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As was done by Sinclair and Ross (1969), we consider a cellular population that  consists 
initially (at time zero) of N o newborn cells, all with the same volume, Vo. I t  is assumed 
that  the occurrence of cell division is determined only by a cell's age, and not  by its 
volume. The frequency function of interdivision times, v, is denoted by f(v). I f  cell 
death is negligible, the expected number  of cells, N(t), will increase according to the laws 
of a simple age-dependent branching process. The expression for N(t) is obtained as a 
sum over all generations; the vth term of this sum, in turn,  is a multiple convolution 
integral, reflecting the life history of vth generation ceils (i.e., the lengths of the v suc- 
cessive interdivision periods plus the age of the cell at time t). Assuming that  cell volume 
is a given function of cell age, e.g., linear or exponential, and that  cellular volume is 
exactly halved at each division, it is possible to calculate the volume of a cell with a given 
life history, and thus the average cellular volume of the whole population as a function of 
time. I f  at time zero the volumes differ from cell to cell, the final equation must  be 
modified by averaging over initial volumes. In  the case of linear volume increase with 
age, a very simple asymptotic expression is found for the average cellular volume as 
t -+ oo. The case of exponential volume increase with age also leads to a simple asymp- 
totic formula, bu t  the resulting volume distribution is unstable. 

The mean cellular volume at birth and the second moment of the volume distribution 
can be calculated in a similar manner.  

1. Introduction. R e c e n t l y  the re  has  b e e n  a cons ide rab le  a m o u n t  of  w o r k  on  the  

v o l u m e  s p e c t r u m  of  g rowing  cell p o p u l a t i o n s .  One  q u e s t i o n  of i n t e r e s t  i n  these  

i n v e s t i g a t i o n s  was  w h e t h e r  t he  v o l u m e  inc rease  of  i n d i v i d u a l  cells w i t h  age 
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conforms more closely to the exponential or to the linear mode. Earlier 
studies along these lines include the remarkable paper by  Seherbaum and Rasch 
(1957), but  it was only the subsequent improvement in Coulter counter tech- 
niques that  made it possible to obtain accurate volume spectra. 

The present investigation arose in connection with the work of Sinclair and 
Ross (1969), who were interested in the mean cell volume as a function of time 
for a population that  initially (at time zero) consists of N o n e w b o r n  cells, all with 
the same volume, v o. I t  is assumed that  cell division is determined only by the 
cell's age and not by its volume. The probability density function for the 
distribution of interdivision times, r, is denoted by f ( r ) .  I t  is further supposed 
tha t  cell death is negligible, and so the number of cells in the population will 
increase according to the laws of a simple age-dependent branching process 
(Harris, 1959). 

Two additional assumptions are made regarding cellular volume: 

(a) The volume of each cell, v, is a given function of its age, a, and of its volume 
at birth, vb: 

v ---- ~b(a, vb); (1) 

(b) When a cell divides, each of the two daughters has the same birth volume, 
equal to one-half that  of the mother cell. 

Special eases of equation (1), which Sinclair and Ross had in mind, are those 
of linear and exponential volume increase with age: 

= v b + r a  ( r  = constant > 0), (2) 

and 

v = vbe ~a (It = constant > 0). (3) 

Let  N(t) be the expected number of cells in the population at time t and put 

M(t) = N(t)/No. (4) 

The function M ( t )  satisfies the renewal equation [Harris, 1959, eq. (2)] 

M ( t )  = r + 2(M ,f}(t),  (5)  

where 

f f r = 1 - f ( , )  d ,  = f(~) dr, (6) 
•0 •t '  

and (M * f}(t), the convolution of the two functions M and f, is defined by 

f f ( ~ ' ) M ( t  - "f) d . .  (7) 
, f } ( t )  = =o 
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The solution o f  equation (5) can be written as an infinite series which con- 
verges for every finite value of t (Harris, 1963, p. 161). I t  is as follows: 

M(t) = r + ~ 2~{~ ,L}(t).  (s) 
Y = I  

Here f~ stands for the v fold convolution of the function f, i.e., 

f~(O = f ( t )  

and 

Putting 

we see tha t  

and 

f ~ + l ( t )  = {f,fl}(t) for v = 1, 2, 3, . . .  

s F~(t) = f~(x) dx  = {1 . f~)(t), 
= 0  

{f* Fv) = {f*  1 *fv} = Fv+l 

{r *L}  = F~ - ~'~+1. 

