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In a previous paper (Mowshowitz, 1968), a measure I,(X) of the structural information
content of an {(undirected) graph X was defined, and its properties explored. The class of
graphs on which I, is defined is here enlarged to include directed graphs (digraphs). Most
of the properties of I, observed in the undirected case are seen to hold for digraphs. The
greater generality of digraphs allows for a construction which shows that there exists a
digraph having information content equal to the entropy of an arbitrary partition of a
given positive integer.

The measure I, is also extended to a measure defined on infinite (undirected) graphs.
The properties of this extension are discussed, and its applicability to the problem of
measuring the complexity of algorithms is considered.

1. Introduction. In this paper we will extend the definition of information
content (Mowshowitz, 1968) to finite directed graphs, and explore the implica-
tions of the measure in the case of infinite graphs. Most of the results of the
earlier paper will be seen to carry over to the directed case. In addition, the
greater generality of digraphs will allow us to show that for any partition of an
integer, there exists a digraph whose information content equals the entropy of
the partition.

The generalization of the measure to finite digraphs is immediate, since the
automorphisms of a digraph form a group as in the undirected case. In fact,
we could consider objects of a more general nature, such as graphs with loops
and parallel lines. However, the structure of a digraph is sufficiently rich with
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226 A. MOWSHOWITZ

respect to the information measure as to render unwarranted the added
difficulty of exposition which would be incurred by such an extension.

The case of infinite graphs (or digraphs) poses a more difficult problem.
There does not appear to be any “natural” way of extending the information
measure to the infinite case since it is not clear how to assign probabilities to the
orbits of the group of an infinite graph. However, we will examine the be-
havior of the measure on sequences of finite graphs whose sum is an infinite
graph.

As in the case of undirected graphs, the absence of standardized terminology
and notation in the literature compels us to present a great many definitions.*
We will define the general concepts here; specialized definitions will be given as
the need arises.

A directed graph (or digraph) X is an irreflexive binary relation on a finite set
whose elements are called the points (or vertices) of X. The ordered pairs of
pointg in the relation are the (directed) lines (or edges) of X. As before we will
use V(X) and E(X) to denote the set of points and the set of lines, respectively.
If V(X) =0, X will be called the trivial digraph. A point z is said to be
adjacent to y if the line (z, y) € E(X); x is said to be adjacent from y if (y, x) € E(X).
X is called a symmetric digraph if (x, y) € E(X) when and only when (y, z) € E(X).

For z € V(X) we denote the set of points adjacent to x and the set of points
adjacent from x by V(X;x) and V,(X;x), respectively; that is to say,
ViX;2) = {ye V(X) | (y,0) e BX)} and V(X3 ) = {y e V(X) | (. 9) e BX)}.
The indegree id(x) and the outdegree od(x) of a point = are given by id(x) =
[ViX; )| and od(z) = |V,(X; ). The total degree td(zx) of x is the sum
id(x) + od(x). We shall call a digraph X regular of degree k if id(z) = od(x) = k
for every x € V(X).

A sequence § of points x;€ V(X)(0 <7 <n + 1) and lines [, e E(X)
(0 <4 < n) given by 8 = (2, lo, %1, Iy, « . ., &, Uy, #,41) Where [, € {(z;, 2;,,),
(41, 2;)} is called a semisequence with initial point x, and endpoint x, .. S is
called a sequence if I, = (x;, #;,,)for 0 < ¢ < m». A (semisequence) sequence is
called a (semipath) path if no line occurs more than once in it. A (semicycle)
cycle is a (semipath) path whose initial point and endpoint are identical.

Two points « and y are said to be weakly connected if x = y or there exists a
semipath with initial point x and endpoint y; x and y are strongly connected if
x = y or there is a path with initial point x and endpoint y, and one with initial
point y and endpoint z. A digraph is (weakly) strongly connected if any two
points are (weakly) strongly connected. The relation of being weakly con-
nected and that of being strongly connected are both equivalence relations on
the points of a digraph.

