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The standard two factor excitation theories should be called "pre- 
excitation" theories since they apply only to those events occurring just 
up to excitation. A true phenomenological excitation theory which de- 
scribes the whoIv excitation cycle must involve non-linear equations. The 
nature of these non-linearities is suggested by B. Katz's subthreshold 
response data. From this data is constructed a "local phenomenological 
characteristic" which is analogous to the current-voltage characteristic 
of a non-linear electrical or mechanical system capable of displaying 
relaxation oscillations. Excitation by constant currents is shown to oc- 
cur where the slope of the characteristic changes sign. The variation 
of the time constant of excitation with degree of response, explained by 
W. A. H. Rushton in terms of a liminal length, is described here in purely 
formal terms. The theory as presented explicitly treats only those events 
in the excitation cycle up to and a little beyond excitation; the complete 
excitation cycle (including recovery and repetition) is mentioned as be- 
ing amenable to mathematical treatment by an extension of the present 
theory. 

The formal  two-fac tor  theory  of nerve  excitation, (e.g., Rashev- 
sky, 1933) while being adequate to predict  t ime-intensi ty  relat ions 
for  a var ie ty  of s t imulat ing currents ,  is general ly assumed to be inad- 
equate to deal with phenomena occurr ing a f t e r  "physiological"  re- 
sponse has begun. (See, however,  Katz, 1936). Tha t  this inadequacy 
must  be fundamenta l  is appa ren t  f rom a considerat ion of the physical 
basis under ly ing  excitat ion:  profound s t ruc tura l  changes are known 
to accompany excitat ion and recovery (Cole and Curtis,  1938), yet  
the excitat ion equations involve paramete rs  which a re  constant  and, 
therefore ,  independent  of these changes. A possible way out  of this 
di lemma has been suggested by several authors  (Monnier  and Copp4e, 
1939 ; Arvani taki ,  1939 ; Householder,  1939) : viz., tha t  the excitat ion 
equations are  really non-linear, and tha t  the usual l inear  equations, 
which are  valid only dur ing  the "physical"  response, are  first approxi-  
mations to the exact equations. (This  s ta tement  may be taken to imply 
a definition of physical response: i.e., physical response is tha t  re- 
sponse representable  by l inear equations.) Such a non-l inear  theory  
could presumably describe the processes accompanying breakdown and 
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34 NON-LINEAR EXCITATION THEORY 

recovery;  however, so far  as the wri ter  is aware, 1 no a t tempt  has been 
made to investigate the specific nature  of the required non-linearities. 
In the present  paper we shall investigate some possible non-linear 
modifications of the formal excitation theory;  the discussion will be 
confined to non-accommodative (single-factor) cases, and for  the most 
part, to sub-threshold effects. 

P h e n o m e n o l o g i c a l  charac t e r  o f  e x c i t a t i o n  theory .  The "state of 
excitation" of a nerve, s ,  is defined operationally by 

Eo - E ( t )  
s ( t )  - -  , (1) 

Eo 

where Eo is the rest ing threshold cathodal impulse (measured either 
in volts or coulombs), and E (t) is the impulse required to jus t  bring 
the nerve to threshold at time t .  Before excitation E (t) is the shock 
required to jus t  produce a propagated excitation, and so E (t) is catho- 
dal and s ( t )  < 1; during the early stages of excitation E ( t )  is the 
shock required to jus t  quench the excitation, E ( t )  is anodal, and 
s > 1.  Thus, although the intrinsic physical nature of e is a mat ter  
of conjecture, e can be defined operationally over a considerable por- 
tion of the excitation cycle; over this portion of the cycle it is a per- 
fectly valid variable to use as the basis of a mathematical theory of 
excitation (Monnier, 1934; Schaefer, 1940, p. 166). 

