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In a previous paper (Mowshowitz, 1968), a measure Ig(X) of the structural information 
content of an (undirected) graph X was defined, and its properties explored. The class of 
graphs on which Ig is defined is here enlarged to include directed graphs (digraphs). Most 
of the properties of I 0 observed in the undirected case are seen to hold for digraphs. The 
greater generality of digraphs allows for a construction which shows that  there exists a 
digraph having information content equal to the entropy of an arbitrary partition of a 
given positive integer. 

The measure Ig is also extended to a measure defined on infinite (undirected) graphs. 
The properties of this extension are discussed, and its applicability to the problem of 
measuring the complexity of algorithms is considered. 

1. Introduction. I n  th is  p a p e r  we will e x t e n d  the  definit ion of  i n fo rma t ion  
conten t  (Mowshowitz,  1968) to  finite d i rec ted  graphs ,  and  explore  the  impl ica-  

t ions of  the  measure  in the  case of  infinite graphs .  Most  of  the  resul ts  o f  the  
earlier p a p e r  will be  seen to  ca r ry  over  to  t he  d i rec ted  ease. I n  addi t ion,  the  
grea ter  genera l i ty  of  d igraphs  will al low us to  show t h a t  for a n y  pa r t i t i on  of  an  

integer,  there  exists  a d ig raph  whose in fo rma t ion  con ten t  equals  the  e n t r o p y  of  

the  par t i t ion .  
The  genera l iza t ion of  the  measure  to  finite d igraphs  is immedia te ,  since the  

a u t o m o r p h i s m s  of  a d ig raph  fo rm a g roup  as in the  undi rec ted  case. I n  fact ,  
we could consider objects  of  a more  general  na ture ,  such  as g raphs  w i th  loops 
and  paral le l  lines. However ,  the  s t ruc tu re  of  a d ig raph  is sufficiently r ich wi th  
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respect to the  informat ion measure as to  render unwar ran ted  the added 
difficulty of exposition which would be incurred by  such an  extension. 

The case of  infinite graphs (or digraphs) poses a more difficult problem. 
There does no t  appear to be a n y  "na tu r a l "  way  of extending the  informat ion 
measure to the  infinite case since i t  is no t  clear how to assign probabilities to the  
orbits of the group of  an infinite graph. However,  we will examine the be- 
havior  of the measure on sequences of finite graphs whose sum is an infinite 

graph. 
As in the case of undirected graphs, the absence of s tandardized terminology 

and  nota t ion  in the l i terature compels us to present a great  m a n y  definitions.* 
We will define the general concepts here; specialized definitions will be given as 
the  need arises. 

A directed graph (or digraph) X is an irreflexive binary  relat ion on a finite set 
whose elements are called the  points (or vertices) of X. The ordered pairs of 
points in the relation are the  (directed) lines (or edges) of X. As before we will 
use V(X) and E(X) to denote the set of points and the set of lines, respectively. 
I f  V(X) = O, X will be called the trivial digraph. A point  x is said to be 
adjacent to y i f  the line (x, y) e E(X);  x is said to be adjacent from y if  (y, x) ~ E(X).  
X is called a symmetric digraph if  (x, y) ~ E(X)  when and only when (y, x) ~ E(X).  

For  x e V(X) we denote the  set of  points adjacent  to  x and  the set of points 
ad jacent  f rom x by  Vt(X; x) and Vo(X; x), respectively; t h a t  is to say, 
V,(X; x) = {y e V(X) [ (y, x) e E(X)} and  Vo(X; x) = {y e V(X) ] (x, y) eE(X)}.  
The indegree id(x) and the  outdegree od(x) of  a point  x are given by  id(x) = 
IVy(X; x)l and  od(x) = I Vo(X; x)I. The total degree td(x) of x is the sum 
id(x) + od(x). We shall call a digraph X regular of degree k i f  id(x) = od(x) = k 
for every x e V(X). 

A sequence S of  points  x~eV(X) (O  < i < n +  1) and  lines l~eE(X)  
(0 ___ i < n) given by  S = (Xo, lo, xl, 11 . . . .  , x~, l~, x~+l) where l~ a {(xt, x~+l), 
(x~+l, x~)} is called a semisequence with initial point x o and  endpoint xn+ 1. S is 
called a sequence ifl~ = (x~, x~+l) for 0 < i _< n. A (semisequence) sequence is 
called a (semipath) path i f  no line occurs more t han  once in it. A (semicycle) 
cycle is a (semipath) p a t h  whose initial point  and  endpoint  are identical. 

Two points x and y are said to be weakly connected i f  x = y or there exists a 
semipath  wi th  initial point  x and  endpoint  y; x and y are strongly connected i f  
x = y or there is a pa th  wi th  initial point  x and  endpoint  y, and  one wi th  initial 
point  y and  endpoint  x. A digraph is (weakly) strongly connected if  any  two 
points are (weakly) s t rongly connected. The relation of  being weakly con- 
nected and  t h a t  of being strongly connected are bo th  equivalence relations on 
the  points of  a digraph.  