Hence, equation (8) can be written in the form 

M(t )  = 1 + ~ 2v-zFv(t), 
y = l  

from which it follows that  

where 

(9) 

(10) 

(11) 

(12) 

l 
eo 

§ = ~/(~) dr. (15) 
=o 

Xl(t) = dM(t) /d t .  

Also notice that  in this  model every cell disappearing from the population at 
mitosis is immediately replaced by two new cells of age zero and, therefore, the 
birth rate, a(t), must be equM to twice the net increase in number of cells: 

~(t) = 2)VoW(t). (14) 

Sinclair and Ross (1969) used a special form of equation (12). Let q be the 
average generation time (assumed to be finite): 

_~r (t) ~ 2v- lfv(t), (13) 
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Suppose that  the probability density f(r)  has a relatively small coefficient of 
variation and that  the time, t, is not too large, so that  no appreciable over- 
lapping of generations occurs. Consider values of the variable t restricted to a 
sufficiently small neighborhood of s~, where s is a positive integer. Then, in 
equation (12), 

Fv(t ) ~ 1 fo rv  < s, Fv(t ) ~ 0 fo rv  > s, 

and 

s - 1  

M(t) z 1 + ~ 2~-1 + 2s-~Fs(t) = 2s-1[1 + Fs(t)], 
y = l  

f or using the relation 1 = ~,(t) + fs(x) dx,  
= t  

lV(t) ~ No.  2 s-  1 A(x)  dx + A(x) dx , 
= 0  = t  

if t ~ se. This is Sinclair and Ross' equation (2). 

(16) 

2. The  M e a n  Cellular Volume.  Obviously, in equation (8) the expected 
number of cells appears as a sum over generations, the vth generation consisting 
of all the cells tha t  have undergone exactly v divisions since time t = 0. The 
term r represents the fraction of the original cells ("zeroth generation") tha t  
have not yet  divided at time t. The quant i ty  

N o. 2Vr -- a) da (17) 

is the expected number of cells present at  time t, belonging to the vth generation 
(v = 1, 2, 3, . . .  ), which have ages between a and a + da. 

The//re his tory  of a vth generation cell is specified by  its v interdivision times, 
T1, r . . . ,  cv and by  its age, a. Alternatively, one may use a and the time 
periods 

T~ = ~  r ~ = 1 , 2 , , . . , v ,  
t t = l  

so that  T~ is the time at which the 2th division has occurred. These variables 
must satisfy the conditions 

0 < T~ < T~+ 1 fo r~  = 1,2  . . . .  , ( v ,  1), 

and Tv = t - a (see Fig. 1 for v = 4). 

Writing the complete expression for the convolution integral, f~(t - a), in (17) 
it becomes evident tha t  the expected number of vth generation cells present at  
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t ime t, which have age a (within da) and  which, f o r ~  = 1, 2, . . . ,  (v - 1), have 
given values o f  the Ta's (within dTa), is equal to 

No2Vf(a) f (T1) f (T2-  T 1 ) f ( T s -  T 2 ) . . .  

�9 .. f (Tv-1  - Tv-2)f(Tv - Tv_l) dT1 dT2 . . .  dTv-1 da (18) 

[v = 2 ,3 ,4 ,  . . . ] ,  

where Tv = t - a. I f v  = 1 this expression reduces to 2Nor - a) da. 
Now, using equat ion (1) and  halving the  volume at  each division, the  volume 
of  a vth generation cell wi th  a given life h is tory  can be expressed as a funct ion 
of  the  quanti t ies  vo, T1, T2 . . . .  , T~_ 1, t, and  a, say ~v(Vo, t, a;  T~, T 2 . . . . .  T~_ 1). 
Therefore the mean  volume as a funct ion of  time, <v(t)>, is obtained by  multi-  
plying the expression (18) wi th  ~b, in tegrat ing over a, T 1, T 2, . . . ,  Tv_ 1, sum- 
ming over all generations, and  finally diva'ding by  N(t). I t  is convenient  to  
in t roduce T v = t - a as a new variable of  integrat ion instead of  a. The 
result ing equat ion for <v(t)> is 