It has been shown (Young, 1941) that  if s is assumed to vary 
according to 

de 
d-t -~ K I  - k s ,  (2) 

then s defined by (1) is consistent with (2).  Proof  of this is required 
because any dynamic equation such as (2) implies a relation between 
s and the current  I [or E (t) ] which, in general, will not reduce to (1) 
for  impulsive stimuli. If  (2) is modified by assuming that  k is itself 
a function of e ,  but  K is not, then we have 

de 
- -  -~ K I  - k ( e )  e �9 (3) 
dt  

it remains to show that  e defined by (3) is consistent with (1).  
Let us define two quantities e' and s" which vary according to 

de' 
- - : K I  - k%' 
d t  

1 During the preparation of this manuscript I have had the opportunity to 
read a very interesting manuscript by Dr. B. Katz in which a semi-physical ap- 
proach to the problems discussed here is given. 
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and 
d~" 

- - K I  - k " d '  
dt 

where k' and k" are the maximum and minimum values, respectively, 
of k(e) on the range 0 to s .  Then it is clear that 

the equality holding, for any arbitrary l ( t ) ,  only for constant k(e).  
Moreover, for impulsive shocks (Young, 1941), 

Eo - E ( t )  
S' ~--- S" - -  

Eo 

and so s( t )  of equation (3) is also given by (1). We have therefore 
proved that  the dependent variable of the non-linear excita,tion equa- 
tion (3) is operationally definable by (1). We shall refer  to a theory 
which concerns itself only with variables definable in terms of the 
state of excitation as a phenomenologieal theory; from this point of 
view, the single-factor theory or its non-linear generalization (3) is 
phenomenological. 

The fact that k is a function of the electrode spacing (Katz, 1939, 
p. 75) would decrease the operational significance of s,  unless we 
agree upon some standard electrode spacing; in the remaining dis- 
cussion we shall assume that this standard electrode spacing is main- 
tained. 

Subthreshold effects. Experiments by B. Katz (1937), A. L. 
Hodgkin (1938), R. J. Pumphrey et al (1940), and others on sub- 
liminal responses of ne~-~e have strongly indicated that the linear 
equation (1) should be replaced by the more general equation (3). 
Their evidence may be briefly summarized as follows: after  an impul- 
sive conditioning shock, e will attain some value, el, and according to 
(2), will then subside exponentially, i.e., 

de 
: - k s ;  s = s~e -~t, (4) 

dt 

where k is the time constant of excitatio:l. (Note that our k is the re- 
ciprocal of Hill's k). This statement is the starting point of A. V. 
Hill's (1936) discussion of excitation. The exponential subsidence of 
the excitatory state is certainly correct if s, is small or negative (an- 
odal) ; but, as Katz's (1937) Figure 4 shows, when el > .5 marked 
deviations from (4) occur, while for e~ > 1, s actually increases with 
time. An interpretation of these deviations from linearity in terms 
of a "local" response in accordance with Rushton's notion of liminal 
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length (1937) has been fai r ly  general (Katz, 1939) ; but from the 
strictly phenomenological viewpoint such considerations are some- 
what  irrelevant. All tha t  can be concluded f rom these curves is tha t  
the differential equation (4) should be replaced by a non-linear equa- 
tion in which the time constant is itself a function of s ,  (or, a possi- 
bility which will not be discussed here, K is a function of I ) .  The 
physical interpretat ion of such a non-linearity is outside the scope of 
a formal theory. For  example, f rom the point of view of a formal non- 
linear theory, it is immaterial  whether  a variable k is due to an all-or- 
none local response extended over a gradually increasingly area, or a 
graded local response, or (as would appear to be most likely a priori) 
a combination of both. 

From the ~(t) curves of Katz's experiment, the function k(~) 
(which we shall call the instantaneous time constant) can be found 
since, by (4), 

1 de 
k ( e ) - -  s d t '  (5) 

k(e) L~ 

/ 

l . . . .  