* The definitions used here are largely those of Harary,  Norman and Cartwright (1965). 
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A digraph X is said to be disconnected if it is not weakly connected, and 
totally disconnected if it contains no lines. X is called complete ff for every 
x and y in V(X), (x, y) ~ E(X) or (y, x) E E(X). We will use the notation K n 
and Ka to denote, respectively, the complete symmetric and totally disconnected 
digraphs of n( > 0) points. 

As in the undirected case, a digraph Y will be called a subdigraph of X 
(written Y ~ X) if V(Y) ~ V(X) and E(Y) c E(X); and if V' c V(X), the 
digraph Y -- X(V') given by V(Y) = V' and E(Y) = {(x, y) e E ( X )  ] x and 
y e V'} will be called a section digraph of X. 

Suppose X and Y are digraphs. Then, r is an isomorphism of X onto Y if r 
is a one-one mapping of V(X) onto V(Y) such that (x,y) e E(X) iff 
(x, y)r = (xr yr e E(Y). An automorphism of a labelled digraph X is an iso- 
morphism of X onto itself, and the set of all automorphisms of X forms a group 
which we shall denote by G(X). I t  is clear that from the standpoint of the 
automorphism group, a symmetric digraph is just an undirected graph. So, 
when we discuss symmetric digraphs, we will use the terminology of a previous 
paper (Mowshowitz, 1968). I f  X is a digraph we will call X' given by 
V(X') = V(X) and E(X') = E(X) U {(x, y) ] (y, x) e E(X)} the (undirected) 
graph associated with X.  

2. The information content of digraphs. Since the automorphisms of a di- 
graph form a group, it is immediately evident that the measure Ig given in 
Mowshowitz (1968, w is defined for digraphs. Moreover, it is clear that 
Theorems 4.1 and 5.1 (and, thus, 4.6) of the earlier paper hold for digraphs. 
Figure 1 shows the groups and information content of digraphs with three 
points, t 

Group Information Digraphs with three Points 

S 3 0 2. A 
I "  "3 1 3 

,) 

{e, (123,)(132)} 0 
1 3 

2 " A  3 3 3 
{e,(12)} l o g 3 - ~  I ,3 , ~ 2  A 1 ~ - ~ 2 ] ~ 2  

1 1 2 1 2 

2~ 3 3 3 3 3 3 

1 _ . l 2 

F i g u r e  1. T h e  i n f o r m a t i o n  c o n t e n t  o f  3-poin~ d i g r a p h s  

I n  i l lustrations,  t he  po in t s  of  a d ig raph  will be  represen ted  as  po in t s  in t h e  p lane;  an  edge (x, y} 
will be  indica ted  b y  a cont inuous  line segment  wi th  an a r row point ing  f rom x to  y. I f  bo th  (x, y) 
a n d  ( y, x} are edges, a line wi thou t  an  a r row will be  used,  as in the  und i rec ted  case. 
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We begin our investigation of the information content of digraphs by  defining 
operations analogous to those considered in the previous paper (Mowshowitz, 
1968) for undirected graphs. Let  X1 and X2 be digraphs with V~ = V(X~) 
and  E~ = E(X~) for i = 1, 2. The complement of X1 is the digraph X1, with 
V(X1) = VI and E(Xz) = {(x, y) [ (x, y) ~ E~, x # y, x, y e Vz). 

The sum of X1 and X2 is the digraph X1 W X2 given by V(X1 u X2) = V1 w V~ 
and E(X1 W X2) = E1 u E~. As in the undirected case, the relation of being 
weakly connected partitions the set of  points of a digraph into equivalence 
classes. Thus, if X is a digraph, V(X) = (.J~=l V~ (V~ (3 Vj = r for i # j)  
and V~ = V(X~) where the X~ = X(Vt) are section digraphs of X. Moreover, 
when x # y, x and y are in the same V~ iff (x, y) or (y, x) is in E(X).  The section 
digraphs Xt are called the weakly connected components of X. 

The join of X 1 and X2 is the digraph X1 + X2 defined by V(X1 + X2) = 
V1 u V2 and E(XI  + X2) = E(X~ u X2) u {(x, y) ] x e V~, y e V2}. 

The cartesian product of X x and X 2 is the digraph X 1 x Xg. defined by 
V(X 1 x X2) = V1 x V 2 a n d E ( X  1 x X2) = {(x,y) = [(xl, x2), (Yl, Y2)] [ 
xx, yl e V~, x~, y2 e V2, and either xx = y~ and (x2, y~) e E2 or x2 = y2 and 
(x~, y~) e E~}. 

