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Cel%ain arrangements of enzymatic (bimolecular) subsystems lead to characteristic 
threshold-type response. Two simple cases of such systems are studied here in terms of 
steady state behavior and explicit relationships between system and curve parameters. I t  
is found that the curvature of the threshold curve is directly related to the equivalent 
Michaelis constant and, in the case of saturated threshold curve, the slope of the curve at 
the idealized threshold is limited by the ratio of saturation to threshold. This slope may 
be appreciably increased up to a stepwise response at the threshold if a multisubstrate 
complex of the enzyme is the only species which affects the enzyme mediated transport. 

Sa tu ra t ion  p h e n o m e n o n  occurr ing in enzyma t i c  react ions  can resul t  in cer ta in  

threshold  t ra i t s  in sys t ems  containing b imoleeular  subsys tems .  Quite  s imple 
sys t ems  which are examples  of  such threshold  mechan i sms  m a y  be found.  

More general ly,  this  t y p e  of threshold  behav io r  can arise as a resul t  of  the  non-  

l inearit ies inheren t  in b imolecular  react ions.  
I f  two observable  componen t s  of  a sys tem,  X and  Y, are connected  e i ther  uni- 

direct ional ly  as in F igure  la ,  or revers ibly,  as i t  is shown in F igure  lb ,  the  rela- 
t ionship be tween  the  s t eady  s ta te  va lue  of  Y, Y~,  a n d  the  s t eady  s ta te  va lue  of  
X,  X ~ ,  is l inear  unless some of  the  ar rows s t and  for  nonl inear  t r anspor t .  Con- 
sidering Y as a response to  X,  we m a y  wri te  in the  general  case 

Y = p(X)X - q(Y)Y (I) 

where p(X) and q(Y) are nonlinear rate coefficients, whose form is limited to 
I03 
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Figure 1. 

rational functions, if bimolecular subsystems are the carriers of the correspond- 
ing transport mechanism. 

The simplest threshold mechanism of this kind arises from an enzyme medi- 
ated loss of Y: the enzyme, E, combines with the substrate, Y, to form a com- 
plex, C, according to the typical bimolecular reaction 

C = k l E Y  - (k2 + k3)C (2) 

so that  the equation for Y (ifp(X) = p = const) reads as follows 

:~ = p X  - k I E Y  + k2C. (3) 

We have an additional equation for E, namely 

E =  ~ - a E  - C (4) 

for an open system, i.e. the enzyme is produced with the rate # and inactivated 
with the rate aE;  for a closed system, E = - C ,  and, therefore, 

E + C = E0, (5) 

where E o is the total amount of enzyme. 
For the closed system, then, the steady state of (2) and (3) with the use of (5) 

is given by  the following formulas: 

Eo Y~ 
C~ = K + Y| (6) 

and 

k3E o Y o~ 
p X ~  = K + Y~o + qY~o, (7) 
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wi th  the  equiva len t  Miehaelis cons tan t  

K = k2 + k3 (8) 
kl 

Here  a l inear  loss of  Y was added,  since otherwise a f te r  s a tu ra t ion  of  the  enzyme  
no s t eady  s ta te  would be possible. Solving (7) for Y~,  we ob ta in  a threshold  

curve  (see h e a v y  line in Figure  2): 

1 
Yr = ~q [%/(k3Eo + q K  - p X ~ )  2 + 4 q K p X ~  - (lc3E o + q K  - p X ~ ) ] .  (9) 
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Figure 2. Steady-state plot of (2) and (3) with (5) as shown 
by (9) or (13)--heavy line. The dashed lines show the two 
components of the heavy line. The thin lines identify the thres- 
hold curves for several values of K, the equivalent Michaelis 
constant. The idealized curve, i.e. K = 0, is also shown [cL (14)] 