Fmw~ 1 
The "local phenomenological characteristic", w(~) vs. ~, and the instan- 

taneous time constant k (~), from Katz's data. Indicated points are experimental. 
The dotted portions of these curves are hypothet ical .  The function k(O for 
anodal shocks is a constant  whose  va lue  is uncerta in  (cf.  Katz ,  1 9 3 7 ) ;  for this 
reason no experimental paints are shown on the anodM side. 

and the value of ds/dt for each value of s can be ascertained by graphi- 
cal differentiation. I f  /r is a function of s alone, these s( t )  curves 
should consist of a family of "parallel" curves, in which the slope of 
each member of the family is the same for a given value of e .  To what  
extent this is true can be judged from Figure 1, where - d s / d t  vs. 
and k(~) are plotted f rom Katz's data;  very much the same results 
are found from the giant axon data of R. J. Pumphrey  et al. The scat- 
ter ing of the points Oaken f rom different members of the decay curve 
suggests tha t  k may depend on some variable besides s (e.g., d~/dt, ~ ,  
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or I) or that  even in this range K .is not constant;  however, the scat- 
tering is not bad between s c~ .5 and ~ ~ 1.4 and so we shall suppose 
k to be determined by e alone in the present discussion. 

A semi-analytic approximation to k(e) together with the  re- 
sponse curves obtained by using this approximation in in tegrat ing 
(5) are shown in Figure 2. A general resemblance to the experimental 

tit (e i) : 

, .  = - , = - 

FIGURE 2 
Local decay curves obtained by in tegrat ing (5) with k (O  given by the piece- 

wise l inear  function on the right.  (The positive direction on the k-axis is r ight  
to left.) The notation h e z and h o 2 for  the points a t  which k ( O  changes slope is 
suggested by Rushton (1937), F igure  6. 

curves is apparent  here;  improving the fit by bettering the approxi- 
mation to k (s) is of no particular theoretical value, however. 

The nerve "phenomenological characteristic". In the non-linear 
theory of electrical oscillations and related phenomena it is customary 
to introduce a "characteristic curve", a knowledge of which is suffici- 
ent to predict the behavior of the system provided the dynamical equa- 
tions of the system are known. In general, the characteristic gives the 
relation between a current  and a potential variable; if the current  
variable is a multiple valued function of the potential variable, the 
characteristic is usually denoted by the letter N (north) ,  while if the 
potential variable is a multiple valued function of the current, the 
characteristic is denoted by S (south) (cf. le Corbellier, 1931, p. 32). 
For  systems possessing a linear characteristic, the variational resist- 
ance (defined as the slope of the characteristic) is constant and equal 
to the ordinary resistance. While the system is in a state characterized 
by positive resistance, energy must  be supplied from the outside to 
maintain the activity of the system; while the system is in a state 
characterized by negative resistance, the system supplies its own 
energy. From the definition of the characteristic, it follows that  the 
variational resistance (or conductance) changes sign at a tu rn ing  
point of the characteristic. 
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In at tempting to arrive at a corresponding "character~istic" for  
nerve based on phenomenologieal principles (assuming that  one ex- 
ists),  we are guided by certain requirements, suggested by the elec- 
trical analogies, which must  be satisfied by any curve which plays the 
role of a characteristic in the theory. First ,  the characterist ic must 
be a relation between some variable which behaves like a potential 
(cf. Herrenden-Harker ,  1940), and a variable which has the dimen- 
sions of current  (in a generalized sense). Second, the slope of the 
characterist ic must  reduce, in the linear case, to a variational con- 
ductance (or a time constant, in circuits with constant capacitance).  
This means that  a theory based on a linear characterist ic must  be 
identical with the linear theory already known. Third, at  the turning 
points of the characteristic, the direction of the energy flow must  re- 
verse, and the nerve phenomenon must  become self-sustaining. 

We can t reat  the quanti ty ~ as a potential variable without  com- 
promising our ideas of potential too seriously. For  the equilibrium 
state of the nerve is characterized by the condition s - -  0, and the 
value of s is a measure of the deviation from equilibrium. Conse- 
quently, the potential energy of the system (in a str ict  physical sense) 
can be expanded in powers of e ,  thus establishing a connection be- 
tween ~ and the potential energy which is valid even though s is a 
purely phenomenological variable. The quanti ty ~ is analogous to the 
displacement variable in a spring near equilibrium. 

On the other hand, the choice of current  variable is not so clear. 

