rARdz 

is the approximate area normal to the gradient through which flow must 
occur. 

The average net amount entering the region from the a-v capillary in 
time dt is 

2 r r ,  [ (k l +d ,P1)  K ,  (t) -- k~E~]dzd t .  (20) 

The amount accumulating in the extracellular phase around the a-v 
capillary is 

~r (A~R 2 -- r~) a f  d z d E l ,  (2 1) 

where a is the fraction of the extravascular volume not occupied by cells, 
andf ,  is the fraction of extracellular volume which is available for the dis- 
tribution of the substance, i.e., not occupied by fibers or other material 
through which diffusion cannot occur. 
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Then the material balance requirement, together with (18), (19), (20), 
and (21), gives 

4 r D g I A R  
~r(A2R 2 -  r~) a f f l z d E t =  - (Et--E~) AR + R  dzd t  

+ 2,rr 1 [ (kl W dlP~) Kin, (t) -- k~E~] d zdt (22) 

bs 
-- ~r ( A 2R ~ -- r~) [ h~E, -- h2C, ] - ~- d zdt . 

After cancellations and rearrangements, this becomes 

dE1 4 D g l ( A )  
d t  - a f .  (A~R 2 - -  r ~ )  -A-+-I (El --E2) ~ 

2 rl (kl + diP1) 
af~ (A~R 2 -- r~) Kin1 

2r lk ;  E'  bshl-E bsh2 
(23) 

Similarly, the amount of material flowing into the cells in the region of 
the true capillary in time dt is approximately 

~r (R 2 -  r~) [hxE 2 -- h2c2] b~dzd t .  (24) 

The amount of material flowing from the region of the true capillary to 
the region of the a-v capillary is approximately 

2~rR 
(E~--E1) 2 Dgl A ~  d zdt .  (25~ 

Here 
2 (E~--El) 

AR + R  

is the approximate gradient at the boundary of the region and 2vRdz is 
the approximate area normal to the gradient through which flow must 
occur. The average net amount entering the region from the true capillary 
in time dt is 

2~rr~[ k~K ~ (t) - -  (k~-- d2P~)E' 2] d zd t .  (26) 

The amount accumulating in the extracellular phase around the true 
capillary is 

Ir (R 2 -- r~) a f d zdE~. (27) 
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Then, since no material is inactivated in the region, (24), (25), (26), and 
(27) give 

R ~ 41rDglRd  r (R ~ -- r~) a f d  zdE ,  = - -  (E 2 - - - -1"  ~ zdt  + 27rr~ [ k 2 K  ~ (t) 

(28) 
--  (k~ -- d2P2)E ~ ] d zd t  --  7r (R 2 --  r~) [ h f i2  --  h2C 2] b S d  z d t .  

v 

After cancellations and rearrangements, this becomes 

des  4 D gl 2 r2k, (t) 
a t  - ( E , - E  l) af~ (R 2 - r~) ( A  + 1) ~ a f .  (R ~ - -  r~) K'2 

(29) 
2 r 2 ( k ' 2 - d z P ~ ) E ' 2  b s h ~ E  + bsh2  C 

Equations (23) and (29) imply that no net exchange of material occurs 
between one array of our model, consisting of an a-v capillary and its as- 
sociated true capillarics, and another such array. 

The concentration of the substance in the cells of the two regions must 
now be considered. The amounts of material flowing into the cells of the 
two regions are given by (18) and (24). The consumption of the material 
by the cells in the a-v region is assumcd to be 

ql + q2 (Cx --Co), (30) 

where ql is the consumption in--say, moles per unit cell volume per unit 
t ime--and q2 is a proportionality constant giving the change in the rate 
of consumption for a concentration different from some initial concentra- 
tion Co. Both ql and q2 are negative for consumption. For production, q2 
will be assumed to be zero and ql positive. Then the amount of material 
produced or consumed in the a-v region is given by 

~r ( A 2 R  ~ -- r~) d z  b fb[  ql + q~ (C~ - C  o) I d r ,  (3 1) 

where fb is the fraction of the cellular volume which is available for the 
distribution and production of the substance. The amount accumulating 
in the cells is given by 

,r ( A 2 R  ~ -- r~) d z  bJbdC 1 . (32) 

Then (18), (31), and (32) give us 

7r (A2R  2 - r~) d z  b fbdC ~ = ~r ( A 2 R  2 -- r~) (h~E t -- h2C1) b___f d z d t  
?) 

(33) 
+ lr ( A  2R~ -- r~) d z b f  b [ ql + q2 (C~ -- Co) ] dt . 
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Cancellation and rearrangement give us 

dC1 s 
dt = "~fb [hiE1 -- h~711 + ql + q2 (C1 - C o )  �9 (34) 

Similar considerations for the cells of the true capillary region give us 

dC, s 
dt = "~ f b [ hlE~ - -  h ~ 2 ]  + ql + q2 (C2 --Co) �9 (35) 

We may now calculate the concentration of the substance in the venous 
blood leaving the capillary array. We will assume that edema is not de- 
veloping. Hence the amount of fluid entering the array at any time must 
equal the amount leaving. Thus we have 

Irr~f t (0) v i (0) + A~rr~/~ (0) v 2 (0) = 7rr~f 1 (L) v i (L) 

+ ATrr~/~ (L) v~ (L) . (36) 

From (36), using (3) and (4), we obtain a relation which will be used later: 

A = __rxP1 
rzP2" (37) 

The amount of the substance leaving the a-v capillary in time dt is 
given by 

~rr~f 1 (L) r 1 (L) K 1 (L, t) dt , (38) 

and the amount leaving the true capillaries of the array is 

A~cr~f~ (L) v 2 (L) K~ (L, t) d t .  (39) 

Then, after mixing the flows, the concentration of the protein-free venous 
plasma K, is given by 

2 r~fl (L) rl (L) KI (L, t) + A r,f2 (L) v2 (L) K2 (L, t) 
K~ (t) = r~l, (0) v 1 (01 + A r~/~ (01 v~ (01 (40) 

VII .  The transformation of the equations. The problem of the blood-tissue 
exchange has now been formulated in equations (11), (13), (16), (17), 
(23), (29), (34), and (35). These equations, together with (3), (4), and 
(40), are sufficient to determine the concentration of a substance in the 
venous blood, at the wails of the a-v and true capillaries, and in the cells 
of the two regions, as well as the average extracellular concentration in the 
two regions--nil in terms of the concentration in the arterial blood, the 
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blood velocity in the two types of capillaries, and the various tissue 
parameters. 

The solutions of the equations are most conveniently obtained by 
means of the Laplace transformation (Churchill, 1944). That is, we associ- 
ate with each function F(t) its Laplace transform f(p), defined by 

f o  r176 
f (p) = e-P'F (t) d t .  