The composition of X1 with X= is the digraph X~ o X~ given by V(X~ o X2) = 
V~ x V2 and E(X~ o X2) = {(x, y) = [(x~, x2), (y~, Ys)] I x~, y~ e V1, x2, y~ e V2, 
and either (xl, y~) e E~ or x~ = Yx and (x2, y~.) e E~}. 

I t  is clear that  the algebraic properties observed to hold for these operations 
in the undirected case hold for digraphs as well. Of course, they  coincide with 
those defined previously (Mowshowitz, 1968, w when Xx and X2 are symmetric 

The operations are illustrated in Figure 2. digraphs. 

X1 X2 .,'g'l X1 u X2 

Figure 2. 

X1 + X2 X 1 x Xs X I , , X 2  

Operations on digraphs 

Let X be a digraph. Then X can be expressed in the form 

x o (o  ) = X~j 
| = i  \ j = l  

where the X~j are weakly connected components, and for each i = 1, 2 . . . .  , 
r, X~j ~ X~ (1 _< j < k~). As in the undirected case, it is well known tha t  
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(a) a ( x )  = G(X) and (b) G(X) = Sk~ o G(X1) + . . .  + Sk, o G(Xr), where S~, is 
the symmetric group of degree k,, and o and + denote the composition and 
direct sum operations, respectively, defined on permutat ion groups. 

Now, it is easily seen that  Theorems 4.3 and 4.5 of the earlier paper (Mowsho- 
witz, 1968) hold in the case of digraphs. We summarize in the following. 

2.1 Theorem. Let X and X~ (1 < i < n) be digraphs, and suppose 
X~ ~ X (1 _< i _< n) and V(X~) n V(Xj)  = 0 for i r j .  Then (a) I~(2)  = Ig(X),  
(b) Ig (Z  1 (3 X 2 (3 . . .  t3 Xn) = Ig(X),  (c) Ig(X~ + X2 + " "  + Xn) = Ig(X).  

Proof. The proofs for (a) and (b) are exactly analogous to those of Theorems 
4.3 and 4.5 (a), respectively of the earlier paper (Mowshowitz, 1968). To prove 

(c), we need only note that  as in the case of undirected graphs X~ + Xj = 21 u 2 j ,  
and then appeal to the proof of 4.5 (b) of the earlier paper. 

Next we will show that  Theorem 4.7 (Mowshowitz, 1968} also holds in the 
directed case. Let X be a digraph. X is said to be prime with respect to the 
cartesian product if, whenever X =~ X 1 • X2, either X 1 or X2 is the identity 
digraph (or graph) K 1. The result (Harary, 1959, 33) used in proving Theorem 
4.7 hinges on a theorem of Sabidussi (1960, 456) which states that  if X1, X~, 
. . . .  X ,  are connected prime (undirected) graphs with V ( X ~ ) n  V ( X y ) =  0 
( i c j ) , t h e n G ( X l t 3 X 2 u . . .  u X~) ~- G(X 1 x Xp. • . . .  • X~). The proof 
given by Sabidussi is easily seen to carry over to the directed case if we can show 
that  any digraph X is isomorphic to the cartesian product of prime digraphs 
which are unique up to isomorphism. Thus, we prove the following 

2.2 Lemma. Let Y =  Y1 • Y2 • " '" x Y, be a digraph where each 
Y~ (1 < i < n) is prime with respect t o the  cartesian product. L e t  Ft = E(Y~) 
and 

F(') = {(x ,  y )  = [ (x l ,  x~ . . . . .  x . ) ,  (Yl ,  Y2, - . . ,  Y~)] e E(Y)  ] (x~, y,) �9 E ( Y ~ ) } .  

Then the collection {F(o}l~. 1 is a partition of E(Y), tha t  is, {2'(~)}1 ~= 1 induces an 
equivalence relation on E(Y). 

Proof. (a) Let  X be a symmetric digraph with X = X1 • X2 • . . .  x X ,  
where the X~ are prime. Then there exists a partition of E ( X )  given by 
{E(')}~= 1 where E (o = {ix, y) �9 E ( X )  ] (x~, y,) �9 E(X,)}.  Suppose 2 = 21 x 
22 x . . .  x 2 ,  is a digraph where each 2~ is prime, E(2~) c E(X~) and 
V(2~) = V(X~) for 1 < i < n (i.e., each 2~ is a subdigraph of Xt). Then, we 
claim tha t  {/9(')}[~= 1 with zP (') = {(x, y) �9 E ( 2 )  [ (x~, y,) �9 E(2,)} is a partition of 
E(2) .  For, suppose the contrary. Then there exists (x, y ) � 9  E ( 2 )  c E ( X )  
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such that  (x~, y~) e _F(~) c E (t) and (x~, Yt) e/~(J) c E (s) for i ~ j. But this 
implies that  E c) (~ E (j) ~ 0, which is impossible. 