P a r a m e t e r s  of  the  threshold  curve  are now easily identified if  X ~ is p lo t t ed  as a 
funct ion of  Y~ t h rough  the  following expression,  the  inverse of  (9), 

k3E0 y~ 

X~ = P + q Y ~ .  
K +  Y~o P 

(lO) 
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The result is the sum of two terms, the two dashed lines in Figure 2. We note 
that  for Y| large enough Y| >> K, the straight line 

X~ =/c3E----~~ or Y~ = ~ ( X ~ -  O) (11) 
P P 

ensues. The threshold 0 and the slope ~ may then be defined in terms of 
parameters of the model, viz., 

O - / c 3 E ~  and a =P-, (12) 
P q 

so that  (9) takes the form 

Y~ = I(%/[K - a(X~ - 0)] 2 + 4 ( T K X ~  - K + a ( X ~  - ~)). (13) 

Real threshold curves have always finite curvature in the neighborhood of the 
threshold. The higher the curvature, the sharper is the threshold and the closer 
is the real curve to an idealized one. For, given threshold 0 and slope a, the 
real curve approaches an idealized one as K --> 0, as one can expect from (7). 
In fact, the idealized threshold curve is 

lira r ~  = i~[]X~ - 8] + (X~ - 0)], (14) 
K=0 

that  is, Y~ = 0 up to X~  = O; beyond that  point it increases linearly with X~  
(cf. Figure 2). (Note that  K --> 0 for given k 3 requires according to (8) that  
Ic 1 >> ]c 2 + /ca, or, the rate constant for the forward enzymatic reaction, It1, must 
be increasing indefinitely as compared with the backward rate constant ]c 2 and 
the constant for catMytic return of the enzyme,/ca. ) 

In  an open steady state system we cannot have such a nonlinear response of 
the system as it is represented by  a threshold curve. Since in the s teady state 
[cf. (4)] 

= - ,  ( 1 5 )  
a 

the (5) is not true anymore. Then, instead of (6) we have only 

]Q Eo~ /z  (16) C~ -- ]c 2 + k3 

which, when substi tuted into (3) yields 

[ klk3 # ) (iv) 



SOME B I O C H E M I C A L  T H R E S H O L D  MECHANISMS 107 

a linear relationship between the steady state values of the two variables. We 
thus conclude that  a threshold mechanism is feasible in the type  of system we 
consider only if the system is effectively closed, or, when the relaxation time of 
the enzyme is far larger than that  of the (Y, C) subsystem. We note here that  
we tacitly assumed larger relaxation time for the X component as compared 
with that  of (Y, C) subsystem. 

No specifications of the relative magnitudes of relaxation times of the com- 
ponents Y and C of the subsystem (Y, C) need be given. However, it is com- 
monly true that  the elementary bimolecular process have far smaller relaxation 
time than other processes encountered in the system, thus leading to a stratified 
temporal hierarchy in the system. Then, we may write (3) with the use of (6) as 

m Y  q y  (18) 
I ~ = P X  K +  Y 

where the linear loss qY was included as in (7) and k3E o was replaced by  the 
maximal loss of Y, m, due to enzymatic (bimolecular) process. We introduced 
here the stratified temporal hierarchy concept to justify belatedly (1) and to 
drive at possible generalizations. 

Comparing (1) with (18) we have 

m 
q(Y)  = K +-----7 + q (19) 

while p(X) = p. We know that  the threshold property of the system response 
is due to the form of q(Y) and, hence, we may resort to a simplified form of the 
steady state of (18), namely, for K = 0 (idealized threshold curve), while 
keeping the form of p ( X )  general. Such a consideration leads to 

1 
r ~  = ~q[lm - p (X~)X~ I - (m - p ( X ~ ) X ~ ) ]  (20) 

analogous to (9) when kaE o = m, K = 0 and p X ~  was replaced by p ( X ~ ) X ~ .  

