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The general equations are discussed describing two species in competition or in symbiosis 
or feeding one on the other. 

Introduction. The simple ecological situation of two species living in the same 
environment can be represented by the equations 

dN1 = 2~lKl(N1 ' N2), 
dt (1) 

dN2. = N2K2(NI,  N2), 
dt 

where N 1 and N~ are the number of individuals of the two species, and K 1 and 
K 2 are two given functions of N 1 and N 2. The hypotheses implicit in equations 
(1) are tha t  the rate of increase or decrease of  the populations does not  depend 
on time and that  the populations are so large as to be measurable with real 
numbers and not subject to random fluctuations. The explicit hypotheses we 
are making are tha t  the initial values of N 1 and N 2, namely N10 and Nee, are 
positive and that  K 1 and / (2 ,  with their first derivatives, are defined and con- 
tinuous for all non-negative values of N 1 and N 2. The particular ecological 
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situation will dictate additional specific conditions on the two functions K1 and 
g2. 

The interrelation between the two species may  be of three main types: a. the 
first species is disadvantaged, the second is advantaged, by  the presence of 
the other (predator-prey relationship), b. both species are disadvantaged by  
the presence of the other (competition), c. both species are advantaged by  the 
presence of the other (symbiosis). 

Predator and prey. This case has been studied by  Volterra (1927) and later, 
under broader hypotheses, by  Kolmogoroff (1936); the paper by  Kolmogoroff 
is not widely known, so we think it useful to present here a summary of it 
together with our comments and extensions. 

The prey is represented by  N 1 and the predator by  N 2. 
To make the equations biologically plausible, the following properties are 

required of K1: 

al. The multiplication of the prey is slowed b y  an increase in the number of 
predators; therefore, ~KI[~K 2 < O. 

a2. For a constant ratio N1/N2, the multiplication of the prey is slowed by  
an increase in the number of predators because the predator-prey encounters 
are more frequent; therefore, dK1/dS < 0 where the derivative is taken along a 
vector starting at the origin. 

a3. I f  both populations are very small, the prey multiply; therefore, KI(O, O) 
> 0 .  

a4. I f  there are too many predators, the prey cannot multiply; therefore, 
there exists an A > 0 such that  KI(0 , A) = 0. 

aS. I f  there are too many prey, they cannot multiply even in the absence of  
predators; therefore there exists a B > 0 such that  K I ( B  , O) = O. 

The following properties are required of K2: 

bl. The multiplication of  the predators decreases with their number; there- 
fore aK~]~N 2 < O. 

b2. For a constant ratio N1/N~, the multiplication of the predators is in- 
creased by  an increase in the number of prey; therefore, dK2/dS > O. 

b3. I f  there are not enough prey, the predators cannot multiply; therefore, 
there exists a C > 0 such that  K2(C, O) = O. 

Now, if  B < C or B = C, ~he predators will disappear in a finite interval of  
time; and the populations will reach a point of equilibrium at N1 = B and 
N2 --- 0. A non-trivial solution can therefore be found only with the additional 
hypothesis: 

cl. B > C .  
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I t  follows that  the two curves K z = 0 and K 2 = 0 cross at  one point Z and 
divide the positive quadrant of the plane (N 1, Ng) into four zones, I, II,  I I I  and 
IV (see Fig. 1). There are three singular points: 0, B, and Z. The only 
integral curves starting or ending at  0 are the two axes. B is a saddle point 
(Poincar6, 1881); the integral Curve L (see Fig. 2) leaves this point with a direc- 
tion normal to the N z axis. This integral curve and all other integral curves 
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Figure 1. 

originating from the points at  infinity go eyc]ically from zone to zone, i.e., from 
zone I to zone II ,  from zone I I  to I I I ,  from I I I  to IV and from IV to I. These 
integral curves do not necessarily reach the point Z. 

There are three possibilities: 

a. The integral curves reach Z with a definite direction; i.e., the two popula- 
tions reach the point of equilibrium in a finite interval of time; 

b. The integral curves approach Z asymptotically: i.e., the two populations 
approach the point of  equilibrium with oscillations; 

c. The integral curves go an infinite number of times through the zones I, II ,  
I I I  and IV, without approaching indefinitely the point Z; in this case, according 
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to the second Theorem of Bendixson (1901), they approach asymptotically a 
closed line F containing Z; i.e., the two populations oscillate with period and 
amplitude approaching debermined non-zero values. According to the same 
theorem, F itself is an integral curve of equations (1); i.e., if hrzo and hr2o 
correspond to a point of F ,  then the two populations oscillate with constant 
period and amplitude. 