(b) Consider the symmetric digraph X = Krl • Kr2 • . . .  • Kr, where 
E(Y~) c E(Kr, ) and V(Y~) = V(Kr~ ). Clearly, the Kr, are prime since the 
cartesian product of any two graphs cannot be complete. Moreover, E (~) ~ F (~) 
for 1 < i < n. Thus, according to (a), (FC)}'~= 1 gives the desired partition 
of E(Y). 

The conclusion of Lemma 2.2 is equivalent to the existence of a unique (up to 
order and isomorphism) decomposition of a digraph into a cartesian product of 
prime factors. Thus, we define digraphs X and Y to be relatively prime with 
respect to the cartesian product ff whenever X =~ ~ • Z and Y ~ :~ x Z, Z 
is the identity digraph K1. 

2.3 Theorem. Let digraphs X and Y be weakly connected and relatively 
prime with respect to the cartesian product. Then Ig(X x Y) = Ig(X) § Ig(Y). 

Proof. Lemma 2.2 allows us to invoke the proof given by Sabidussi (1960, 
456) to assert that  G(X L) Y) ~ G(X • Y), since X and Y are relatively prime. 
So, as shown by Harary  (1959, 33) for undirected graphs, G(X x Y ) =  
G(X) • G(Y). (In general, we can now say that  for any digraphs X and Y, 
G(X) • G(Y) = G(X • Y) iff X and Y are relatively prime.) The theorem 
now follows from Lemma 4.6 (Mowshowitz, 1968). 

The situation involving the composition of two digraphs is less tractable. 
The (necessary and sufficient) condition given by Sabidussi (1959, 694) for 
G(X o Y) to be equal to G(X) o G(Y) when X and Y are undirected graphs can 
be generalized as follows. Suppose X and :Y are digraphs. Let the relations 
/~ and ~q on V(X) be defined by 

x/~ y if V~(X; x) = V~(X; y) and Vo(X; x) = Vo(X; y), 

x ~  y if V~(X; x) w (x} = V~(X; y) u (y} and Vo(X; x) u (x} = Vo(X; y) u (y}, 

and let A -- ((x, x) I x ~ V(X)) (the trivial relation). 
Now, the condition is 

(*) Y is weakly connected whenever /~ r A and Y is weakly connected 
whenever S r A. 

I t  is easy to see that  Sabidussi's proof of necessity also shows that  the condition 
(*) is necessary for G(X o Y) to be equal to G(X)o G(Y). However, the 
sufficiency proof given by Sabidussi does not appear to carry over to the 
directed case. Moreover, since a counterexample is not forthcoming, we shall 
have to be satisfied with a weaker result in the directed ease. 
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2.g Theorem. Let X and Y be digraphs. Then 

S~(X o Y) < S~(X) + S~(Y). 

Proof. This follows immediately from Theorem 5.1 (Mowshowitz, 1968) 
since G(X) o G(Y)  < G(X o Y), as in the undirected case. 

We will conclude the section by  establishing a connection between the in- 
formation content of undirected and directed graphs. 

2.5 Lemma. Let G 1 and G2 be permutation groups with the same object  
set V satisfying G1 < G2; and let P1 and P2 be the finite probabili ty schemes 
constructed from the orbits of G1 and G~, respectively. Then H(P2) < H(P1),  
where H is the entropy function. 

Proof. L e t p ,  = ndn(1  _< i < h), where n = I VI and n, is the number of  
elements in the ith orbit of G 1. Since G 1 and G 2 have the same object set, and 
G1 is a subgroup of G2, each orbit of G2 will be a union of orbits of  G1. So, 
suppose O' is an orbit of G 2 with O' = Ot u Os (i r j),  and that  every other 
orbit of G 2 is equal to some orbit O k (k r i, k ~ j )  of  G 1. Then 

H(P1) - H(P2) = - p~ log pt - Ps log ps + (pt + Ps) log (p~ + ps), 

= pt[log (pt + Ps) - log Pt] + ps[log (pt + Ps) - log ps], 

= p~ log [1 + (ps/p~)] + ps log [1 + (PdPs)] > O. 

Now, suppose that  the orbits of G 1 are O~s (1 <_ i <_ h', 1 <_ j <_ rt), and the 
# r i  orbits of G 2 are given by  Ot = (.Js=l O~s. Moreover, let P~s = ]O~s[/n, 

~sffi 1 Pts = Pt. Clearly, we must have ~ "  1 rt = h, the number of orbits of 
G1, and ~ ' 1  Pi = 1. I t  is obvious from the above that  

H(P1) - H(P2) = Pu log \ lJ' 
i = 1  t = 1  

and since 

r l  
5 s  = 1 p:s  

P*s 
> 1, H(P1) - H(P2) > O. 

Since H(P1) = H(P2) iff G1 and G2 have the same orbits, the Lemma is proved. 