We will let x~, xi, y;, w;, and Wmi be the Laplace transforms of E~, Ei, C~, 
K~, and K=~, respectively, with i = 1, 2. 

The transform of (11) is 

Pwl - Ko = -- f t  (z) v 1 (z) dw, (z, p) + 2  (Px -- diP1- kt)wl (z, p) dz rt 
(41 )  

+ 2 k ;  , 
r--;- xl (p) ' 

where Ko is the initial concentration in the capillary, assumed to be con- 
stant. Then 

1 2k'i f ,  (z) v~ (z)---d-~=dwx _ P-r--~x2 ( p , _  d lp t_  kl ) jwl+__~_ ~ x, 1 (p) + Ko" (42) 

Let us put 
t 

2 2kt 
~1 = P - - -  (P1  - -  dtPl -- kl) and #x = - - -  

r t  r l  

Then, using (3), (42) becomes 

dwl d z 
--•lwx+lhx'l+K0 fl(z)  v l(z) 

The solution of (43) is 

wl ( z ,  p)/31 - rex;  - K0 = [ 1  
w0 (P)/31 -- #xx't -- K o \ 

d g  

f t  ( 0 )  v x ( 0 )  - -  P2-=!z " (43) 
r 1 

rl/I ~ vlo/ , (44) 

where wo(p) is the transform of the concentration in the protein-free plas- 
ma of the arterial blood, andfl0vl0 = fi(0)vl(0). The mean value of wl(z,p) 
along the a-v capillary is given by 

w,~, (p) /3 ,-  # ,x , ' -  Ko l foL ( 2P, z ,~,,a~/*e, dz 
w o(p) t~, ~,,x~ Ko = ~  1 - -  __  - -  r l f l O  v l 0 /  

(45) 



CAPILLARY EXCHANGE 245 

Calculating the integral, we finally have,  pu t t ing  

or 

2PtL 
71---- ~-/~ [P - - r l  r"-tt2 (P1 -- dlPt -- kl) ] and kt - - - r t f : o  vlo' 

t 
w,~lfll -- #lxl  -- Ko _ 1 

[ 1 - -  ( 1 - - X t )  l + ~ , ] ,  
- -  ' - -  K o k t ( 1 + 3't) W0~ x #tXt 

~___& _ K o ~  ( 1  -- (1 -- Xl)l+Tt~_[_ 1s , ( 1 _ _  1 -- (1 -- ~kl)1+3'1~ 

(46) 
+~0 

We will also need 81 " 

w t ( L , p )  = ( w ~  ( 1 - x ' ) ' ~ + ~ l / J t x l ' ( 1 - [ 1 - x ' l ' ' ) + K ~  (47)  

The  t ransform of (13) is 

pw 2(z, p) - - K  0= - - f 2 ( z )  v 2(z) 

Then  

dw~(z, p) ~ 2__(p _k,)w,(z  
P) dz  r2 

2 
+--~2 ( k'2 -- a*P2) x'2 ( p ) " 

f~(z) v2(z) ~----- 

Put t ing  

~2 = P - - 2  ( P 2  - -  k2 )  , 

+ 2  (k'~ -- d2P 2) x~ (p) + K o . 

2 ~, = ~ (k:  - d , G ) ,  

(48) 

(49) 

and t~sing (4), we have 

dw2 d z 
2P2 --/JW2 + ~,x'~ + K o /~o %0 r, 

where f~ov~0 = f~(0)v~(0). The  solution of (50) is 

w2 ( z ,  p )  & - rex'2 - Ko = ( 
1 

w o (p) B 2 -- #~x~ -- K o k 

' ( 5 0 )  

rj2o---~/ ( 51)  

Equa t ion  (51) implies tha t  the concentra t ion of the substance in the 
protein-free plasma entering any t rue capillary is the same as tha t  enter- 
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ing an a-v capillary. This is undoubtedly not correct, but may be approxi- 
mately so, since many true capillaries originate fairly close to the arterial 
end of the a-v capillaries. The mean value of w~ along the true capillary is 

w,.2 (p) 32 -- u,x,  -- Ko l f Z ( 2P2z "~O2(rl/2PI) 
Wo(P) 32 u2x~ Ko =I ,  Jo k, 1 r - - - v  J dz.  (52) 

- -  2f20 20 

The right-hand side is equal to 

1 

),2 ( 1 + ~2) 
where 

r2 

[ 1 - -  ( 1 - -  X2) ~+~,1 , ( 5 3 )  

X~- w 

Then 

+ ~  ' ( 1  ~2 x2 

We will also need 

2PzL 

r , f  2o V2o " 

1 - -  ( 1 - -  ks) 1+~,,~ l Ko 
(54) 

Ko) w2(L,P)  = 0- - -~  (1 - -X2)v '+~x '2 [1 - -  (1--X~),,l + K o  0z" (55) 

The transforms of (16) and (17) are 

2Dgl  
[ ( k ,  + d~P 1) Win, - -  k'tx'll = (x', - -  x , )  A R  

and 
, 2 Dgl 

[k2wm~-- (k~--dsP2) x'~] = (x'2--x~) R 

(56) 

(57) 

Using the notations 

k ~  2Dgl  
AR  

Vl = kx + d lP1  ' v2 - 

2 D g l  

px = A R  ( kl  + d iP1)  ' 

we have for (56) and (57) 

w I -v tx '~  + o~x 1 = 0 ,  

2Dgl  
k'2 -- d2P2-~ R 

k2 

2Dgl  . 
p 2 -  Rk~ ' 

w ~-r~x' 2+ P2X2= O. 

(58) 

(59) 
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The transforms of (23), (29), (34), and (35), after the introduction of 
the E0's and Co's as the initial values of the extracellular and cellular con- 
centrations, are: 

4Dgl  ( A ) 2 r ( k t + d i P ~ )  
P x ~ - - E ~  af.(--~-R ~ -  r~) ~ (xl--x~) "q afa(A2RS--R~) 

(60) 
2r~k~ bshl  + bsh~ 

XW,nl afa(A2R2--r~) x'~--afa--~xl ~~avY~; 

4 D gl 2 r2k2 
Px2-go= a/o(R~-,~) (A+~) (~-Xl)  +aj ' , , (~  ,.~)~v ~ 

t 
_ _ _  + bsh2 2r2(ks - -dzP2)  , bShl x2 

afo(R ~-r~) x2 aAv ~ Y 2 ;  

(61) 

shl  sh2 ql -- q2Co 
py~--Co = - ~ b  X , -  V---y~ y~3c ,:-- l- q~Y~ ; (62) 

Shl sh2 ql q~7o 
pYs--Co=-~-fb x2-- v---f--b y2+ p ]- q2Y2. (63) 

The following notation will be used for the combinations of constants in 
(60) to (63): 

4 g l D ( A )  
~ 1 =  a fa (ASR  2 -  r~) ~ ; 

2 rl (kl + diP1) 
dPl = af~ (A~R ~ -- r~) ; 

4 g l D ( 1 )  

2 rsk9 
4'2 = aYa (R 2 -- r~) ; 

t t 
2 rlkl  2 r2 (k2 -- dzP2) 

~ l = a f ~ ( A ~ R 2 _ r ~ )  ; ~k2 = a f a ( R 2 _ r ~ )  

bshl  . s h 2  . 

qx = afav  ' 0"~ = v f'--bb ' oa -~ q x -  q2C~. 