�9 �9 m 

0 B ~-N, 

Figure 2. 

For an integral curve passing through a point internal to F there are five 
possibilities: 

c.a. I t  reaches Z with a definite direction; 
c.b. I t  approaches Z asymptotically; 
c.c. I t  approaches asymptoticalIy, from the external side, a closed line con- 

tained in F and containing Z; 
c.d. I~ is a closed l ine containing Z; 
c.e. I t  asymptotically approaches F from its internal side or a closed line 

contained in F and containing Z. 

These five cases are not mutually exclusive. If, for any positive number e, we 
can find a number V such that  in a circle centered at Z with radius V the abso, 
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lute values of the derivatives of K1 and K 2 are less than e, then (Cauchy 1839, 
1842) the behavior of the integral curves near Z is revealed b y  the equation 

OK1\ 
x 

8K2\ 

~9K1 \ 

- ON2]z X 

= 0.  (2 )  

I f  there are two real negative roots, then a. or c.a. is the case; ff there are two 
complex roots with negative real part, then b. or c.b. is the case; ff there are two 
real positive, or complex with positive real part, roots, then c.e. is the case. 
Equation (2) cannot have a positive and a negative root; in fact, calling zl and 
z9 the coordinates of Z, for hypothesis a2, we have 

and for hypothesis b2. 

I t  follows that  

(OKI~ {OKI~ [zp] 

and by  the rule of Descar~s  (1637; see also Gauss, 1828) equation (3) has an 
even number of positive roots. 

We were unable to find a simple condition, necessary and sufficient, for the 
existence of periodic solutions; a sufficient, though not necessary, condition for 
the existence of a closed integral 2' is equation (2) having neither real negative, 
or complex with negative real part, roots. 

Competitors. The case of two species competing for a single common niche 
was studied b y  Volterra (1927). Here we t ry  to reach analogous conclusions 
starting from broader hypotheses. 

The following properties are required of K 1 and K2: 

a. An increase in either of the two populations produces a decrease in the 
growth rate of both populations; therefore, 

~K1 0K1 
< O, < O, 

ON 1 ON~. 

OK~. OK2 
aN'---~ < o and ~ < O. 
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b. I f  both populations are very small, they both multiply; therefore, 
-KI(0, 0) > 0 and Ks(0, 0) > 0. 

c. Each population, even if very small, cannot increase if the other reaches a 
certain size; therefore, there exist an A and a C such tha t  KI(O , A)  = Ks(C, O) 
-~-- 0.  

d. Each population cannot increase over a certain size even if the other 
population is very small; therefore, there exist a B and a D such tha t  Kz(B,  O) 
= K~(0, D)  = O. 
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Figure 3. 

In general, the two curves K 1 = 0 and K 2 = 0 can have any number of 
points in common. The positive quadrant of the plane (N1, N2) will be divided 
into three zones: zone I, where K1 > 0, K2 > 0; zone II,  where K1 < 0, 
K2 < 0; and zone i I I ,  where K1K2 < 0. Such zones are shown diagrammati- 
cally in Figure 3. All integral curves originating in zones I and I I  eventually 
enter zone I I I .  Zone I I I  is formed by the curves K 1 = 0, K2 = 0, by the 
points enclosed by them and by the segments A D  and BC. Depending upon 
the explicit form of the functions K1 and K2, the points of this zone less the 
border points, may form one or more connected sets; each of these connected 
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sets plus its border points, forms a sub-zone; all integral curves in a given sub- 
zone end at its point corresponding to N 1 = maximum, N 2 = minimum, or 
corresponding to N1 = minimum, N2 = maximum, according to whether for 
the internal points of the sub-zone it is Kx > 0, K2 < 0, or K~ < 0, K2 > 0. 
For instance, in the case of Figure 3, D is the point of equilibrium of a sub-zone 
and R the point of equilibrium of the other two sub-zones. I t  is possible, but 

A 

q~ 

,N 2 

__~_ Ii o ~ - - -  IQ . . . . .  

0 q~ B C ~ N, 

Figuro~4. 

improbable, that  some points of zone I I I  belong to no sub-group; this occurs 
when the curves K 1 = 0 and K2 = 0 have an arc in common. In  this case, 
the integral curves arriving from zones I and I I  reaching this arc stop. 