2.6 Lemma. Let X be a digraph and X '  its associated graph. Then 
a ( X )  < a ( x ' ) .  

Proof. By the definition of X' ,  (x, y) e E ( X ' )  iff (y, x) e E(X ' ) .  Suppose 
e G(X). Then (x, y) and (y, x) are in E ( X ' )  iff (x, y) or (y, x) is in E(X) .  But  
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this is t rue iff (x, y)~ or (y, x)r is in E(X) which, in turn,  can hold iff (x, y)~ and 
(y, x)~ are in E(X'). 

An immedia te  consequence of  L e m m a s  2.5 and 2.6 is the  following. 

2.7 Theorem. Let  X and X '  be as in 2.6. Then Ig(X') <_ Ig(X). 

3. The construction of digraphs with given information content. As noted  
earlier, an undirected graph is jus t  a symmetr ic  digraph, f rom the  s tandpoint  
of  the  au tomorphism group. Thus,  it is natura l  to expect  digraphs to exhibit  a 
greater  var ie ty  of  group s t ructures  than  undirected graphs.  For  example,  the  
smallest undirected graph (excluding K1) whose group consists of  the  ident i ty  
alone has six points.  In  the  case of  digraphs, as we shall show presently,  for 
every  n >_ I there  exists a digraph X with n points  for which G(X) = {e}. 
This of  course means tha t  for every  n >_ I there  exists a digraph X wi th  n points 
such tha t  Ig(X) = log n. Much more  can be said, however.  We  will now give 
a construct ion showing tha t  for every  n > 1, there exists a weak ly  connected 
digraph X such tha t  

I~ = - n log 
4=1 

where nt (1 < i < h) are any  posi t ive integers satisfying ~ = 1  nt = n. 
First ,  some preliminaries. We  will call a digraph X a path of length n ( _> 0) if  

V(X) = {x0, xl . . . .  , xn} and E(X) = {(x~, x2) . . . .  , (xn_ 1, xn)} ( ifn = 0, V(X) = {x}, 
E(X) = 0); X will be called a (directed) cycle of  length n (>  1), if  

V(X) = {xl, x2 . . . . .  xn} and 

E ( x )  = { ( x .  x2), x3), . . . ,  x l ) }  

(if n = 1, V(X) = {x}, E(X) = 0). 

3.1 Lemma. Let  X n be a (directed) pa th  of  length n ( > 0) and  Y= a (directed) 
cycle of  length n ( >_ 1). Then (a) The orbits  of  G(X~) consist of  the  individual 
points  of  X,  so Ig(X~) = log (n + 1); (b) G(Yn) has exac t ly  one orbi t  V(X), so 

= o. 

Proof. (a) Let V(X) = {0, 1, . . . ,  n} and E(X) = {(0, 1), (1, 2) . . . .  , 
(n - 1, n)} as in l~igure 3; and let  X~ be the associated symmetr ic  digraph. 
F r o m  L e m m a  2.6 we have tha t  G(X~) < G(X~), so t ha t  each orbit  of  G(X'~) is a 
subset  of  an orbit  o f  G(X'~). :Now, the  orbits  o f  X~ are 

I f n + l n + l  ~ {0, n}, {1, n - 1} . . . . .  ~ ,  ~ + 1 i f n  + 1is  even 

l{O,n},{1, n 1}, f n + 2  n + 2  } { n 2 2  } , ~. ~ 1, 2 + 1 , ~ i f n  + l i s o d d .  
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Since od(O) = 1, od(n) = 0, 0 and  n mus t  be in different orbits, so {0}, {n} are 
orbits of G(Xn). Hence, any  automorphism of  X n must  be an  au tomorphism 
of  the subgraph X :  consisting of points 1, 2 . . . .  , n - 1. Bu t  X~ is isomorphic 
to X=_ 2- Thus,  by  repeating the argument ,  we see t ha t  {0}, {1} . . . .  , {n} mus t  
be the orbits of  G(X).  

(b) Le t  

V(Yn)  = {1, 2, . . . .  n} and E ( Y , )  = {(1, 2), (2, 3) . . . . .  (n - 1, n), (n, 1)} 

as in Figure 3. I t  is obvious t ha t  the cycle ( 1 2 . . . n )  is an au tomorph ism of  
Y~, so G(Y=) has bu t  one orbit. 

o i 

x .  
Ig(Xn) = log (n + 1) 

Figure 3. 

2 3 

. ~ - 1~/~ ~ 4  \ / ~b 

n 5 

Y, 
Ig(Yn) = 0 

P a t h  a n d  cycle d i g r a p h s  

3.2 Theorem. Let  n be any  positive integer, and  suppose P = {n~j} is a part i-  
t ion of n where n~j = n~ (1 < j <_ r~), n t l #  n~2 (i~ # i2), and i = 1, 2 . . . .  , k. 
Then there exists a weakly connected digraph X wi th  n points such t h a t  G(X)  
has exact ly r = ~ =  1 r~ orbits, and for each n~j. there is an orbit  A with  IA] = n~j; 
and,  hence, 

Io(X ) = H ( P )  = 

Proof. I f n  = 1, the proof is trivial. 