<v(t)> = ~ r Vo) + 2 - T1)hl(vo, t, T1) dT1 + 

r  Tv) f (T  v Tv_l) f(T~_ 1 - T~_2) . . .  (19) 
y=O. v = O  v_l----0 q JTv-sffiO 

f;, f? ,. ~=o,f(T4 Ts) 2=of(Ts  - -  T2) 1 =0f(T2 -- T1) 

t; Tz , . . . ,  T~) dT1 dT2 . . .  dT,] ,  • f( T1)hv (vo, 

in which h v is the same as ~v with t - T v subst i tu ted for a. 
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To obtain  the  functions hv, define the  equat ions  vj recursively b y  the  equa-  
t ions 

vl  = Vo), 
(20) 

vj = (1/2)r vs_l) f o r j  t> 2, 

so tha t  vj is the  cellular volume immedia te ly  af ter  the  j t h  division. For  a vth 
generat ion cell p resen t  in the  popula t ion a t  t ime t = a + ~ = ~ 7~, the volume 
will be ~b(a, vv). In  this expression replace each r j b y  Tj - T j_  1 (with T o = 0) 
and a b y  t - Tv; this gives 

hv(vo, t; TI ,  T2, � 9  T~). 

In  particular,  for v = 0, 1 and 2: 

h o = ~b(a, %) -- ~b(t, Vo) 

(time and age being the same for cells of  the  zeroth generation),  

h 1 = ~b[a, �89 -- %b[t- T1,�89 v0)], 0 < T 1 < t, 

h 2 = ~b{t-  T2,�89 T1,�89 vo)]}, 0 < T2 < t, 0 < T1 < T2. 

For  example,  in the  case of linear volume increase with age (eq. 2) one finds 

v, = ~; + 2~-1,~, (v = 1, 2, 3, . . .), 

and  hence 

h 0 --- v 0 -{- r t ,  

v 
v o r 

; N + rt - N 2a- T  (v = 1, 2, 3 . . . .  ). 

(21) 

I t  is also possible to derive equat ion (19) s tar t ing f rom Bell and  Anderson's  
(1967) theory  for cell g rowth  and division. H o w e v e r ,  since the  re levant  
calculations are ra ther  lengthy,  though not  difficult, t hey  will not  be presented 
here. 

3. "Dispersionless" and Exponential  Growth of  Single Cells. Equat ion  (19) 
can be wr i t ten  in a more compact  form if the  function %b(a, % ) i s  of t h e " d i  s- 
persionless" type ,  as defined b y  Anderson et al. (1969, p, 261). This means t ha t  

~b(a, vb) -- v b, g(a), (22) 

g being a funct ion of  age only wi th  g(0) = 1. 
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hz = ~ g(T1)g(t - T1), 

VO h v = ~ g ( t  - Tv)g(T1)g(T2 - T 1 ) . . .  g(T~ - Tv_z)  forv  ~ 2. 

Thus equation (19) becomes 

where 

p(t) = g(t)r 

~(t) = g( t ) / ( t ) ,  

and ~v is the vfold convolution of the function ~. 

(23) 

(24) 
(25) 

g(a) = e ka 

vo e% (26) hv = 

in equation (22). 

so tha t  the volume of a vth generation cell is completely independent  of its life 
h i s t o ry .  From equations (19) or (23) one then  finds 

Vo e~ r ] 

Using equation (11), however, it  is seen tha t  the square bracket in this ex- 
pression has the value 1, and therefore 

Vo ekt 
<v(t)> = ~ ] i ~ '  (27)  

if ~b(a, v~) is given by equation (3). 
Now it is known tha t  for large values of t the Junction M(t )  becomes ap- 

proximately equal to Mo ect, where the specific growth rate, c, is uniquely 
determined by the relation 

fL 2 e'C~f(x) dx = 1, (28) 
o 

This gives 

The case of exponential volume increase with age (eq. (3)) is obtained by 
taking 
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1 
Mo = 2-~' (29) 

f O = 2 xe-~:fCx) dx, (3o) 
= 0  

(eqs. (5) and (6) of Harris, 1959). These results follow from Feller's 
theorems on the renewal equation (Feller, 1941; see also Harris, 1963, pp. 
161-163). Therefore, if t --> ~ ,  the right-hand side of equation (27) tends to a 
finite limit, (v(oo)) > 0, only i f  

k = c. (31) 

In  fact, Bell and Anderson (1967) have shown that  k must be equal to c 
( a =  f l  in their notation) if there is no cell death and if the rate of volume 
increase with age is proportional to volume itself. 