Using these abbreviations in (60) to (63), we have 

bfb 
P X l  - - E ~  = - -  ~IXl + ~lX2 ' ~  ~lWml - -  ~lX'l  - -  ~ "4- 0"2 ~ a  Y l '  (6 4) 

bfb 
px  2 - - E  o = -- ~2x~ + ~zXl + 6,w ~ -- ~kzx'~ - alX, + 0"2 ~ Y2, (65) 

a fa 60 
p y l - - C o =  0"1--~b Xl-- ff2yl-]-~+ q2yl , (66) 

afa 60 
py2 --Co = 0"1 -b-fib x 2 -  ~ 2 y 2 + = +  qsy2. (67) /J 
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From (66) and (67), we have 

0.%-]~bx, +Co + 
Yi= pA- 0.2- q~ ' i =  1, 2 . (68) 

Introducing (68) into (64) and (65), we get, after some rearrangements,  

0.10.3 
Xl ( P  "Tt- ~1- t -0 .1 -  p ..Ji-0. 2 __ q 2 ) - -  ~1X2-  ~172Jm' "Jr- 1//IXPl 

--Eo~lAEoaf~p(p- ,~o- ~ + a s _ q 2 ) . j = O ,  

0.10.3 
X2 ( P  "JI- 1~2 "Jl- 0.1 --  p _~,_ 0,9 __ q2) -- ~ 2X 1 --  (~127"fJm2 "Jr- @2Xl 2 

( (70) 

- -Eo~ 1 -} 
/ 

l 
If we let 

E o  a f a P ( p "4- 0.2 - q , )  = O . 

al ~- p + ~1-31- o1 ~176 
p + 0.~ - q2 ' 

a2 = p + ~2 -1- 0"1 0"10"2 
P + 0.3 - q3' 

( ~  
( +Cobj~ ~ P+G ] ~o=~o~, t; [ ~o oJo ~(p+~, -  q,)) 

then (69) and (70) becoriae 

% x I  - ~ l x ~  - e z lw , , .  + q ' l x ;  = 3 0 ,  

%x~ - ~x~ - 4,~w,~ +,/,~x' 2 = 30. 

(71) 

(72) 

Let  us now introduce the symbols 

1 -  ( 1 - X l ) ~ + ~  1 -  ( 1 - X s ) ~ - ~ ,  
~'x = M ( 1-4- "h) ' ~'2 = X2 ( 1-4- ~2) 

Z1 = [ w o - - ~ ]  ~q~l + Ko, [ ~o] Z~= W o - ~ -  ~ + K o .  
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Using this notation in (46) and (54), and collecting the equations (58), 
(59), (71), and (72) for convenience of reference, we have: 

#1 ( 1 - tl) ~i - w~lJg, = - Zl , 

ltlXr 1 - -  P l X l  ~ 2 U m l  "~- 0 , 

It2XP2 - -  p 2 X ~  ~ 'Win2 ~ 0 , 

~lX'I + o'IXl - -  ~lX2 - -  ~lWml = ~ 0 '  

~]2X'2 - -  $2Xl + 0"2X2 - -  t~Wm2 = ~0"  

(73) 

(74) 

(75) 

(76) 

(77) 

(78) 

These equations, (73) to (78), together with (40), (47), (55), and (68), 
are necessary and sufficient to determine the venous concentration, El, 17,2, 
C1, C~, E~, and E~ in terms of the arterial concentration, the flow rates in 
the two types of capillaries, and the various tissue parameters. 

Using (75) and (76) in (73), (74), (77), and (78) to eliminate w~t and 
w,,~ we obtain 

X'x [ ~1 ( 1 - ~,) - ~1~1] + l~l Plxl = - Zl , 

x', (r - ~v~) +x~ (% +~lP~) - ~ ,x ,=  t30, 

x'~ (r - ~ v ~ )  - ~Xl  + X 2 (,h + g,2p ~) = 80. 

(79) 

(80) 

(81) 

(82) 

V I I I .  The steady state. We may use equations (79) to (82) to get an es- 
t imate of the relative importance of the various parameters in their in- 
fluence upon the steady state concentrations of a substance when the ar- 
terial concentration has been constant long enough for the steady state to 
be assumed. 

We use the theorem that  if a limit exists for a function F(t) as t ap- 
proaches infinity, then pf(p)  approaches the same limit as p approaches 
zero through positive values, where f (p )  is the Laplace transform of F(t) 
and p is the transformation parameter (Doetsch, 1950, p. 458). Hence as- 
suming the existence of a steady state, which seems plausible on physical 
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grounds, we have for (79) to (82), where the various functions of p, i.e., 
cq, ~ ,  ~o,/~, fl~, ~/~, "~, ~'~, and ~'~ must  be evaluated at the limit as p--->+0, 

E '  1 [#t ( 1 --  ~'~) - flYl] + E ~ I O ~  =~-,+olim - pZ~ , ( 8 3 )  

E'2 [ u2 ( 1 - ~2) - B~v2] + E 2 ~ 2 P 2  = lira - p Z  2 (84) #.-',+0 

E] (~1 --elY1 ) -t-'El (% "~ r ) --'E2~l =~,-~+olim Pflo , (85) 

g~ (~b, -- ,2v2 ) - -g~  ~ + E ,  (a ,  + 4 2,%) =o.H~moPBo. (8 6)  

As an illustration, we will consider the production of a substance in the 
cells at  a constant  rate ql moles per cubic centimeter per second. Hence we 
take q2 equal to zero. We will also take kl = k~ = k~ = k~, and rl = r~i 
t '1,  d tP1,  P2, and d~P2 will be neglected relative to kl, since even during 
extremely rapid filtration into the tissue from the caoillaries, k~ is likely 
to be from twenty-five to two hundred times as large as P1 or P~. The 
exact ratio depends on the molecular weight of the substance, the ratio 
being higher for the lower molecular weights (Pappenheimer et al. ,  1951). 
Since ~1 and ),3 are the ratios of the leakage through the capillary wall to 
the fluid flow into the capillary, we may  pu t  as a good approximation, 
when edema is not  developing, 

1 -- Xl = e -x~ and 1 - ks -- e-X~ �9 

For while kl and X.., may  range from 0.001 to 0.2 (Danielli and Stock, loc. 

c i t . ) ,  the higher values occur only during the rapid development  of edema, 
and we restrict ourselves to the case of no net filtration into or out  of the 
blood. 