Accordingly, Y~ = 0 for 0 < p ( X ~ ) X ~  <~ m and 

Yoo = p(X~o)X~ - m for p(X~o)Xo~ > m. (21) 
q 

The threshold is defined by  

p({9) O = m. (22) 

Now we choose a specific functional form for p(X). The simplest non- 
constant form in view of the note below (1) is 

n 
p ( X )  = K '  + 'X' (23) 
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e.g. the transport process from X to Y is enzymatic (or the like) in nature. 
However, we will proceed with somewhat generalized form, viz., 

T b X  c - 1 

p ( x )  = K '  + X c (24) 

since it does not present any greater difficulty in arriving at the relationship 
between the parameters of the curve and those of the model. This form results 
from an assumption tha t  an enzyme needs to combine with c molecules of the 
substrate X in a sequence of bimolecular reactions before it becomes active in 
the transport of X into Y. We recall tha t  this form is an approximation to the 
actual one containing all the powers of X in the denominator, from 0 to c, but it 
is a sufficient one to point out the trend in a more realistic situation. 

Using (22), we find explicitly the threshold in terms of the system parameters 

i n K '  
e)o = - -  (25)  

n - m 

and define the initial slope as the slope of the curve at  the idealized threshold 

= \ - # 2 - - ~ / x ~ = o  = ( g '  T~-z?/x~:o ~ q g '  (~ - ~ ) ~ - ~  (26) 

In the steady state, (1) reads in this case 

n X %  m Y ~  
- + q Y ~ o  (27) 

K' + X% K + Y~ 

yielding for X~ --> 

m Y ~  max 
n = K + Y ~ m ~ x  + qY~ max (28) 

thus arriving at  a new curve parameter, Y~ m~x, the maximal value of Y~ 
which cannot be exceeded however high value X~ will reach (Figure 3). Since 
we consider the idealized case (sharp threshold), K = 0, (28) simplifies to 

n = m + q Y ~ m a x .  (29) 

Equations (25), (26) and (29) comprise a full definition of the parameters of an 
idealized threshold curve with saturation. When we inquire to which extent 
these three parameters of the curve, the threshold O, the initial slope a and the 
saturation Y~ max are independent, we rewrite (25) after eliminating n by use of 
(29) as 

i n K '  = q Y ~  max Oc (30) 
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Figure  3. The  th resho ld  curves  wi th  sa tu ra t ion  for var ious  values  of  
t he  equiva len t  Michaelis cons t an t  K" (K = 0). Thresho ld  O and  
sa tu ra t ion  Y~ max are for all curves  the  same so t h a t  for given c (c = 1), 

m a n d  n were c o m p u t e d  f rom (30) a n d  (29), respec t ive ly  

and the product a O  c [or that  of (25) and (26), using (29) again] 

(~ 0 c = c (mK' )  c 

q K ' ( q Y ~  ma~)C-2(m + qY~o m~,:) 

to obtain 

(31) 

Hence, for given threshold {9 and saturation Y~ max, the initial slope a depends 
upon the equivalent Michaelis constant for X to Y, K ' ,  and the number of 
molecules c of the substrate X required for the transport  to be carried out. 
While K '  only decreases the initial slope a, c increases the initial slope very 
effectively. 

For c = 1, the initial slope a 1 is 

roo max (33) 
al = K'  + O 

so that  the highest attainable slope is the ratio of saturation Y~ max to the 
threshold (9 (Figure 3), when K '  = O. 

c(OC) c -  1 y ~  max 
a = K '  + 0 c (32) 
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In  Figure  4 a fami ly  of  threshold  curves wi th  sa tura t ion  is given for several  
values of  c. As (32) suggests, the  initial slope increases rap id ly  with c: for 

c = 2, a2 = 2 Y~ max and for c = 5, ~5 = 5 Y~ m~x 01~ (both given for K '  << 0) .  
To summarize,  we see t h a t  the  propert ies  of  a threshold  curve wi th  sa tura t ion  

differ f rom t h a t  wi thou t  sa tura t ion  mainly  in the  above- threshold  propert ies  so 
t h a t  i f  the  restr ict ive condit ion K = 0 is lifted, a somewhat  sigmoidal curve 
follows (Figures 5 and  6). However ,  i t  was assumed th roughou t  t h a t  n > m 
[of. (29)] to  use the  t e rm  " threshold  cu rve"  meaningful ly.  