The quanti ty w (e) = k ( e ) e  ~ - ~ t  by (5) satisfies the dimensional 

requirement,  and when k is constant, it does give rise to a linear "char- 
acteristic" which yields the original linear theory. However,  if we 
plot w (e) vs. e (Figure  1), we find that  the turning point of this "local 
phenomenologieal characterist ic" (1.p.o.) occurs almost where the 
physiological local response begins, but  certainly not where the exci- 
tation has become self-sustaining. The origin of this difficulty seems 
to lie in the fact  that  the self-sustaining nerve response is a propagat-  
ed disturbance;  the criteria for physiological response and for propa- 
gated response are not identical. This fact  was pointed out by W. A. 
H. Rushton in 1937. 

Stability and instability of the characteristic. If  we assume that  
K is independent of ~, (an assumption which is certainly incorrect 
for  s > > 1, and may be incorrect even for  smaller c), we can indicate 
the effect of a constant current  I by means of a s traight  line drawn 
across the 1.p.c. parallel to the e axis~ (Figure 3) ; the line KI intersects 
the characteristic at  the points A and B .  Point  A is seen to be stable, 
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for  if the s ta te  of the nerve is represented by some point  A ,  and if we 
displace this point toward  the r ight  (e increasing) ,  KI - w(s) ,  or by  
equation (3),  de~dr, becomes negat ive and the paint  re tu rns  to A;  
similarly if  e is decreased slightly, KI - w ( s )  > 0 and again the point 
re turns  to A .  On the other hand, a displacement in ei ther  direction 
f rom the point B will tend to increase the displacement (ds/dt and 
A e have the same sign) and so B .is unstable. The a rgument  present-  
ed here can easily be generalized to show tha t  for  s teady current  stim- 
ulation any point  on an ascending branch of the l.p.c. (dw/de > O) 
is stable while any point on a descending branch (dw/ds < 0) is un- 
stable. 

Suppose a graded series of constant  stimuli are  applied to a rest- 
ing nerve;  these may  be represented by a family  of horizontal lines 
as in F igure  3. F rom the  preceding discussion, it is clear tha t  a con- 

�9 Jr')'t- s i a l ' I l l "  a "  ICH~I~ : ,~  ' >W~ 

FlOVr~s 3 
Stability and instability of the 1.p.c. for steady current stimulation. 

s tant  current ,  I ,  will not st imulate if  KI intersects the ascending 
branch of the 1.p.c. The rheobase will be represented by the line which 
is tangent  to the l.p.c., or, f rom the figure, 

U~ o 

K 

where  w~ is the maximum value of w(s) and Io is the rheobase. F rom 
a knowledge of the 1.p.c. we can predict  the response to a constant  
cur ren t  s t imulus:  if I > w.o/K, excitation will occur, otherwise not. 

The response to impulsive stimuli presents  certain difficulties if  
we wish to make our  interpretat ion depend on the propert ies  of the 
1.p.c. As we have said, the turning point of the local characteris t ic  
is known experimental ly to occur at  about  e ~ .5 instead of s - -  1 ; in 
other  words,  instabil i ty to steady current  st imulation occurs before 
instabil i ty to impulsive stimulation. Jus t  such a possibility was sug- 
gested by Rushton (cf. his t~l with h 61) in discussing the "liminal 
length";  if  st imulation is impulsive, the entire liminal length must  be 
excited for  instabil i ty to set in (.i.e., the representa t ive  point must  
be brought  to the zero of  the 1.p.c.) while if  st imulation is steady, 
instabil i ty induced at any one point  is sufficient to ensure propaga- 
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tion (i.e., the representative point need merely be brought to the 
turning point of the 1.p.c.). This picture is very suggestive--but since 
it is based on the assumption that the local response is all-or-none, we 
are not justified in accepting it as the complete explanation of the 
difference .in response to impulsive and steady stimuli. 

