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It is shown that the equation of inert gas uptake by a distinct
parallel tissue-blood arrangement coincides, under certain conditions,
with two formulations which neglect the possible existence of a blood-
tissue barrier. The first of these approximations is the classic von
Schrotter equation in continuous form, whereas the second is the em-
pirical one frequently used by contemporary authors. The condition for
coincidence is that the product of permeability and blood-tissue exchange
surface greatly exceed the rate of blood flow to the tissue. It is difficult
to examine this condition at present because of a dearth of gas perme-
ability measurements and because apparently there exist no measure-
ments of surface and flow on the same tissue. A compilation is made of
such values as are available, and it is found that on the assumption that
gas permeabilities are of the order of 1 X 103 cm sec-1, the conditions
for neglecting the blood-tissue barrier may be met in many cases and
certainly not met in many others. It is concluded that under these cir-
cumstances the more exact equations, taking into acecount the barrier,
should be employed, at least until precise independent measurements
justifying the approximations become available.

In a series of papers appearing during recent years, the present
authors (1944a, 1944b, 1944c, 1945a, 1945b; hereinafter referred to
as I, II, I1I, IV, and V, respectively) have endeavored to formulate
a quantitative theory of inert metabolite uptake, taking into account
all factors which in the light of present knowledge seem of first-order
importance. No attempt has been made, however, to relate this de-
velopment to more limited expressions, derived by other authors, in
particular, to the early and classic one of H. von Schritter (1906).
It seems necessary to clarify the relationship at this time because at
least some contemporary workers have regarded their von Schrotter-
like expressions as conceptually different from ours. To anticipate
the results of this paper, we shall say that in a “distinct parallel”
system (IV), when the product of permeability and surface is much
greater than the blood flow through a tissue, then the limiting form
of our equation is essentially identical with the von Schritter expres-
sion. This is a straightforward mathematical fact. Whether or not
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this limiting condition is actually attained in real systems is a dis-
tinet question, and one which only experimental measurement can
answer. In the authors’ opinion, existing data are inadequate for the
decision, although experiments now in progress* seem very promis-
ing.

There are possibly three fundamentally different arrangements
of tissues with respect to the circulation (IV); of these, it will pres-
ently be obvious that the von Schrotter treatment is applicable only
to one, namely, what we have called “distinct parallel”. It is, there-
fore, the simplest case of this arrangement which we shall choose in
order to demonstrate the relationship between the two mathematical
descriptions. In the original von Schrotter treatment the possible dif-
ference in solvent power between the blood and tissues was neglected,
but this is a matter easily corrected by dividing the tissue volume by
a partition coefficient, a , which for inert gases is one or less than one.

Blood Carrier

Ya
TISSUE

TFIcURE 1. Model of a simple exchange system in which transport is via the
vascular flow between the point of solute supply (e.g., the lung) and that of
_exchange (e.g., a tissue region of volume V and homogeneous with respect to its
solution properties). In the von Schrotter case the barrier penetration factor AS
is neglected.

* Experiments by Dr. Falconer Smith and his associates, aimed at the meas-
urement of k for radioactive inert gases (plasma membrane of myxomycetes),
are currently being conducted at the National Institute of Health.
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We shall treat, as usual, the uptake of an inert metabolite at
some localized region in the circulation, assuming that all blood leav-
ing this region is charged with metabolite at a constant concentra-
tion, C. The problem will be to find the amount, ¢ , of this metabolite
within a distant tissue region which is in diffusion contact with the
blood (Figure 1). Let us denote by V, the volume of blood which
flows through the tissue region in question during one circulation
time, and by V the volume of the tissue. After the manner of von
Schrotter (loc. cit.), we may now think of the transfer problem in
the following approximate way: V, cm® of blood pick up V,C gm of
metabolite at the uptake region, and this amount is distributed in-
stantaneously between blood and remaining tissue in proportion to
their volumes, i.e., a fraction V,/(V, + V/a), remains in the blood
and a fraction, (V/a)/(V, + V/a) is allotted the tissue. The V, cm?
of blood now return to the uptake region and become re-saturated,
the net amount picked up at this time being just equal to that which
it gave up to the tissue. The cycle is then repeated. It is easy to see
that the amount of metabolite in the tissue after n cycles is,

s vl () ()

Vo+ V/a Vo+ V/a .
n ” 1
vt (i) = - hE) |-

Expression (1) is essentially von Schrotter’s final result. For com-
parison with our equations, however, a slight transformation is de-
sirable. If we think in terms of an equivalent continuous circulation
rate, B cm?® sec?, through the tissue, it is clear that the volume of
blood which has passed up to the time ¢ is R¢; since V, em? is the
volume which passes per cycle, the number of cycles up to the time
t is,

- R
n =1, (2)

0

Using (2), we may re-write (1) as

Ve
¢ (f) = (1—e¥); (3)

R aV,
k=————-loe(1f+ ) 4
v log - 4)