With  these assumptions, we have the following values for the various 
coefficients in equations (83) to (86) : 

~1 ~ ~1 ; @~2 = ~2 ; l im Pflo b fb  p-~+o -- - ~  qt ; ~1 = ~2 = 2rlkl . 

"/1 = - -  1 At-dj  + h . + h r l f z~ ̀ 01~ C1 _ e-2Lk,/r/lo%o) 
P I '  ~---  - -1  P2;  ~'1= 2L/~1 "- 

~2 = rlJ~o V2o ( 1 --  e--(2n~/rl/ ,: ,o))  �9 
2 L k l  " - 

fl0 `010 
]Jill - -  PZ1 = - -  K ( 0 ,  oo) ~ ( 1 - -  e--(2Lkt/r,l,o',o)) " 

p--* +o  

f20 '020 l im --  pZ~ = -- K (0, o~) ~ (1 -- e--(~Lk2/'~ltor2o)) . 
p--~+o 
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Let us also assume that A = 1; this may be approximately the case in 
mammalian skeletal muscle under the experimental conditions used by 
Pappenheimer et al. (loc. cir.), especially with the smaller perfusion rates. 
If we assume thatfl0vl0 = f2ov~o, then the coefficients of equations (83) and 
(84) become identical, as do those of (85) and (86), and E~ = E~ and 
E1 ---- E~. This assumption is unlikely to be good, since according to the 
observations of Zweiiach, f~0v20 < f~ov~o, but the lack of exact data on the 
relative flow rates, the fact that the assumption seems unlikely to affect 
the illustration qualitatively, and the simplicity gained seem to justify its 
use. Using these assumptions, equations (83) and (86) reduce, after some 
rearrangements, to 

E' t rlflo vto 2 D gl l + E  2 D gl 
- - - - t t ~  (1--  e--(sr~kL/rJt"t~ + ~ )  i R k l  

(87) 
= - - K ( 0 ,  c o , ~  r l f lo  vlO ( 1 ~ e--(2Lkl/rlfloVlo)) 

E', - -E  1 = -- qtb f e 4 r~ - -  " 

Solving these for E~ and El, we get 

]( E t = K (0, co ) + qtbfb f t o v t o L \ r t /  1 1 - -  e - - ( e z k l / r l ' t l O V l O )  , 

Et  = K (0, co ) + qlbfb 

(88) 

(89) 

(90) 

We now need numerical estimates of the various parameters. Mam- 
malian striated muscle will bc considered since this tissue is marked by 
large changes in activity. The average length of a capillary is about 0.7 
mm. and the average radius is about 5 • 10 -4 cm. (Rous et al., 1930; 
Krogh, 1929). Jones (lot. cir.) gives the average perfusion rate of muscle as 
0.01 to 0.030 volumes of blood per volume of tissue per minute. Pappen- 
heimer et al. (1951) give an estimate of 70 cm3 per gin. of muscle as the 
capillary wall area. This estimate is much smaller than those given by 
Krogh (loc. cir.). Using equation (14) with B, the volume of blood vessels 
larger than capillaries taken as 7% of the total volume, we obtain 
R = 36.4 X 10 -4 cm. and 2N = 3.18 X 105 capillaries of both types per 
gm. Furthermore, we obtain vl0 = 1.33 X 10 -8 cm. per sec. for the blood 
velocity corresponding to a perfusion rate of 0.02 per minute. Taking fl0 
as 0.5, we have flovlo = 0.67 X 10 -8 cm. per sec. Hence L/flovto ~ 100. 
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However, the estimate of 70 cm. 2 per gm. used in these calculations may 
be low. The value 140 cm3 per gm. gives L/flovlO ~ 50. This value will be 
used in all calculations and graphs. Naturally, %0 depends on the activity, 
but since more capillaries open up during activity, and since the values of 
both E1 and E~ are more dependent upon the values assumed for R than 
those assumed for L/f~ovlo, we will keep this fixed and consider only varia- 
tions in R, Dgl, and k~. 

The values of Dgl depend on the molecular weight of the substance con- 
sidered, on the state of the extracellular matrix, and on the geometry of 

14 

12 

I0 

? 
0 

I 1 ~  6 
UJI  

�9 , , , , ' 'R  , D l t t J I | 

R=60~ 

R= 45jw 

~[ R=30y 
R = I S ~  

0 t t t t t t t l [  1 t i t i t  i i [ t t i i t i i 

0.1 I I0 I00 
Dgl,(cm? sec -q  x ,o 7 

FmVgE 2. Graph of Equation (90). Values of parameters are: L/floV,o = 50 see.; rt ffi 5 X 
10 -4 cm.; k~ = 10-* cm. per sec. 

the distribution of the cells in the tissue. The factor gl is likely to be about 
0.1, since g is about 0.15 and 1 is about 0.66. The values of kl are dependent 
on the molecular weight of the substance considered, and upon the state 
of the capillary wall, which may be altered as a result of various physio- 
logical changes. The data of Pappenheimer e! al. (1951) permit an estimate 
of kl to be made for various molecules. Thus for glucose, kl ~ 10 -4 cm. 
per sec., for sucrose, kl -~ 0.6 X 10 -4, for raftinose k, ~ 0.4 X 10 -4, for 
inulin kl = 0.05 X 10 -4, and for NaC1, k = 1.6 • 10 -4. We will consider 
variations in Dgl from 10 -s to 10 -s cm3 per sec. and in kl from 10 -5 to 
10 -3 cm. per sec. 

Figure 2 shows the dependence of the ratio of El -- K(0, o~) to q~bf~ 
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upon Dgl for four values of R. This ratio is much more dependent upon R 
than Dgl. Thus for a produced substance of about the molecular weight 
of glucose, the ratio is 400 for R = 15g, 1760 for R = 30tz, 4000 for 
R = 45g, and 7300 for R = 60g. 

Figure 3 shows the ratio of E1 -- K(0, oo) to E; -- K(O, oo) as a func- 
tion of Dgl for various values of R. Rather large differences between the 
average concentration and the concentration at the capillary wall may 
exist for the smaller valtres of Dgl if K(0, co ) is small. Thus if K(0, ~o ) is 

\ \  I\ \ \  

0.I 1.0 I0 I00 

Dg[ (crn. 2 see.")  x 10 7 

l ~av l~  3. Graph of the ratio of equation (90) to equation (91). Values of parameters are: 
L/flovlo -- 50 sec.; r -- 5 X 10 -4 cm.; kl =, 10- 4 cm. per sec. 

zero, the ratio of E1 to E~ for Dgl = 10 -~ cm. 9 per sec. is 1.038 for R = 15g, 
1.075 for R = 30~, 1.112 for R = 45tt, and 1.150 for R = 60~. 