Thus far  we have intentionally neglected any discussion of what 
happens to the representative point an appreciable time after insta- 
bility has set in. To answer this question we would have to know the 
shape of the 1.p.c. during the later part of the action. It is difficult to 
assign operational significance to the quantity e during the later stages 
of the action, since, as far as the writer is aware, it is impossible to 
block propagation by impulsive anodal shocks applied at the point of 
stimulation after a certain point in the action has been reached. If it 
eventually proves possible to give an operational definition of s dur- 
ing the subsidence of the action (Monnier, 1934), we would certainly 
find it hard to refrain from extending the characteristic to include a 
second ascending branch (dotted line, Figure 1). Such a character- 
istic (S type), together with suitable assumptions concerning the 
variation of K with s,  would enable us to give a phenomenological 
theory of such processes as recovery and repetitive discharge. The 
analogy with systems capable of displaying relaxation oscillations 
would be complete. However, we do not feel justified in going fur- 
ther into these possibilities until some evidence is given for extending 
the characteristic in the manner just described. 

Relations between linear ~nd non-linear theory. It is an empiri- 
cal fact that the linear equation (2) predicts excellent strength-dura- 
tion and voltage-capacity curves. If (2) is only an approximation to 
the non-linear (3), why should this be the case? 

Suppose voltage-capacity or strength-duration experiments are 
performed in which the index of response is not necessarily the pro- 
pagated disturbance ( ~ 1), but some arbitrary value of the excita- 
tory state, sj~, as measured by the test shock method. Voltage-capac- 
ity measurements of almost this type have been performed by H. Ro- 
senberg (1937) but technical difficulties have made the corresponding 
strength-duration experiments unfeasible (although cf. Rushton, 
1932). If ~ is small (< .5) so that the linear theory applies, the time 
constant found from such experiments would simply be the initial 
sIope of the 1.p.c., and would be independent of degree of response. 
As sh increases, the linear theory no longer applies: the effective time 
constant will depend on eh and, in general, on the shape of the stimu- 
lating current. 

To determine exactly what intermediate value of k must be used 
in a linear theory stren~h-duration curve so that it will deviate as 
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little as possible f rom the non-linear s t rength-durat ion curve, we must  
require tha t  the durat ion of a constant  st imulus according to the non- 
linear theory,  

KI - k(e)e  

and the durat ion according to the approximat ing linear theory 

e~ de 

~o K~I- kz(eh)s 
be as nearly alike as possible, for  a given index of response eh. The 
quanti t ies Kz and k, (eh) are  the approximat ing linear theory con- 
s tants  for  the  index of response sh. An exact solution of  this mini- 
mum problem for  all currents  I ( t )  seems to be very  difficult, and so 
we shall s imply wr i te  down an approximate  solution which is valid 
for  large values of the s t imulat ing current :  

kz (sh) k (s) sale K~ = K .  (6) 
8h 

This integral is the first moment  of  the function k(s) .  The fac t  tha t  
kz (sh) is not independent  of I in the next  approximat ion (small val- 
ues of I)  may  be related to H. A. Blair 's  (1936) contention that  the  
simple l inear theory is inadequate, even for  s t rength-durat ion data. 

To determine voltage-capacity or s t rength-durat ion curves accu- 
rarely we should integrate  (3) with the function I ( t )  replaced by the 
par t icular  current  used as stimulus. The result  of this integrat ion for  
constant  currents  of various intensities, is given in F igure  4~.  (The 
k(s)  function of F igure  2 was used here.) These curves are  practi-  
cally the same as those given by W. A. H. Rushton (1937, Figure  6).  

tO 

/ / / 
. 7 ' 8  ~ = I 0  
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.5 
.4 
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.I 
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.J 2 3 .4 5 ~__~.7 B g I0 I.I t .2 r3 1.4 t~ 

FIGURE 4 a  

The variation of ~ under constant current stimulation obtained by integrating 
(3) with the k (0  of Figure 2. The parameters in Figure 2 are arbitrarily taken: 
~o - -  1, h e 1 - -  .5, K ~ 1, and the units of t and I are arbitrary. 
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FIGURE 4b 
Strength-du.ration curves for indices of response eh = 1, .80, .65, .50. Points 

obtained directly from the curves of Figure 4a are represented by circles. The 
curves were obtained by using the Table 1 values of k~ (~1~) in the ordinary 
condenser formula (2). 