However, even wi th  k = c the volume distribution is asymptotically un- 
stable, because it can be shown that  its second moment  becomes infinite as 
t ---> oo. More generally, a similar result holds for the case of "dispersionless" 
growth: the first and second moments of  the volume distribution cannot both 
tend to a finite, nonzero limit for t--> ~ .  This will be discussed at greater 
length in a subsequent paper (Trucco and Bell, 1970). 

4. Asymptotic Behavior of (v( t))  for Linear Volume Increase with Age. Con- 
sider instead the case of linear volume increase (eq. (2)). From equat ion  
(19) one can obtain a simple expression for the limiting value of (v(t)) as t -+ ~ .  
I t  will be assumed that  the function f(t) is sufficiently well behaved, so that  
Feller's theorems (1941) are applicable, which is a very mild restriction. In  
particular, f(t) must be regular a t  the origin (FI(0) = 0). 

I t  can easily be shown that  

~ 1  2a- lTa  = (2 v 1)T 1 + (2 v - 2~-1)(T~ - T~_I) 
= 2 = 2  

Define the function q(t) as follows: 

q(t) = t . y ( 0 ;  

also notice that  

(v = 2, 3, 4, . . .). 

(32) 

(33) 

(2 v _ 2 ~ - t )  = 1 + (v - 1 ) 2 ~ .  (34) 
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Inserting the expression given by equation (21) for h v into equation (19), and 
using the results (32) and (34), one finds 

1{I j <v(t)) = ~ ( t )  Vo r + ~ {~ , /~}( t )  + r t ~ ( 0  

- r { r  �9 ~}(0 - r ~ (1 + (v - 1)2v){~ * / , - 1  * g}(t) �9 
= 

With the help of equation (11) this becomes 

] (v( t ) )  = - ~  v o + rtM(t) - r v .2  r - I { F  v_l *e}(t) ' (35) 

it being understood tha t  

Fo(t ) -- 1. (36) 

Using equation (12) we can write 

1 
(v($)) ---- ~ - ~  [v o + rt + rS(t)], (37) 

where 

Now, putt ing 

s ( t )  = ~ .  2 ~ - l [ t F ~ ( 0  - v {Fv_ l  * ~}(0]. 
r---1 

tFv(t) = n ( 0 ,  

one has the simple identity 

$(~) ( t  - u)F~(t u) du = =of(U)Fv(t - u) du 

-- f~=o 
o r  

(3S) 

uf(u)Fv( t  - u) du, 

{f* ?v}(t) = tFv+l(t) - {q * Fv}(t), (39) 

and from this it follows easily that  the function S(t) satisfies the  renewal 
equation 

S(t) = B(t) + 2{f ,  S}(t), (40) 
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with 

B ( t l  = tF~ ( t /  - x / ( x / d ~  = 
=0 =0 

Feller's theorem then tells us tha t  for large value of t 

S(t) ~ S o : L  

Here c is again determined by  equation (28)and 

Consequently, 

and so 

F~(x) dx. (41) 

(42)  

l im [S(t)/M(t)] = l/c, 
t"* c o  

lira (v ( t ) )  - ( v ( ~ D  = r/c. (44) 

This result is not unexpected because it can be shown (Bell and Anderson, 1967) 
tha t  for a population in steady state of exponential growth the mean cellular 
volume is indeed equal to r/c if equation (2) holds and if  cell death is negligible. 
Intuitively, assuming that  equation (2) is valid and that  N(t) ,.~ No : t ,  we can 
write the total volume increase in the population during the time interval dt 
either as N .  r dt (number of cells times volume increase of a single cell) or as 
( v )  d N  = ( v ) e N  dt (mean volume times increase in cell number), from which it 
follows that  r = c<v>. 