Turning now to a consideration of the average intracellular concentra- 
tion C1, we have from either equation (34) or (68) that in the steady state 
with constant production ql, 

vf~ _ hi E C1 = q l - ~ - t - ~  1. (91) 

The variation in C1 with constant ql is dependent on the average external 
concentration through the ratio of/,1 to/~. If we assume that hi and/~ are 
of the same order of magnitude, and that the cell radius is about 10 -~ cm., 
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then wi thfb  ~-- 0.5 and h~ ~ 10 -5 cm. per sec. we have, roughly, tha t  the 
concentration in the cell a t  any time is about seventeen times tha t  concen- 
trat ion produced in one second in uni t  volume by a source of strength ql, 
plus the external concentration. The external concentration, as we have 
seen, is possibly several hundred to several thousand times the concentra- 
tion which would be produced in a unit  volume in one second by a source 
of strength qz. 

Hence it appears likely tha t  the intracellular concentration of a sub- 
stance produced in the cell may  be influenced to a marked extent by  the 
external concentration and thus by the diffusion coefficient of the extra- 
cellular material and the permeabili ty coefficient of the capillary wall. 

IX .  Transient conditions. In order to investigate the influence of the dif- 
fusion coefficient of the extracellular material, and the permeability coef- 
ficient of the capillary wall upon the speed with which a substance intro- 
duced into the blood distributes itself, we will again resort to some drastic 
approximations. We will assume tha t  A = 1, kl = k~ = k~ = k~, r~ = r2, 
f ,  ovlo = f2oV2o, and tha t  [),11 < < 1 and IX21 < < 1. Using the last as- 
sumptions, we find that  

1 - -  ( 1 - - X l )  l ~ ,  
lim ~'1 = lim = 1 (92) 
x,-,o Ix, t-+o Xl (1 + 3'i) 

and 
1 -  ( l - X 2 )  1+*, 

iI~mo~'2 = lim = 1. (93 )  
Ix~l-~0 Xx ( 1 -~- 3'1) 

The set of equations (79) to (82) now reduces to 

- z',t~,~, + xlt~,p , = - z ~ ,  (94) 

Xtl (~1 -- ~)11/1 ) + X l  (ff'l - -  ~1 +~) lPl )  = ~0" (95) 

Let  us consider the case in which the substance does not penetrate the 
cells, or penetrates them so slowly, relative to the speed of its distribution 
in the extracellular space, tha t  we may  assume that  none of the material  
has entered the cells during the time required for a quasi-steady state to 
be at tained in the extracellular space. Thus we assume tha t  a substance is 
suddenly introduced into the blood in such a way tha t  its arterial concen- 
trat ion remains constant. Then, if none of the substance was present ini- 
tially, we have 

Z1 = --,K~I" /~0 = 0 (96) 
p 

where K is the constant  arterial concentration. 
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Solving equations (94) and (95) for xl and x~, using these assumptions, 
we have 

K [ al --~1 + r (97) 
xl - -  p Iv1 ( a l  -"  ~1"-{- r  "3v pl  (~1 - -  r ] ' 

K [~i -- @1vl ] 
X l =  p[vl(ai__~l+dplPl ) ..{_ pl (~1 __q~XVl) ] . (98) 

By our assumptions we have ~1 = ~ = 0, and we also assume, as before, 
that  [PI[ < < kl and [P2[ < < k,-. Then the denominators of both equa- 
tions (97) and (98) reduce to 

p [ulp +Vlr -- qh,o]] �9 
We also have 

el- -  ~x+$lpt  = P+r 
and 

r --1#101 �9 

Using (99), (100), and (101) in (97) and (98), we get 

K (p+dpXpl) 
x'l = p [vl p +vlr -- r 

and 
KCt Ot 

P [eRP + v1r Pl -- r OF ] " 

(99) 

(100) 

(101) 

(102) 

(103) 

Inverting these equations in p by routine methods of the Laplace 
transformation technique, we have, after some rearrangements, 

Ex-K ' -  { 1 l+pl-Pl e_tC, ip,)/r t ,, (104) 

E 1  = K [ 1 - -  e - * ( * , p , ) / o + o , ) }  . (lO5) 

A check on the first of these equations is provided by a comparison of 
E',(0) computed from equation (16) with E~(0) computed from (104). 
Both computations give 

K E'~ = - - .  (106) 
Yl 

We have from (105) 

dE1 K ~l~lPl e, -t(~b,p,)/(l+p,) (107) 

and 
dE1 (0____~) .~. K r (108) 

dt 1 + ,01" 
Figures 4 and 5 show 

l + m  
<~i pl 
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as a function of Dgl and k~, respectively, for four values of R. These graphs 
give the time at which E~ attains approximately 630/0 of the capillary con- 
centration K, as well as the ratio of K t o  d F _ , x ( O ) / d t .  

I t  may be noted that for a molecule of the weight of glucose, the time 
constant is 2.1 sec. for R -- 15p, 10 sec. for R -- 30#, 24 sec. for R = 45p, 
and 46 sec. for R --- 60p. The time constant for the distribution process, 
for any fixed R, is markedly dependent on Dgl in the range 10 -8 to 2 • 
10 -7 cm? per sec. and on k~ in the whole range considered. Thus for 

I 0 0 0  . . . . . .  , , , , , i , ,  I , ~ , i , , , l i  

i o c  . ~" r 

,o 

I i I , l l l , I  i e i i i i i | l  i I m t l l l l  ! 

0,1 I 10 100 

Dg[(cm.2ser ~) x 107 

FmEE~ &. Graph of the reciprocal of the time constant of equation (|05). Values of pEame- 
t e r s  a re :  afo = 0 .1;  r l  = 5 X 10 -4  e ra . ;  kl = 1 0  -4 c m .  pe r  sec.  

molecules as large, or larger than, glucose the distribution time is very 
much dependent on the characteristics of the extracellular matrix. The 
permeability of the capillary wall greatly influences the distribution time 
for substances of any molecular weight. 

However, the approximation that Xl and X2 are negligible compared to 
unity renders the treatment of doubtful value for more than the very 
start of the process of distribution, for these approximations, of course, 
imply that the concentration of the substance is everywhere the same 
along the length of the capillary and that the amount removed from the 
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blood is negligible compared to the amount flowing through the capillary 
in any given interval of time. 

X.  Discussion and conclusion. The treatment of capillary exchange de- 
veloped above, while undoubtedly approximate and of limited validity, 
does indicate that  both the diffusion coefficient of the extracellular matrix 
and the permeability coefficient of the capillary wall are important param- 
eters in the distribution of substances in tissue. Changes in the diffusion 

_ . v  

0.1 I I 0  

k, (cm. sec- ' )x IO 4 
F I o ~  5. Graph of the reciprocal of the time constant of equation (105). Values of the 

parameters are: af,, = 0.1; rl = 5 X 10 -4 cm.; Dgl = 10 ~ cm. ~ per sec. 

coefficient of the extracellular material are not so important as changes in 
the capillary permeability. Both parameters are subject to change, and 
changes in these parameters are followed by relatively large changes in 
both the steady state cellular and extracellular concentrations and changes 
in the initial rate at which a suddenly introduced substance distributes it- 
self. Since the metabolism of cells is undoubtedly influenced greatly by the 
concentrations within them of various substances, it appears that signifi- 
cant changes in cell metabolism may occur as a resalt of alterations in 
either of these parameters. 