* The definitions used here are largely those of Harary, Norman and Cartwright (1965).
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A digraph X is said to be disconnected if it is not weakly connected, and
totally disconnected if it contains no lines. X is called complete if for every
z and y in V(X), (z, y) € E(X) or (y, ) € E(X). We will use the notation K,
and K, to denote, respectively, the complete symmetric and totally disconnected
digraphs of n( > 0) points.

As in the undirected case, a digraph Y will be called a subdigraph of X
(written ¥ < X) if V(Y) < V(X) and E(Y) < E(X); and if V' < V(X), the
digraph Y = X(V’) given by V(Y) = V' and E(Y) = {(», y) € E(X) |  and
y € V’} will be called a section digraph of X.

Suppose X and Y are digraphs. Then, ¢ is an isomorphism of X onto Y if ¢
is a one-one mapping of V(X) onto V(Y) such that (z,y)ec E(X) iff
(@, v)p = (2, yp) € E(Y). An automorphism of a labelled digraph X is an iso-
morphism of X onto itself, and the set of all automorphisms of X forms a group
which we shall denote by G(X). It is clear that from the standpoint of the
automorphism group, a symmetric digraph is just an undirected graph. So,
when we discuss symmetric digraphs, we will use the terminology of a previous
paper (Mowshowitz, 1968). If X is a digraph we will call X’ given by
V(X') = V(X) and E(X') = E(X) U {(z,¥) | (y,2) € E(X)} the (undirected)
graph associated with X.

2. The information content of digraphs. Since the automorphisms of a di-
graph form a group, it is immediately evident that the measure I, given in
Mowshowitz (1968, §3) is defined for digraphs. Moreover, it is clear that
Theorems 4.1 and 5.1 (and, thus, 4.6) of the earlier paper hold for digraphs.
Figure 1 shows the groups and information content of digraphs with three
points.}

Group  Information Digraphs with three Points

24 2
Ss 0 1e 3 1A3
e, (123) (132 | © A
1 3
K 3 3 3 3 3
fe, (12)} log 3—§ :I 3 1'A2 1A2 1/\2 IAQ 1&2
9 3 3 3 3 3 3
{e} 10g 3 1% *3 1A2 IA‘_’ IAQ IAQ ]AQ' 1&2

Figure 1. The information content of 3-point digraphs

+ In illustrations, the points of a digraph will be represented as points in the plane; an edge (=, ¥}
will be indicated by a continuous line segment with an arrow pointing from 2 to y. If both (x, y)
and (y, ) are edges, & line without an arrow will be used, as in the undirected case.
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We begin our investigation of the information content of digraphs by defining
operations analogous to those considered in the previous paper (Mowshowitz,
1968) for undirected graphs. Let X, and X, be digraphs with V, = V(X))
and B, = E(X,) for i = 1,2. The complement of X, is the digraph X,, with
V(X)) = Vyand B(X,) = {(@,9) | (% y) ¢ By, @ # y, 2,y € Vi)

The sum of X, and X, is the digraph X; U X, givenby V(X; UX,) =V, UV,
and E(X, U X,) = E, U E,. As in the undirected case, the relation of being
weakly connected partitions the set of points of a digraph into equivalence
classes. Thus, if X is a digraph, V(X) = Ul Vi (Vin V; = ¢ for i # j)
and V; = V(X,) where the X; = X(V,) are section digraphs of X. Moreover,
when 2 # y, x and y are in the same V;iff (z, y) or (y, «) isin E(X). The section
digraphs X, are called the weakly connected components of X.

The join of X, and X, is the digraph X; + X, defined by V(X,; + X,) =
ViuVyand E(X; + X,) = B(X, U X,)U{(@,y) |z Vy,ye V)

The cartesian product of X, and X, is the digraph X; x X, defined by
V(X; x X3) = Vy x Vpand E(X; Xy) = {(= 9) = [x1, 22), W1, ¥2)] |
%1, Y1 € Vi, g, ys € Vg, and either x;, = y; and (x,, yp) € By or x3 = y, and
(%1, y1) € B1}.