5. The Mean Cell Volume at Birth. The mean cellular vo lume at  birth, 
<vb(t)>, can be calculated in much the same way as <v(t)>. The total expected 
number of newborn cells (cells with age between 0 and dr) present in the 
population at time t is a(t) dt, and the expected number of such cells belonging 
to the vth generation is obtained from (17) by  setting a = 0, r = 1. Cells 
of the zeroth generation have an age > 0 if t > 0, and the function a(t) is given 
by  equation (14). Proceeding as in the derivation of equation (19) one finds, 
f o r t  > 0: 

<vb(t)> = ~ / ( t )wl(vo ,  t) + / ( t  - T v _ O  
Y=2 v - l = 0  

.t~,_~.o/(T~_~ - T~_~) . ,~v_~o/(T~-~- T~_~) .. .  ~=o/(T~-  T~) 
(45)  

f ( T  2 - T1 ) f (T1 )  wv(Vo, t; T1, T2, . . .  Tv_I) 
1=0 

• d~T1 dT~ ... dT~,_II, 
.I 

= e-OrB(t) dt = 1/(2c28). (43) S0 (1/0) =0 
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where w~ is equal to h v with Tv replaced by t. 
For the exponential case (eq. (3)) this gives 

VO elct 
= a ( t ) ,  

with 

G(t) = ~ / v ( t ) .  
Y =l  

The function G(t) is a solution of the renewal equation 

G(t) =/(t )  + { / ,  

and therefore tends to the  finite limit 1/e for t --> ~ .  
of equation (5) it is found that  

M(t) = f ( t )  + 2{f .  M}(t), 

and thus, for large t, 

ec ~ 
M(t) ~ ~ = cMoe% 

In  the linear case (eq. (2)) one has 

v o r t  

v - 1  
v o rt r ~ 2~ 

w v = ~ + ~ - - 2 - - 7  -1Tv 
)~=1 

forv = 2, 3,4 . . . . .  

469 

(46) 

(47) 

Differentiating both sides 

Once again, equation (48) can be obtained formally from Bell's theory for a 
cellular population in steady state of exponential growth (Bell, 1968). In  the 
following assume that  (a) cellular volume increases according to equation (2), 
(b) Bell's function D is equal to zero (no cell death), and (e) his function P 
depends only on age but not on volume. Then Bell's quant i ty /5  is the same 

f (vb(oo)~ = 2r xe-CXf(x) dx = rg. (48) 
=0 

and it is easy to see that  (vb(t)) tends to a finite value, (v~(oo)), as t --> oo. The 
calculations are very similar to those used in deriving equation (44); the result is 
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as f.  Let  m(v)  be the distribution of  birth volumes when the population has 
reached a steady state of balanced exponential growth. The integral equation 
for re(v), equation (24) of Bell, 1968, now becomes, in our notation 

f 
2v/r  

re(v) = 4 m(2v  - ra ) f (a )e  -ca da. 
d a ~ O  

(49) 

Multiplying both sides of this equation with v, integrating over v, from v = 0 
to v = ~ ,  and interchanging the order of the two integrations, one finds 

vm(v)  dv = r e 'Caf(a)  vm(2v  - ra) dv da 

= e-Car(a) (u -I- r a ) m ( u ) d u  da = (1/2)(vb(~:))~ -t- ~-, 
- -0  ~ 0  

o r  

Here the relations 

( v b ( ~ ) )  = re.  

e-car(a)  da = �89 and re(u) du = 1 
-~0 = 0  

have been used. 
The quanti ty 0 is the first moment  of the "carrier density" 2e-C~f (z ) .  I t  can 

be shown that,  in steady state of exponential growth without cell death, 0 is the 
average age at which the cells divide. Also, 0 is slightly smaller than the 
doubling time, T, of the population IT = (I/c) in 2], and T itself is smaller 
than the average generation time, e. Thus: 0 < T < ~ (Truceo, 1965, page 
469t; Brockwell and Trucco, 1970, Appendix D). 