A simple graphic device can often disclose a great deal of information about 
the limiting behavior of the integral curves. As an example, the curves of 
Figure 3 are reproduced in Figure 4; here the signs of the functions K1 and K2 
are represented diagrammatically by two unit vectors parallel to the axes. In 
zone I, we have K~ > 0 and Ks > 0 and hence, with increasing time, the integ- 
ral curves in this zone are limited to the quadrant defined by the two unit 
vectors as shown in Figure 4. 

For the sake of illustration, consider the sub-zone limited by the points Q 
13 +B.M.B. 
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and R; it is obvious from the vectors, that  Q is a point of unstable equilibrium 
and that  R is a point of stable equilibrium. Note also that  any integral curve 
passing through the rectangular region NlqlQoo must eventually terminate at  
the point R. Integral curves passing through the rectangular region Nsq2Qoo 
will never reach R, but  D. The behavior of the integral curves in the 
remaining regions of the phase plane must be determined by  detailed analysis. 

In conclusion, when the curves K1 = 0 and Ks = 0 do not intersect, one 
species will survive; namely, the first if B > C or the second if B < C. When 
the curves K1 = 0 and K2 = 0 intersect at one point, then if B > C, either 
the first or the second species only will survive, depending upon the initial con- 
ditions; if B < C, both species will survive. When the curves K1 = 0 and 
K s = 0 have many intersections, many fates are possible for the two species, 
depending upon the initial conditions. In general, the points of intersection 
where the curve K1 = 0 has the same or a greater slope (in absolute value) than 
the curve K2 = 0, are points of pacific coexistence. 

Is the possibility of survival of both species in contradiction with the Com- 
petitive Exclusion Principle formulated by  Volterra? In a mathematical sense, 
this question should not  be posed; for, if two species interact according to the 
conditions of the Volterra model, then only one species survives. However, 
the Volterra model is the simplest possible, and as seen from the consideration 
of a more general form of the population growth equations, there is a great 
variety of modes for the development of two competing species. To be more 
specific, it is not difficult to find a model only slightly more elaborate than 
Volterra's which allows both species to survive. 

We have shown (Reseigno and Richardson, 1965) that  if one can put  

KI(N1,  Ns) = 81o - 811Fl(N1, N2) - ~12F2(N1, N2), 

K2(N1, N2) = 82o - 8~.lFl(N1, N2) - 82sFs(N1, N2), 
(3) 

with the F 's  increasing with their arguments and the ~'s positive constants such 
that  

FI(0, 0) = Fs(0, 0) = 0, 

81o/820 ~ 811/821, 

810/82o = 812/822, 

811/821 = 812/822, 

then one should speak in general of two niches; the functions FI(N1, N2) and 
F2(N1, N2) measure their filling or utilization. 

For any particular ecological situation compatible with equations (3), the 
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8's satisfying the  given conditions can be de te rmined  in infinitely m a n y  ways;  
for  instance 

which gives 

~10 = KI(0,  0); ~n  = k > 0; ~12 = 0; 

~20 = K2(0, 0); ~21 = 0; ~22 = 1; 

1 
FI(N1, N2) = ~ [KI(0, 0) - KI(N1, N~)]; 

F2(N1, N2) = K2(O, O) - K2(N1, N2). 

If,  wi th  a proper  choice of  k, F 1 and  F 2 can be made  identical;  i.e., i f  K 1 is a 
l inear funct ion  o f  K2, t hen  we have  a single niche. I f  this is not  the  case, then  
we have  two niches, bu t  t hey  m a y  or m a y  not  be different  enough to  allow the  
survival  o f  two species. 

Symbiosis. Kost i tz in  (1934) s tudied a num b er  of  cases of  symbiosis;  here 
we are in teres ted in the  perfect  symbiosis,  i.e., the  association of  two species 
such t h a t  each species gets an  absolute advan tage  f rom the  other .  