This same system may be treated more accurately by the simul-
taneous solution of two differential equation (I, IV). We shall de-
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‘note the permeability of the blood-tissue barrier by h, and the ex-
change surface by S; x, will be the average metabolite concentration
along the caplllarles, 2, the average in the tissue, and x,, the con-
centration of metabollte in the blood leaving the tissue region. Now
x,, of course, will lie between C and z,, its exact value depending
on the instantaneous concentration gradient along the capillary. We
shall take into account the existence of this gradient only phenom-
enologically, by assuming that over the course of the absorption,

2,=C—f(C—2,); [,constant. (5)

Employing - expression (5), the arterio-venous accumulation term,
R(C — x,), becomes (R/f)(C — xz,). In all past papers we have
taken f = 1, whence the coefficient of (C — z,) was to be interpreted
as the rate of blood flow. It is clear that if other values of f are
chosen, the original equations and solutions still hold, provided the
“R” is reinterpreted as 1/f times the true rate of blood flow. For
example, if x, is to be the arithmetic mean of C and #,, then f =1/2,
and R/f is twice the rate of blood flow.

It is not difficult in certain restricted cases to set up the partial
differential equations for this system and so to deduce the axial con-
centration gradient theoretically. For example, if z measures dis-
tance along a capillary axis, p measures the radial distance from the
capillary axis, Cgs(z, t) is the concentration of solute in the capillary,
Cr(p,z,t) is the concentration of solute in the (assumed) homogene-
ous tissue, Dy, the diffusion coefficient in the tissue, and p, is the ra-
dius of the capillary, then the governing equations are:

aC aC
g = R —2 — 2mph (Cs — Cr)
ot 9z
3Cy
DTvch — ,
ot
with the boundary condition that, — D, (3C2/3p), , =h[Cs—Cr(p)],

and that Cr remains finite as p = «. The advantage gained by at-
tempting an exact solution of these equatlons may, nevertheless, be
illusory, because there are available virtually no good measurements
‘of the physical constants involved, and the detailed capillary geometry
is much more complicated than this model suggests.

Adopting (5) we mayv write the differential equations of the
system as,

ax

v R ) .
(V-o_d‘%—— f « xq) — hS (2, — ax) ; (6)
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d
V;l-tgi:hS(xo—-ax). N
The solution of equation (6) and (7) is (I),
2R 2
ks +—‘;—? k. + I—/'Ff—
Ot :V o:VC 1+ ¢ ekt — ° Kot N 8
$o(t) o® o e — ks }G;—kg € (8)
é(t)-‘:Vﬂc:KC{lﬂ'-——l-cz——e"it——— - ekﬂ}- (9)
' a fo, — k, b, —Fk, ’
where,
R RS (1 aV,
an ] Vo V + I: R hS( aVo ):r
S = + {1+
# 2 1/2 Vof Vs 1%
1/2 (10)
RS
VoV

The plus or the minus sign before the second term of equation (10)
corresponds arbitrarily, to &, and k.. A comparison of (3) with (9)
readily suggests that the physical assumptions which justify the von
Schrotter expression, (3), are those which would cause one of the
two exponentials in (9) to disappear. This reduction to one expo-
nential could be effected by having k, = k.; however, it can be shown
that this equality would require certain terms in (10) to assume com-
plex values, which requirement would be physical nonsense. The sec-
ond, and only plausible, method is to have one of the two absolute
values of &k, say k., be much larger than the other, whereupon (9)
becomes,

14
o(t) =—C(1—ét). (11)
a
For |k,| >> |k.|, it is apparent from (10) that,
R RS aVe \ P aRhS
[ +——<1+ )] >>4 . (12)
Vof  V, Vv Vv

The structure of condition (12) suggests that it can be achieved either
when B/f >> hS or B/f << hS. To show this more clearly, we shall
adopt the following notation: R/f = X; hS = Y; (aV,/V) = r; and
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in the event that X >> Y, the small quantity Y/X = &; in the con-
verse case, X << Y, we have the small quantity, X/Y = 5. We may
then write from (10),

1
k(X >>Y) =— 2VO{XJr Y(1+7)
1/2 (13)
—X[I'—F 2(1—r)e+ (1 +1")2£2] } ;
ko (X << Y) :——2; {X+ Y(1+7r)—Y(1+7)
i (14)

[1 + 2(§1+—r:) (AT jr)Z"Q ]1/2}'

It can be stated on experimental grounds that we need not be con-
cerned with values of » > 1. It will be noted that the special case,
r =1, is a critical one in both (13) and (14), but one which need
not concern us here. When » < 1, it will be obvious to the reader
from an inspection of expressions (13) and (14) exactly what nu-
merical conditions are being assumed in retaining only the linear
terms (in ¢ or #) in the binomial theorem expansion of the radical,
yielding,

b — ahS (15)
2 V b
when R/f >> hS, and
R 1 1—
kZ:_—.—[l———L],'whenR/f<<hS. (16)
V. 2f (1+7)2