Equation (48) says that, as t --> ~ ,  the mean volume at birth becomes equal 
to the volume increment during the time interval 0, a result which is intuitively 
very plausible. Notice that  according to equation (2) the average cell volume 
of the zeroth generation will be increased by  approximately r~, which could be 
much more or much less than v 0 (of course, in real populations there may not be 
any cells with extremely large or extremely small volumes, but  this is irrelevant 
for a discussion of the mathematical model). Subsequently, however, the 

In  Trucco, 1965, the probability_density of interdivision times is denoted by 8 and the "carrier 
density" b y / .  Also, the quantities I and D of that  paper correspond, respectively, to 0 and ~. Tn 
Brockwell and Trucco, 1970, we write Z instead of 0 and D for ~. 
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mean volumes, ( v ( t ) )  and (vb(t)), will gradually reach their asymptotic values. 
Equations (44) and (48) show that  these limiting values do not  depend on v0.: ~ 

6. The  Second M o m e n t s .  To obtain the second moments of the volume dis- 
tribution as functions of time, simply replace h v b y  hl in equation (19) or wv by  
w~ in equation (45). The case of dispersionless growth will be discussed in 
part  I I  of this paper (Trucco and Bell, 1970). If, on the other hand, we 
assume linear volume increase with age, we can derive simple asymptotic 
expressions for the second moments as t --> ~ .  The calculations are somewhat 
more involved, but  basically not  very different from those already given. For 
simplicity we shall consider only the ease of birth volumes. Le t /~( t )  be the 
second moment for the distribution of volumes at birth, and denote by  m2 the 
second moment  of the carrier density: 

// m 2 = 2 x2e-CZf(x)  dx.  
=0 

Then it can be shown that  

~2(oo) = (r2/3)(m2 + 2~2). (50) 

This also follows from multiplying both sides of equation (49) by  v 2 and then 
integrating over v. 

7. D i scuss ion .  Tt has been assumed up to this point that  all cells with a 
given age and volume change their volume at the same rate, say 2'(a, v). 
Actually, the quanti ty  F(a,  v) must  be understood as the mean rate of volume 
increase for such cells. In fact, Fredrickson et al. (1967) have shown that  
although the true rate of change may vary  from cell to cell, it is only the 
average rate that  appears in the final equations. A similar remark was made 
by  Harvey  et al. (1967, p. 616) after their derivation of the Collins-Richmond 
equation. 

The assumption that  all the cells in the population have age zero initially is 
fulfilled with good approximation if the cells are synchronized by  selecting those 
in mitosis (as was done in the experiments of Sinclair and Ross), On the other 
hand, it will certainly not be true that  every cell has the same initial volume, 
vo.w I f  ~(vo) dvo is the fraction of  cells with initial volumes between vo and 
v o + dv o, so that  

fr o dvo = 1, 8(V0) 
0=0 

I t  wou ld  appea r  f r om Sinclair a n d  R o s s '  equa t ion  (5) t h a t  t h e y  chose r ~- Vo/u I n  t h a t  ease, 
o f  course ,  t he  r i g h t - h a n d  sides o f  e q u a t i o n s  (44) a n d  (48) wou ld  be  p ropor t iona l  to  Vo: (v(oo)) 
Vo/(C~) a n d  <vb(oo)) = VoS/'L 

w Of course,  Sinclair a n d  R oss  were  well  aware  of  th i s ,  a n d  the i r  v 0 shou ld  he  u n d e r s t o o d  as  a n  
ave rage  ini t ial  vo lume .  
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the  actual  mean  cellular volume will be 

f <~(t)> = <v(t)>~(Vo) ~Vo, 
0-~0 

where <v(t)>, which depends on Vo, is given b y  equa t ion  (19). F o r  "dispersion- 
less" growth,  equa t ion  (23) is still val id  with Vo replaced b y  

f/ ~o = %8(%) dVo. 
0=0 

The  calculations presented  here show tha t  the  problem posed b y  Sinclair and 
Ross can be solved rigorously, b u t  the  result ing equat ions are ra the r  un- 
manageable  a l though t h e y  furnish valuable  in format ion  on the asympto t ic  be- 
havior  of  the  mean  cellular volumes for  t --> ~ .  I t  is difficult to es t imate  how 
closely Sinclair and  Ross '  t r e a tmen t  approximates  the  der ivat ion of  equat ion 
(19). Therefore,  it  might  be of  in teres t  to use the  methods  of this paper  and 
tes t  whether  equat ion  (2) or equat ion  (3) gives a closer fit to  Sinclair and Ross'  
excellent  exper imenta l  curves. Pe rhaps  an even be t t e r  procedure,  however,  
would be to s imulate  the  life histories of  individual  cells (including volume 
changes)  wi th  a Monte  Carlo program,  and obta in  the  mean  cellular volume b y  
taking averages over  sufficiently large numbers  of  cells. 
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