From the curves of Figure 4a, we can construct  s t rength-durat ion 
curves for  any a rb i t ra ry  index of response; the curves for  sh - -  1,  
.8, .65, .5 are given in Figure 4b. The values of kz (sh) determined di- 
rectly f rom these curves, together  with theoretical values of k~ (s~) 
calculated f rom (6), are given in the accompanying Table 1. The 
magnitude of the variation in kz (~,) which may be expected is seen 
to be of the order of 100% ; this agrees with the results of H. Rosen- 
berg (1937) and of B. Katz (1937). 

~h 

.5 

.65 

.80 
1.0 

Table 1 : Values of k~ (Sh) from strength-duration curves 
(Figure 4b) compared with values of k l (%) from (6), 

k~ (~h) (Fig. 4b) k~ (%) (Eq. 6) % difference 
1.0 1.0 0 
.86 .92 6-}- 
.74 .79 6 H- 
.54 .58 7 +  

I t  is seen from Figure 4b tha t  the non-linear s trength-durat ion 
curves are  practically identical with t he  linear curves which are  ob- 
tained by .integrating the linear equation (2), a f te r  replacing ko by 
kz (sh). This must  be considered ra ther  fortuitous, since, by taking 
some different approximating function for k ( s ) ,  we could get a dif- 
ferent  non-linear s trength-durat ion curve. Thus it appears that  Rush- 
ton's prediction of a strict linear theory strength-durat ion curve, even 
when the liminal length is taken into account, must  depend on the 
assumption of an all-or-nothing response at a point. 

Physical inte~pretations. Although the theory which we have out- 
lined is phenomenological, certain connections with physical interpre- 
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rations seem to be inevitable. As an example, we may ignore the dif- 
ficulties fo r  the moment, and identify s with the condenser voltage, 
V, in a circuit consisting of a condenser, C,  shunted by a non-linear 
resistance. For this circuit, assuming no current flow from the ouLside, 

dV V 
dt R(i )C 

where i is the current through the variable resistance R (i) and, by 

�9 C dV, definition, iR(i) ---- V(i) Since i --  ~ -  the V(i) Characteristic 

may be determined exactly as we determined w ( s ) - - b y  graphically 
differentiating a family of voltage decay curves. The V (i) curve may 
be identified with our w(s)  provided we plot s vertically and w hori- 
zontally; on the other hand, this characteristic bears little resem- 
blance to the steady state V(i) curve found by K. S. Cole and H. J. 
Curtis (1940) for squid axon. 

The direct measurement of the V(i) characteristic in nerve is 
analogous to the usual direct measurement (with ammeter and volt- 
meter) of the characteristic of a neon tube shunted by a resistance 
and a condenser. However, there is another "phenomenological" meth- 
od of measuring the characteristic of such a neon tube which, while 
highly impractical, is analogous to the scheme we have used here to 
get at the "characteristic" of nerve (cf. also Blinks and Skow, 1940). 
Suppose, instead of directly measuring the current as a function of 
the steady voltage across the tube, we determine the time course of 
the discharge of the condenser through the neon tube and its shunting 
resistance. This may be done either by actually measuring the time 
decay of the initial charge with a ballistic galvanometer, or, by de- 
termining the extra charge required at each time to just  cause the 
neon tube to flash. In this way we can obtain "local excitatory decay" 
curves entirely analogous to those found by Katz, and from these we 
can determine the instantaneous voltage across the tube as a function 
of the current through it. For a simple neon tube circuit this phenom- 
enological method and the previous direct method should give identi- 
cal characteristics. If  the experiments of K. S. Cole and H. J. Curtis 
may be considered the proper analogue, in the nerve, to the direct 
measure of the characteristic of the neon tube, then as we have men- 
tioned, the direct and the phenomenological methods in nerve do not 
lead to the same characteristics. The explanation of this difference 
probably lies in the inadequacy of the structural assumptions required 
to make the transition from the phenomenological to the physical 
characteristics. A complete elucidation of this difference will be a ma- 
jor task of any adequate theory of nerve activity. 
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