Tt is clear that (3) can be regarded as an approximation identical
with (11) provided that we can show (4) to be essentially the same
as (16). Exact coincidence cannot be expected because of the ap-
proximations already made. Nonetheless, it may be shown graphic-
ally (Fig. 2) as well as by expansion in a MacLaurin series that for
0 = r = 0.6, the coefficient of —R/V, in (16) is not appreciably dif-
ferent from log.(1 + r). The identity of (4) and (16) is thus rea-
sonably complete for this range of r if we assume, as in the past,
that the average axial concentration gradient is such as to make
f = 1. To summarize, then, if in the differential equations for a dis-
tinct parallel system, (8), (9), it be assumed that, (a) there exists
along the absorbing blood vessel a concentration gradient of the type
f=1, (b) kS >> R (in such a way as to justify the expansion of
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F1GURE 2. Graph to show approximate coincidence of the single exponent as
derived in the von Schrétter theory (1n(1+r)) and in the limiting case of the
differential equation method. The coincidence in the physiologically important
range 0 < = < .6 is seen to depend on f (see text), being best when f = 1, and
increasingly poor as f decreases from unity.

the radical in (14)), and (¢) 0 = aV,/V = 0.6, then the uptake as a
function of the time is given by von Schrotter’s expression (3), (4).

In the absence of suitable experimental values of &, we can only
speculate about the plausibility of the condition, B/f << kS . Let us
divide this inequality by V., the tissue volume, and assume that f =1.
We may then fairly require that

S
Ve
R
Ve
We have not found in the existing literature simultaneous meas-
urements of blood flow and surface-volume ratios on any tissue. How-
ever, it may be seen from the data gathered in Table 1 that the ratio
in question may be expected to lie between the two extremes, 277 h
and 460,000 .. The decision regarding the validity of the von Schrot-
ter type of approximation is thus seen to depend on accurate values
of the permeability of the plasma membrane to gases. Such values
are not abundant. In early rough calculations we, as well as others,
have assumed values of the order of 1 X 10-5 cm sec!. Under these

h exceed at least 100 to justify (11) and (16).
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circumstances. it is clear that the ratio mentioned above would be
much less than the requisite 100. It is probable, however, that the
permeabilities are larger than 1 X 10-5. From Krogh’s measurements
we (III) have calculated 7 X 10-% and 8 X 10+ em sec? for O, and
CO, respectively through the lung barrier. Recently, V. Wartiovaara

TABLE 1

Blood Flow and Capillary Surface per Unit Volume for Various Tissues

Blood Flow/Volume Surface/Volume
Tissue or Organ (sec1) (em-1)
Guinea Pig Muscles:
(TeStING) oo e | e 3,8,32 (1) .iceeenenn,
(TNASSAZE) oo oo e e ettt e s e e eee e eeens| ceneemne e seeeneas 200 (1)......
(WOTKING) . et et ens ] neeeeseesaimreneas 390 (1) ......
(maximum circulation) 750 (1).....
(gastrocnemius) ........c....... 186-254 (2)......
(masseter) ..o il el e 304-507 (2) oo
Mouse Muscle:
gasStroCNeMIUS. ...coooeoeeeeoen | ottt e 486-640 (2) ceceeeee.
masseter_ ... L. 726-923 (2) ceeeeacees

Guinea Pig Fat:
Fat fat tissue ...
. Lean fat tissue

Frog MUSeCle. ..o oo e ee e am e e meaencnes | nnne 190 (1)

Horse Muscle... ..o 240 (1)

Dog Muscle.....oomoeeeeeeeiccnecs e IS PSSO 590 (1) .cvereenn.
4 N 0% 0 (s RN FRR 09383 (4) oo

Kidney. 025 (4) ool e emreaeeee

Liver e 025, .006, .017 (4).......

B 2525 51 VOSSR RO 023 (4).....

Intestines 012 (4).......

SPleen ... | et 007 (4).ee-

Stomach 004 (4 oooooes} oo camne e
3 F:101; SOOI [OOSR Moo, 0022 (4) oot

The numbers in parenthesis refer to authorship

(1) Krogh (1936)

(2) Sjostrand (1937)

(3) Gersh and Still (1945)
(4) Best.and Taylor (1943)

of data:
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(1944) has measured the permeability of tolypellopsis for deuterium,
and I. Holm-Jensen, A. Krogh and V. Wartiovaara (1944) that of
certain plant tissues for various ions; all of these values are of the
order of 1 X 10-* ¢cm sec™. Accepting 1 X 10 as a round number for
h, we gee that the extremes of the critical ratio are .277 and 460 —
values which straddle 100. It would thus appear that whereas in cer-
tain cases the von Schroétter approximation might be quantitatively
justifiable, in others it would be very poor indeed. Until tissue con-
stants can be measured with greater precision, a preference must be
given to the general differential equation formulations (I-V) which
are capable of describing situations wherein penetration is strongly
limiting, as well as those situations where this is not so.

In emphasizing the clear priority of H. von Schrotter with re-
gard to equations of the type of (3) and (4), it also seems oppor-
tune to mention the important papers of T. Teorell (1937a, 1937b)
on the kinetics of distribution of injected substances. So far as
we are aware, Professor Teorell’s work is the first rational attempt
to describe the whole-body distribution process by means of an ap-
proximate system of differential equations. It is regretted that this
paper had not come to our attention at the time the present work was
begun.

This paper was aided in part by a grant from the Dr. Wallace C.
and Clara A. Abbott Memorial Fund of The University of Chicago.
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