- ~ rt log �9 

t=1  

S o l e t n  > 1. F o r e a c h i  = 1,2 . . . . .  k 
consider the digraph Xt = Lr, - 1 X C,~, where Lr, _ 1 is a pa th  of  length r~ - 1, and  
Cn~ is a cycle of  length n~. Since Lr, _ 1 and  Cn, are relatively prime with  respect 
to  the  cartesian product ,  the set of orbits of  G(X~) is jus t  the cartesian product  of  
the  respective orbits of  G(Lr,_ 1) and G(Cn,). Hence, G(Xt) has exact ly  r~ orbits 
each consisting of  n~ elements, since by  L e m m a  2.8 G(L~,_I) has r~ orbits each 
consisting of one element,  and G(Cn,) has one orbit  wi th  nt elements. Now con- 
sider the d i g r a p h X = X 1  + X2 + . . .  + Xk. S i n c e X ~  X j f o r i # j ,  i t i s  
clear from the discussion preceding Theorem 2.1 t h a t  G(X) = G(X1) + G(X2) + 
�9 . �9 + G(Xk), t h a t  is, G(X) is the direct sum of G(X1) . . . .  , G(Xk). Hence, the  
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orbi ts  o f  G(X) are jus t  the  union of  the  orbi ts  of  the  G(X~), t h a t  is, G(X) has  r 
orbits ,  rt o f  which each  conta in  n~ e lements  for  i = 1, 2 . . . . .  k. Moreover,  
since e a c h / r ~ - I  a n d  Cn~ are weak l y  connected,  X~ is weak ly  connected;  and,  
thus ,  X is weak ly  connected,  as required.  

F igure  4 i l lus t ra tes  the  t heo rem  for n = 24, P = {1 ~, 23, 32, 42}. 

L3 C1 L2 C2 L1 C3 L1 C4 

Xz = L3 x C 1 X~ = L 2 x C2 X3 = L1 x C3 X4 = /Sz x CA 

X = Xz + X2 + X3 § X4 

= H((14 ,  29, 32, 4~}) 

Figure 4. The construction of a 24-point digraph with given information content 

d. An extension of the information measure to infinite graphs. I n  an  earlier 
p a p e r  (Mowshowitz,  1968) we defined a g r a p h s  as an  irreflexive symmet r i c  
b ina ry  re la t ion  on a finite set. B y  d ropp ing  the  finiteness restr ict ion,  one 
ob ta ins  an  arbitrary graph which m a y  have  infinitely m a n y  points  and  lines. 

The  definitions g iven  in Sect ion 2 of  the  previous  p a p e r  are the  same in the  
general  case wi th  the  following modif icat ions:  L e t  X be an  a r b i t r a r y  graph.  

A sequence 

S = ( . . . .  l_~ . . . .  l_1, 10,11 . . . , l ~  . . . )  

o f  lines l, = [x~, x~+l] ~E(X) m a y  be finite o r  infinite. However ,  as in the  

:~ To simpI/fy the discussion, w e  will consider only undirected graphs, and use the notation of 
~he earlier paper (1968). 
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finite case, two points x and y are connected if there is a finite sequence S with 
initial point x and endpoint y. As before, the set of automorphisms of  X forms 
a group G(X). An orbit (which may  contain infinitely many points of X) of 
G(X) is given by  (xg]g ~ G(X)} for some x ~ V(X). Again, the collection of 
orbits of G(X) is a decomposition of V(X) into disjoint subsets whose union 
is v(x). 

An arbitrary graph X is said to be countable if iV(X) u E(X)I is countable; 
X is locally finite if  d(x) (the degree of x) is finite for every x E V(X). In  what  
follows we will be dealing exclusively with countable graphs which may  or may  
not  be locally finite. 

Ideally, any extension Tg of the measure Ig to the (countably) infinite ease 
should satisfy: (a) lg(X) = Ig(X) for all finite graphs X; (b) _Tg(X) is defined and 
unique for all countable graphs X. Unfortunately,  the particular extension we 
will examine satisfies (a) but  not (b). However, the reason for its failure to 
satisfy (b) turns out  to be interesting in itself, as wili be seen presently. 

Let  X be a countable graph. A sequence {X~}~ z of finite graphs X~ with 
V,~ = V(X~) and En = E(X~) is said to converge to X as a limit (written 
limn-. ~ Xn = X) if  limn_. ~ V~ = V(X) and limno ~ E n = E(X) where the 
latter two limits are simply limits of a sequence of  sets. Note that  in general, 
�9 A ff { n)n=z is a sequence of sets An, 

and 

~--* oo k = l  n = k  

{An}~%l is said to converge to A (written l i m ~ A ~  = A) if lim sup 
An = lim infAn = A. Moreover, if {A~}~%I converges to A, then any sub- 
sequence {A,~}k% 1 also converges to A. 