The  following proper t ies  are required of  K 1 and  K2: 

a. The  mult ipl icat ion of  one species is speeded b y  an  increase in the  n u m b er  
of  individuals  of  the  o ther  species; therefore,  ~K1/~N 2 > 0 and  ~K2/~N 1 > O. 

b. F o r  a cons tant  ra t io  N1/N2, the  mult ipl icat ion of each species is slowed b y  
an increase in the  number  of  individuals of  bo th  species; therefore  dK1/dS < a, 
and dK2/dS < a, where a is a negat ive number .  At  first i t  seems ~K1/~_N1 
< 0 and  ~K~/ON2 < 0 could be sufficient conditions,  b u t  i t  is no t  so because 

the  combined food supply  of  the  two species is l imited; for  the  same reason we 
cannot  pu t  a = 0, or else we could have  

lim (dK~/dS) = 0 and lira (dK2/dS) = O, 
N 1 -~ oo N2~oo 

which imply  an unl imi ted  supply  of  food. 
c. I f  bo th  populat ions  are v e r y  small, each species can mult iply;  therefore  

KI(0,  0) > 0 and  K2(0, 0) > 0. 
d. In  the absence o f  one species, the o ther  cannot  mul t ip ly  over  a certain 

size; therefore  there  exist  a B > 0 and a D > 0 such t h a t  KI(B,  O) -- K2(O, D) 
-~-- 0.  

I t  follows t ha t  the  two curves K1 = 0 and K2 = 0 cross a t  one point  Z and  
divide the  posi t ive quad ran t  o f  the  plane (N1, 2/2) into four  zones (see Fig.  5). 
No integral  curve can cross the  curves K1 = 0 and  K2 = 0 more  t h a n  once; 
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all integral curves reach point Z in a finite interval of time; this is a point of 
stable equilibrium. 

Other biological situations can be thought of as intermediate cases between 
the ones here examined. With a little additional effort we could have made 
the problem look nicely more complicated; but, as Descartes said, we want to 
leave this pleasure to the reader. 

//IKI<: 
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0 B ) NI 

Figuro 5. 

E x a m p l e s .  For a comprehensive bibliography of the problem, we refer the 
reader to the book by D'Ancona (1954). Here we have chosen from the recent 
literature on the subject a few examples that  can be considered as special cases 
of our equations (1). 

Hutchinson (1947) has shown that,  if the classical Volterra equations of two 
competing species are slightly modified to include "social phenomena," thus 

g N 1 / d t  = b l ~ V l ( k l  - i V l  - y2V~)/kl, 

g N 2 / d t  = b 2 N 2 ( k 2  - N 2  - ~ N ~ ) / k ~ ,  

then for a large range of values of k~, k 2, T, 5, either species can survive accord- 
ing to the initial conditions. These equations actually represent two niches, 
but for no positive values of the coefficients can both species survive. 
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Cunningham (1955) examined  the  equat ions  

d N 1 / d t  = a l [ k l  - 1u - FI(N2)]N. 
d N 2 / d t  = a2[]c2 - ~ u  - F~{I~)]I2, 

which are a general izat ion of  bo th  Volterra 's  and Hutchinson 's ,  and  represent  
a case o f  p reda to r  and  prey,  compet i t ion,  or  symbiosis;  he s tudied in detai l  all 
singular points  bu t  did not  find a general  condit ion for the  existence of  periodic 
solutions. 

Utz  and W a l t m a n  (1963) gave sufficient condit ions for the  existence of  peri- 
odic solutions of  the  Cunningham equations.  T h e y  also s tudied the  equat ions  

dN1/dt = N1FI(N2),  

gN~/dt = NgF2(N~),  

and  gave sufficient condit ions for  the  existence of  periodic solutions; b u t  these 
equat ions  cannot  describe a p reda to r -p rey  si tuation,  as funct ion FI(N~ ) cannot  
sat isfy our  condit ions a3 and a5 at  the  same t ime. 

Final ly  W a l t m a n  (1964) showed t h a t  equat ions  (1), under  certain conditions 
compat ible  wi th  the  conditions we have  s ta ted  for the  existence of  a predator-  
p rey  relationship,  have  periodic solutions. 

This research was suppor ted  b y  a N. I .H .  t ra in ing g ran t  to  I rv in  W. 
Richardson.  
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