The consequence of a change in the ratio of the number of true capil- 
laries to the number of a.v capillaries has been investigated only in so far 
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as this m a y  be correlated with changes in R. I t  is hoped tha t  a more  com- 

prehensive invest igat ion of this p rob lem will fo rm the subject  of a later  
paper .  

The wri ter  wishes to acknowledge with  gra t i tude  his debt  to the staff of 
the Commi t t ee  on Mathemat i ca l  Biology. Professor  I. Opatowski  has  

grea t ly  helped the wri ter  in developing the basic ideas which culminated 
in this work. Professor H.  D. Landahl  and Dr.  George K a r r e m a n  have,  b y  

helpful discussions, cont r ibu ted  considerably.  The  prepara t ion  of the 
manuscr ip t  has been the task of Mrs. Car l ton Smith.  The  writer  owes her 
a debt  of gra t i tude  which is difficult to express. 

GLOSSARY OF SYMBOLS 
A = the activity ratio, the ratio of the total length of all active true capillaries 

to the total length of all a-v capillaries in a homogeneous tissue, also the ratio 
of the number of active true capillaries to the number of a-v capillaries in the 
tissue model 

AR = radius of cylinder of tissue associated with each a-v capillary 
a = the ratio of the extracellular volume to the total extravascular volume 
b = the ratio of the cellular volume to the total extravascular volume 
Co = the initial intracellular concentration 
C1 = the average intracellular concentration in the region of the a-v capillaries 

at any time t > 0 
C2 = the average intracellular concentration in the region of the true capillaries 

at any time t ~ 0 
D = the diffusion coefficient in the substance of the extracellular space 
dl = distribution ratio, the ratio of the concentration in the filtrate from the 

a-v capillaries to the concentration in the protein-free plasma 
d~ -- similar to dl, but for the true capillaries 
E0 = initial extracellular concentration, assumed to be the same everywhere 
E1 = average extracellular concentration in the region of the a-v capillaries at 

any time t ~ 0 
F_~ = average extracellular concentration in the region of the true capillaries at 

any time t > 0 
E~ -- extracellular concentration at the wall of the a-v capillary at time i ~ 0 
E~ = extracellular concentration at the wall of the true capillary at time t ~ 0 
f~ = ratio of the volume of the cell-free, protein-free fluid of the blood to the 

total blood volume in the a-v capillary 

fl0 = fl(O) 
f~ = similar to f~ but for the true capillary 

f~0 = f , ( o )  
fa = ratio of the extracellular volume available for diffusion to the total extra- 

cellular volume 
]b = ratio of the cellular volume available for distribution of the substance to 

the total cell volume 



CAPILLARY EXCHANGE 259 

g = ratio of the area normal to the concentration gradient in the extracellular 
space, through which diffusion may occur, to the total area 

hi -- permeability coefficient of the cell wall for entrance of the substance into 
the cell 

/~ ~ permeability coefficient of the cell wall for exit of the substance from the 
cell 

K0 = initial concentration of the substance in both the a-v and true capillaries, 
assumed to be constant 

K1 -- concentration of the substance in the a-v capillary, 0 <: x <: L, for the 
time t ~ 0 

K~---concentrat ion of the substance in the true capillary, 0 < z < L, for 
time t ~ 0 

K,~I = mean concentration in the a-v capillary for any time t ~ 0 
Km~ = mean concentration in the true capillary for any time t ~ 0 
K,  = venous concentration of the cell-free, protein-free fluid of the blood at 

any time t > 0 
k~ - permeability coefficient of the a-v capillary for exit of substance 
k~ --- permeability coefficient of the a-v capillary for entrance of the substance 
ks = similar to k~, but  for the true capillary 
k~' = similar to k~, but  for the true capillary 
L = average length of the a-v and true capillaries, assumed to be equal 
l = the ratio of the shortest distance between two points in the tissue to the 

average distance between the two points which must  be traveled while not 
going through any cell 

N --- total number of a-v capillaries in an arbitrary volume of a homogeneous 
tissue 

P1 = product  of the filtration coefficient by the net pressure acting across the 
a-v capillary wall, assumed to be constant along the length of the capillary 
and greater than zero 

P~ = product  of the filtration coefficient by  the net pressure acting across the 
true capillary wall, assumed to be constant along the length of the capillary 
and less than zero 

p = Laplace transformation parameter with respect to t 
ql = rate of production per unit  volume, or rate of consumption per unit  volume 

when concentration in cell is Co 
q2 = rate of change of consumption with respect to the cellular concentration 
R = radius of cylinder of tissue associated with each true capillary 
rl = radius of the a-v capillary 
r2 = radius of the true capillary 
s = average surface area of any cell of a homogeneous tissue 
t -- time 
v = average cell volume 
Vl = velocity of the blood in the a-v capillary 
v~ -- velocity of the blood in the true capillary 
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~ o  = ~ , (0)  

~ o  = ~ ( 0 )  
wl = Laplace transform of K~ 
w~ = Laplace transform of K2 
w,~l = Laplace transform of Kml 
win2 = Laplace transform of Kin2 
~00 = ?~l(0,p) ---- W2(0,p) 

xx = Laplace transform of E~ 
i xx = Laplace transform of E~ 

x~ = Laplace transform of E~ 
? 

x~ = Laplace transform of E~ 
yl = Laplace transform of C~ 
)'2 = Laplace transform of C2 
z = distance along either a-v or true capillary, measured from arterial end 

0"10" 2 0"10"2 
a l  = P '~ -  ~1 7t- 0"1 p + a 2 - - q 2 '  a 2 = P + ~ 2 + a l - - p + a 2 - - q ~  

flo = E o J  1 -~ Eo afa p (p + a2 -- q2) 

k 

31 P 2 ( p 1 _ _  diPl -- K1) 2P1 2P2 . . . . .  "n ,  3~ = P - - 2  ( / '2 - k~) = - - -  "y2 
lrl f l  f2 ~r2 

~f, = ~pl [ p - - 2  (pl -- dlPt -- kl) ] , r2 [ 2 (P2_ k2) ] 

K1) 
Z1 = o - -  ~ 1  t i l l  + Ko, 

K0 

1 - -  ( 1 - - M )  I+~  1 - -  ( 1 - - X , ) I ~ ,  
~'1 = ),1 ( 1 + 3'1) ' ~'2 = X, ( 1 + 3'2) 