4.1 Lemma. Let {Xn}~% z be a sequence of finite graphs, and let h(n) be the 
number of orbits of G,~ = G(X,). I f  sup~ h(n) < he, then sup.  Ig(X,~) < 
log he. 

Proof. For each n, let k~(n) be the number of elements in the i th orbit of 
G,, f (n)  = I V(Xn)I, and le t  ~,(n) = [h(n)/f(n)]k~(n). Clearly, 

4 = 1  h ( n )  - 1, 
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h(n) ~,(n). St(n) 
- Z log _< log h(n), 

for each n. But  

h~) k,(n) lop k~(n) h(n) [h(n)/f(n)]k~(n) [h(n)/f(n)]k~(n) 
Ig(Xn) = - ,~__~ ~ ~ f (n)  = - ~ h(n) log h(n) 

i = l  

h(n)~./c~(n) 1 /~t(n) 
- -  og 

So, h(n) < ho for all n gives sup= Ig(Xn) < log h0. 
A sequence {Xn}~= 1 of finite graphs X n will be called a defining sequence for a 

countable graph X ifXn c Xn+ 1 for every n, and l i m n ~  X n = X. Note that  
for any sequence {An}~ 1 of  sets A= with An c An+x for all n, the limit 
l ima. |  An always exists and is equal to [ .Jai l  An; so, l i m n ~  X= = L J a l l  Xn. 
I t  is clear that  every countable graph X has a defining sequence. For, if X is 
a countable graph, we can take V(X) = {xl, x9 . . . .  } and define a sequence 
X { n}~ = 1 by  the relations 

V(X1) = {xl} and E(X1) = O; 

V(X~+l) = V(Xn) w (xn+~} and 

E(Xn+ ~) = E(Xn)  w {[xn+~, y] e E ( X )  I Y e V(Xn)}. 

I t  is trivial to verify that  Xn ~ Xn + 1 for all n, and 

l i m X n =  ~J Xn = X .  
n-,oo n=l 

Now we are in a position to define an extension of Ig. 

4.2 Definition. Let {X,}~= 1 be a defining sequence for a countable graph X. 
Then the structural information content _7~(X; Xn) of X with respect to the sequence 
{Xn}n~l is given by  -Tg(X;Xn)= l i m n ~  Ig(Xn), if the limit exists. I f  
l i m n ~  I , (Xn)  diverges, we will write _Tg(X; Xn) = oo. Consider the countable 
graph X (shown in Fig. 5) defined by  the sequence {Xn}n% 1 where X1 = C4 (the 
cycle of length four), X2 = 04 u K2, and Xn+ 1 = 2Xn_l for n _> 2. 

Now, it is easy to see that  

f0,  if n is odd, 
Ig(Xn) = /.log 3 - a z if n is even, 

for all n. Hence, lira i n f n ~  I~(Xn) = 0 and lim supn.~ Ig(Xn) = log 3 - 2 
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X so 7g is not defined for the sequence { n}n=l. However, the subsequences 
{ Yn}~ ~. 1 and {Z~}~= ~ with Y~ = X2n- ~ and Z n = X2n for n = 1, 2 . . . .  are both 
defining sequences for X, and lg(X; Y~) -- 0 and fg(X; Z~) -- log 3 - ~. 

X1 X2 X3 X4 X5 

X = l i vaX  n = ~_)Xn 

:Figure 5. A countable graph with no unique information conten~ 

What  this example points out is that  the information content (whenever it 
exists) of a countable graph depends on the way the graph is defined (or con- 
structed). From one point of view, this is a shortcoming of the definition. 
However, from the standpoint of measuring the complexity of a countable 
graph, it might be desirable to have a measure which is a function of the way 
in which the graph is constructed. For example, such a measure might be 
useful for characterizing the relative complexity of an algorithm. For, if  the 
computation at each step can be associated with a finite graph (or, perhaps, a 
digraph), the algorithm can be represented as a sequence of finite graphs. In  
any  case, it is intuitively plausible that  in certain cases the complexity of an 
object is not an intrinsic property of some structural feature, but  rather depends 
on the way the object is constructed. 

Now we shall examine some of  the properties of the extension fg. 

4.3 Theorem.  Let X be a countable graph with defining sequence {X~}n~ 1- 
Then (a) I f  X is finite, fg(X; X~) exists and is equal to Ig (X) .  (b) There exists 
a subsequence {Yn}~~ such that  fg(X; Y~) exists. 

_Proof. (a) Since X is assumed finite, it is clear that  there exists a positive 
integer h r such tha t  X~ = Xm for all n, m > _hr. Hence 

l im  Ig(Xn) = Ig(X). 
R"~ O0 

(b) I f  the sequence {I~(Xn)}~= 1 is bounded, there is a convergent subsequence 
{Ig(Xn~)}~=l; if not, there is a subsequenee whose limit is infinite. In  either 
case, the subsequence has a limit, so we can choose a subsequence { Yn}~= 1 of the 
defining sequence such that  fg(X; Yn) exists. 