Y corn,., 10 

Yoo 5 

0 10 

0 
20 30 

XQ0 
Figure 4. The threshold curves with saturation for different c. 
Values of the equivalent Michaelis constants are K = 0 and K" = 1 
(close to the maximal initial slope curve, cL Figure 3) and for the 

same 0 and Y,  max of the family, m and n were computed 

More complex bimolecular  t r anspor t  mechanisms would resul t  in higher  degree 
of  the  polynomials  of  the  ra t ional  funct ions p (X)  and q(Y) such t h a t  the  rates 
p ( X ) X  and/or  q (Y)Y are nonmonotonous  and  thus  could give rise to  peculiar  
" th reshold  curves ."  The  threshold,  i f  a t  all, is less clearly defined and the  
relat ionship between the  pa ramete r s  of  the  curve  and  the  paramete rs  of  the  
model  might  not  be obtainable  in an explicit  form. 

The  systems wi th  threshold  characterist ics discussed here  are b y  no means  
the  only  (bimolecular) threshold  mechanisms.  Here  we were concerned wi th  
the  elaborat ion of  the  suggestion how behavior  of  enzymat ic  react ions m a y  
facil i tate the  unders tanding  of  threshold  u r ina ry  excret ion (LiSko, 1963). 
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F igu re  5. T he  t h r e s h o l d  cu rves  w i t h  s a t u r a t i o n  for  d i f ferent  va lues  
of  K (non- ideal ized curves) .  Va lue  of  t h e  e q u i v a l e n t  Michael is  
c o n s t a n t  is K" = 1; n u m b e r  of  s u b s t r a t e  molecules  r equ i r ed  for  t h e  
a c t i v i t y  of  e n z y m e  is c = 1. F o r  t h e  same  0 a n d  Y~ max, rn a n d  n 

were  c o m p u t e d  f rom (30) a n d  (29), r e spec t ive ly  
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Figure  6. T he  t h r e s h o l d  curves  w i t h  s a t u r a t i o n  for  d i f ferent  
va lues  of  log10 K (non- ideal ized curves) .  Value  o f  t he  equiva-  
l en t  Michael is  c o n s t a n t  is K"  = 1; n u m b e r  of  s u b s t r a t e  mole-  
cules r equ i r ed  for  t h e  a c t i v i t y  of  e n z y m e  is c --- 5. F o r  t he  
same  O a n d  Y~ max m a n d  n were  c o m p u t e d  f rom (30) a n d  (29), 

r e spec t ive ly  
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Walter et al (1967) studied biochemical binary logic and, using the assumption 
that  in a chain of enzymatic reactions a sigmoid relationship between the activity 
of an enzyme and the concentration of a substrate exists, they showed stepwise 
response of the system to increasing substrate concentration. This threshold- 
like character of the response implies another way of looking at bimolecular 
threshold mechanisms. Although the stepwise response is not  an essential 
property of the systems we were interested in (it can occur only for c -+ oo), the 
advantage may be found in the comprehension of the role of the system param- 
eters in shaping the response curve and, vice versa, what  values of the system 
parameters must be implemented in order to obtain a threshold curve with 
certain characteristics. The latter is appreciated when modeling of complex 
biochemical systems is a t tempted and certain properties of the threshold curves 
impose restrictive conditions on biochemical interpretation. 

The author is indebted to Drs. H. D. Landahl and H. M. Martinez, of the 
University of California at San Francisco, for valuable suggestions. 
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