2P1L 2P,L 
~ 1  - - -  ~ 2  - - -  

rxf xo Vlo ' r2f2o W,o 

# X - -  

s e 
2kx 2 (k2 - d~~ 

V1 F2 

, 2Dgl  
kl - } - - - - -  

AR  
ul = kl + dlP1 ' V 2 - -  

k~ - d2P2-t 2 D gl 
R 

k2 

~ 1 =  
4Dgl  A 

~ 2 =  
4Dgl  
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Pl = L 

r 

2 D g l  2 D g l  
A R  (k l  + diP1) ' m = --R~-2 

~r I --~. - -  

b s k l  sh~ 

2 rl  ( k l  + diP1) 
a fa  (A2R 2 -- r~) ' 

2 r2k2 
r = a / .  (R2 - r~) 

2 rlk'x 
~bl = .a f . ( A 2R ~ - -  r~ )  ' 

2 r~ (k'~ - d~e2)  
~b~ = a f~  (R  2 - r~) 

co = q t -  q~Co 

LITERATURE 

Berg, W. E. 1947. "Individual Differences in Respiratory Gas Exchange during Recovery from 
Moderate Exercise." Amer. Your. Physiol,, 140, 597-610�9 

Bloch, I. 1941. "Some Preliminary Considerations concerning Concentration of Oxygen in 
Tissue." Bull�9 Math. Biophysics, 3, 121-26. 

. 1943. "Some Theoretical Considerations concerning the Interchange of Metabolites 
between Capillaries and Tissue." Ibid., 5, 1-14. 

Chambers, R., and B. W. Zweifach. 1940. "Capillary Endothelial Cement in Relation to Per- 
meahility�9 Your. Cell. and Comp. Physiol., 15,255-72. 

. 1944. "Topography and Function of the Mesenteric Capillary Circulation�9 Amer. 
Your. AnaL, 75, 173--205. 

�9 1946. "Functional Activity of the Blood Capillary Bed with Special Reference to 
Visceral Tissue." Ann. N. Y. Acad. Sd., 46, 683-95. 

�9 1947. "Intercellular Cement and Capillary Permeability." Physiol. Rev., 27, 436-63. 
Churchill, R. V. 1944. Modern Operational Mathematics in l~ngineering. New York: McGraw- 

Hill. 
Danielli, J. F. 1940. "Capillary Permeability and Oedema in the Perfused Frog." Your. 

Physiol., 98, 109-29. 
Danietli, J. F. and A. Stock. 1944. "The Structure and Permeability of Blood Capillaries." 

Biol. Revs. of the Cambridge Philosophical Sot., 19, 81-94. 
Doetsch, G. 1950. ttandbuch der Laplace-Transformat~a. Band I. Basel: Verlag BirkhAuser. 
Dominguez, R., H. Goldhlatt, and E. Pomerene. 1935-36. "Kinetics of the Elimination of Sub- 

stances Injected Intravenously (Experiments with Creatinine)." Amer. Your. Physiol., 114, 
249-54. 

Field, M. E., C. K. Drinker, and J. C. White. 1932. "Lymph Pressures in Sterile Inflamma- 
tion." Your. Exp. Med., 56,363-70. 

Flexner, L. B., D. B. Cowrie, and G. J. Vosburgh. 1948. "Studies in Capillary Permeability 
with Tracer Substances." Cold Spring Harbor Syrup. on Quantitative Biol., 13, 88-98. 

Friedman, L. and E. O. Kraemer. 1930. "Diffusion of Non-electrolytes in Gelatine Gels." 
Your. Amer. Chem. Sot., 52, 1305-1310. 

Gellhorn, A., M. Merrell, and R. M. Rankin. 1944. "The Rate of Transcapiliary Exchange of 
Sodium in Normal and Shocked Dogs." Amer. Your. Physiol,, 142, 407-27. 

Gellhorn, E. and J. Regnier. 1936. La Permeabilit~ en physiologie et en pathologle #ngrale. 
Paris: Masson & Cie. 

Gersh, I. 1952. "Ground Substance and Plasticity of Connective Tissue." The Harvey Lec- 
ture Series. 45,211--41. Springfield, Ill.: Charles C. Thomas. 



262 GEORGE W. SCI-IMIDT 

Hahn, L. and G. Hevesy. 1941. "Rate of Penetration of Ions through the Capillary Wall." 
Acta Physiologica Scandinavica, 1,347-61. 

Hevesy, G. and C. F. Jacobsen. 1940. "Rate of Passage of Water through Capillary and Cell 
Walls." Acta Physiologica Scandinavica, 1, 11-18. 

Horvath, S. M. 1946. "The Influence of the Aging Process on the Distribution of Certain Com- 
ponents of the Blood and Gastrocnemius Muscle." Your. Geron., 1, 213-23. 

Hurst, R. E. 1933. "The Variations in the Water and Lipids in the Bodies of Rats of Different 
Ages." Unpublished thesis. Cornell University. 

Hyman, C�9 S. I. Rapaport, A. M. Saul and M. E. Morton. 1952. "Independence of Capillary 
Filtration and Tissue Clearance." Amer. Your. Physiol., 168, 674-79. 

Jones, H. B. 1951. "Molecular Exchange and Blood Perfusion through Tissue Regions." Adv. 
in Med. Physics, II ,  53-75. New York: Academic Press, Inc. 

Krogh, A. 1919. "The Number and Distribution of Capillaries in Muscles with Calculations of 
the Oxygen Pressure Head Necessary for Supplying the Tissue." Your. Physiol., S2, 409-15. 

- - .  1929. The Anatomy and Physiology of the Capillaries. Revised and Enlarged Edition. 
New Haven: Yale University Press. 

Kruhr P. 1946a. "Inulin as an Indicator for the Extracellular Space." Acta Physiologica 
Scandinavlca, I t ,  16-36. 

�9 1946b. "The Significance of Diffusion and Convection for the Distribution of Solutes 
in the Interstitial Space." 1bid., II ,  37-47. 

Landis, E. M. 1927. "Micro-injection Studies of Capillary Permeability. II. The Relation be- 
tween Capillary Pressure and the Rate at Which Fluid Passes through the Walls of Single 
Capillaries." A mer. Your. Physiol., 82,217-38. 

- - .  1934. "Capillary Pressure and Capillary Permeability." Physiol. Re% 14, 404--81. 
- - .  1946. "Capillary Permeability and the Factors Affecting the Composition of the Capil- 

lary Filtrate." Ann. N.Y. Acad. Sci., 46, 713-32. 
Lowry, O. H. and A. B. Hastings. 1942. "Histochemical Changes associated with Aging." 

Problems of Aging, Second Ed., chap. 27 (Ed. E. V. Cowdry). Baltimore: Williams and 
Wilkins. 