Theorem 4.3 shows that  there always exists a defining sequence for a count- 
able graph for which fg is defined. The variation in information content given 
by  different sequences, however, can be infinite. Consider the countable graph 
X (shown in Fig. 6) with defining sequence {Xn}~~ 1 given by X 1 = K2, X2 = 
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2K 1 U K ~ , a n d f o r n  >2  

rK~ 

X,+ 1 = ~;;'"'-k} 

if X~ Ku. 

i fX~ = [,J rK~andm= ~ ~r. 
{~.rJir=/r {~.rltrfk} 

Clearly, Io(Xon_l) = 0 for all n = 1 , 2 , . . . ;  and Ig(X~n) is of  the form 
k(r/kr log br/r) = log k where I V(X2~)[ = br. In  the latter case, it is obvious 
that l i m , ~  I~(X2n ) = Go. Hence, there are defining sequences for X given 
by  Y, = X2~-1 and Z~ = X2~ such tha t /g (X;  Y~) = 0 and I t (X; Z~) = oo. 

I 21 " fin 
X1 X2 Xs X4 

X = lim Xn 

Figure 6. A countable graph showing an in- 
finite variat ion in information content 

4.4 Theorem. Let X be a countable graph with defining sequence (X.}~%1, 
and let h(n) be the number of orbits of G(X~). I f  sup h(n) = h o < oo, there 
exists a defining sequence {Y~}~%1 such that  I t (X; Y~) < log he. 

SO 

Proof. By Lemma 4.1, 

sup, Ia(X,) < log he, 

lo(X; Y~) _< log h0 

whenever it exists. Theorem 4.3 assures the existence of the appropriate 
defining sequence. 

When the condition of the theorem is satisfied, it is easy to see tha t  G(X) has 
finitely many orbits. However, the graph given in Figure 6 shows that  if G(X) 
has only a finite number of orbits (namely, one) it is still possible for It(X; X~) 
to be infinite. 

A less pathological case is characterized in the following. 

4.5 Theorem. I f  X is a countable graph and IE(X)[ < co, ln(X; X,) = 0 
X ~ for all defining sequences{ n}~ = 1. 

Proof. Let Y be the (finite) subgraph of X defined by E(Y) = E(X) and 
V(Y) = {xe V(x)[g(x) > 0}; let A, with IA,[ = r, (1 < i _< h) be the orbits of 
G(Y). Since ]E(X)I < oo, it is clear that  there exists a positive integer hr such 
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tha t  E ( X , ) =  E(X) for all n > N where {Xn}~%l is an arbitrary defining 
sequence for X; and IV(Xn)] > ]V(Y)]. Let  IV(Y)] + k~ = ]V(Xn)[. Then 

where 

- - ; -  log I~ = ~" r + to. r, 
f = l  +knkn log r + k~ + 

r /r 

h 

I V ( r ) l  = = 

H e n c e ,  

lira Ig (X . )= ~ nlina ~ , o g - - 7 7 - - ,  J + lim /r + ten k. J = O, 

since {k.} is a monotonically increasing sequence and limx~ ~ (log x)/x = O. 
Since the notion of a defining sequence allows for infinite variation in the in- 

formation content of the same countable graph, it is appropriate to consider 
various restriction on such sequences. In particular, it seems reasonable to 
require that  the groups of the respective graphs in a defining sequence for a 
countable graph X reflect the orbit structure of G(X). So, let us call a defining 
sequence {Xn}~= 1 for a countable graph X a G-defining sequence if  G(X) has a 
finite (infinite) number of orbits when and only when {hn}~'= 1 is a bounded (un- 
bounded) monotonically increasing sequence, where h n is the number of orbits 
of G(Xn). An immediate consequence of this definition and Theorem 4.4 is 

X ~ be a G-defining sequence for a countable graph X. 4.6 Theorem. Let{  ~)~=1 
I f  G(X) has finitely many orbits, there is a subsequence {Yn}~=l such that  
lg(X; Yn) exists and is finite. 

Some simple examples of G-defining sequences are given in Figure 7. 

Figure 7. G-defining sequences 

Many other special types of defining sequences could no doubt  be invented 
which would yield results more profound than Theorem 4.6. However, it 
seems likely that  such an investigation would be more fruitful if one were 
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in te res t ed  in pa r t i cu la r  appl ica t ions  of  an  in fo rmat ion  measu re  on infinite 

graphs .  
The  au tho r  is i ndeb ted  to  Professors  A. R a p o p o r t ,  M. Kochen ,  N. R a s h e v s k y ,  

a n d  to  Dr.  S. H e d e t n i e m i  for  advice  and  cri t icism. 
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