Lowry, O. H., A. B. Hastings, T. Z. Hull, and A. N. Brown. 1942. "I-Iistochemical Changes As- 
sociated with Aging: II. Skeletal and Cardiac Muscle in the Rat ."  .Tour. Biol. Chem., 143, 
271-80. 

Lowry, O. H., A. B. Hastings, C. M. McCay, and A. N. Brown. 1946. "Histochemical Changes 
Associated with Aging: IV Liver, Brain and Kidney in the Rat ."  Your. Geron., 1,345--57. 

McMaster, P. D. 1946. "Conditions in the Skin Influencing Interstitial Fluid Movement, 
Lymph Formation and Lymph Flow." Ann. N.Y. Acad. Sci., 44, 743-87. 

Manery, J. F. and W. F. Bale. 1939. "The Distribution of Injected Na 24 and pm in Tissues." 
Amer. Your. Physiol., 126, 578. 

- - .  1941. "The Penetration of Radioactive Sodium and Phosphorus into the Extra- and 
Intra-cellular Phases of Tissues." 1bid., 132,215-31. 

Manery, J. F. and A. B. Hasting. 1939�9 "Distribution of Electrolytes in Mammalian Tissues." 
Your. Biol. Chem., I:ZT, 657-76. 

Manery, J. F. and L. F. I-Iaege. 1941. "The Extent to Which Radioactive Chloride Penetrates 
Tissues and Its Significance." Amer. Your. Physiol., 134, 83--93. 

Michels, N. A. 1936. "Structure of Capillaries and the Unmyogenic Character of Rouget Ceils 
(Pericytes) in the Omentum of Rabbits and in the Web of Living Frogs." Anat. Rec., 65, 
99-125. 

Morales, M. F. and R. E. Smith. 1944. "On the Theory of Blood-Tissue Exchanges: III.  Cir- 
culation and Inert Gas Exchange at the Lung, with Special Reference in Saturation." Bull. 
Math. Biophysics, 6, 141-52. 

- - .  1945a. "A Note on the Physiological Arrangement of Tissues." 1bid., 7, 47-51. 
- - .  1945b. "The Physiological Factors Which Govern Inert Gas Exchange." Ibid., 7, 99- 

106. 



CAPILLARY EXCHANGE 263 

Morales, M. F. and R. E. Smith�9 1948. "On the Theory of Blood-Tissue Exchange of Inert 
Gases: VI, Validity of Approximate Uptake Expressions." Ibid., 10, 191-200. 

Morel, F. and M. Marois. 1949�9 "M~thode de mesure du tanx des echanges de sodium entre le 
plasma et les liquides extravasculaires chez le lapin a l'aide du radiosodium." Archives des 
sciences physiologique, 3, 15-26. 

Pace, N., E. Strajman, and E. Walker. 1948. "Influence of Age on Carbon Monoxide Desatura- 
tion in Man." Fed. Proc., 7, 89. 

Pappenheimer, J. R. and A. Soto-Rivera. 1948. "Effective Osmotic Pressure of the Plasma 
Proteins and Other Qtlantities Associated with Capillary Circulation in the Hind Limbs of 
Cats and Dogs." Amer. dour. Physiol., 152, 471-92. 

Pappenheimer, J. R., E. M. Renkin, and L. M. Borrero. 1951. "Filtration, Diffusion and 
Molecular Sieving through Peripheral Capillary Membranes." Amer. Your. Physiol., 167, 
13-46. 

Pearce, J. M. 1936. "Age and Tissue Respiration." Amer. Your. Physiol., 114, 255--60. 
Rashevsky, N. 1948. Mathematical Biophysics. Rev. Ed. Chicago: University of Chicago Press. 
Rhoades, R. P. 1948. "The Vascular System." Histopatho fogy of Irradiation from External and 

Internal Sources, chap. 16. (Ed. W. Bloom). New York: McGraw-Hill. 
Renkin, E. M. 1952. "Capillary Permeability to Lipid Soluble Molecules." Amer. Your. 

Physiol�9 168,538-45. 
Rous, P. H. P. Gilding, and F. Smith. 1930. "The Gradient of Vascular Permahility." Your. 

Exp. Med., 51, 807-30. 
Rous, P. and F. Smith. 1931. "The Gradient of Vascular Permeabihty. III .  The Gradient along 

the Capillaries and Venules of the Frog Skin." Your. Exp. Med., 53, 219-42. 
Ruzick, V. 1927. "Beitr~ge zum Studium der Protoplasmahysteresis und der hysteretischen 

Vorg'Ange. (Zur Kansalir~t der Alterns)." Arch. Entw~cklungsraech. Org. 112, 247-54. 
Smith, F., and P. Rous. 1931. "The Gradient of Vascular Permeability II.  The Conditions in 

Frog and Chicken Muscle, and in the Mammalian Diaphragm." Your. Exp. Med., 53, 195- 
217. 

Smith, F., and D. MacDonald. 1932. "The Influence of Plasma Colloid on the Gradient of 
Capillary Permeability." .Tour. Exp. Med., 56, 371-89. 

Smith, R. E. and M. F. Morales. 1944a. "On the Theory of Blood-Tissue Exchanges, I. Funda- 
mental Equations." Bull. Math. Biophysics, 6, 125-31. 

.1944b. "On the Theory of Blood-Tissue Exchanges, n .  Applications." Ibid., 6, 133-39. 
Starling, E. H. 1895-96. "On the Absorption of Fluids from the Connective Tissue Spaces." 

Your. Physiol., 19,312-26. 
Teorell, T. 1937a. "Kinetics of Distribution of Substances Administered to the Body: I. The 

Extravascular Modes of Administration." Arch. Internat. de Pharmacod., 57, 205-24. 
�9 1937b. "Kinetics of Distribution of Substances Administered to the Body: II. The In- 

travascular Modes of Administration." Ibid., 57, 22640. 
Turton, F. J. 1941. "Steady Flow of a Viscous Fluid through a Leaky Tube." Philos�9 Mag., 32, 

Set. 7, 457-70. 
Zweffach, B. W. 1936-37. "The Structure and Reactions of the Small Blood Vessels in Am- 

phibia." Amer..Tour. Anat., 60, 473-514. 
�9 1939. "The Character and Distribution of the Blood Capillaries." Anat. Rec., 73,475- 

95. 
~ .  1940a. "The Distribution of Blood Perfusates in the Capillary Circulation." Amer. 

Your. Physiol., 130, 512-20. 
~ .  1940b. "The Structural Basis of Permeability and Other Functions of Blood Capil- 

laries." Cold Spring Harbor Syrup. on Quantitative Biol., 8, 216-23. 
~ .  1948. Peripheral Circulation. Ann. Rev. Physiol., 10, 225-58. 
~ .  1949. "Basic Mechanisms in Peripheral Vascular Homeostasis." Conference on Factors 

Regulating Blood Pressure. Vol. 3. New York: Josiah Macy, Jr. Foundation. 