The composition of X, with X, is the digraph X, o X, given by V (X, o X,) =
Vi x Vyand B(X; o X;) = {(&, y) = [(¥1, Z2), (Y1, Y2)] | @1, Y1 € Vi, X, Y2 €V,
and either (x,, y,) € B, or z; = y, and (x5, ¥,) € Es}.

It is clear that the algebraic properties observed to hold for these operations
in the undirected case hold for digraphs as well. Of course, they coincide with
those defined previously (Mowshowitz, 1968, §4) when X, and X, are symmetric
digraphs. The operations are illustrated in Figure 2.
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Figure 2. Operations on digraphs
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Let X be a digraph. Then X can be expressed in the form
r Ky
x=U(0x)
i=1 \j=1

where the X,; are weakly connected components, and for each 7 = 1,2, ...,
r,X;~X,(1<j<k) Asin the undirected case, it is well known that
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(@) HX) = G(X)and (b)) H(X) = 8, o HX,) + +-- + 8, o G(X,), where Sy, is
the symmetric group of degree k,, and o and + denote the composition and
direct sum operations, respectively, defined on permutation groups.

Now, it is easily seen that Theorems 4.3 and 4.5 of the earlier paper (Mowsho-
witz, 1968) hold in the case of digraphs. We summarize in the following.

2.1 Theorem. Let X and X;(1 <4 < mn) be digraphs, and suppose
XX <i<n)and V(X)) N V(X)) = 0fors # j. Then (a) [(X) = [(X),
(0) [( X, UXyU - UX,) =I(X), (¢) I(X, + Xy + - + X)) = I(X).

Proof. The proofs for (@) and (b) are exactly analogous to those of Theorems
4.3 and 4.5 (a), respectively of the earlier paper (Mowshowitz, 1968). To prove
(¢), we need only note that as in the case of undirected graphs X, + X, = X,U X,
and then appeal to the proof of 4.5 (b) of the earlier paper.

Next we will show that Theorem 4.7 (Mowshowitz, 1968) also holds in the
directed case. Let X be a digraph. X is said to be prime with respect to the
cartesian product if, whenever X ~ X, x X,, either X; or X, is the identity
digraph (or graph) K;. The result (Harary, 1959, 33) used in proving Theorem
4.7 hinges on a theorem of Sabidussi (1960, 456) which states that if X,, X,,
..., X, are connected prime (undirected) graphs with V(X;)Nn V(X,) =0
(¢ #j),thenG(X; UX, U - UX)) x G(X; x Xy x --- x X,;). Theproof
given by Sabidussi is easily seen to carry over to the directed case if we can show
that any digraph X is isomorphic to the cartesian product of prime digraphs
which are unique up to isomorphism. Thus, we prove the following

22 Lemma. Let Y=Y, x Yy x .- x Y, be a digraph where each
Y, (1 < ¢ < n)is prime with respect to the cartesian product. Let F, = E(Y))
and

F(i) = {(x, y) = [(xl’ Za, --’xn): (yh Yay -« - yn)] EE’(Y) l (xb yt) EE(Yt)}'

Then the collection {F®}}'_, is a partition of E(Y), that is, {F®}]., induces an
equivalence relation on E(Y).

Proof. (a) Let X be a symmetric digraph with X = X; x Xy x -+ x X,
where the X; are prime. Then there exists a partition of E(X) given by
{E™}., where E® = {(z,y) e E(X)| (%, v) € E(X,)}. Suppose X = X, x
X, x .-+ x X, is a digraph where each X, is prime, E(X,) < E(X,) and
V(X)) = V(X)) for 1 <i < n (ie., each X, is a subdigraph of X;). Then, we
claim that {F®)_, with F'® = {(z, y) € E(X) | (=, ) € E(X,)} is a partition of
E(X). TFor, suppose the contrary. Then there exists (z,y) € B(X) < E(X)
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such that (x;,y,)e F® < E® and (x,y,) e F® < ED for i #j. But this
implies that ZY N E? # O, which is impossible.

(b) Consider the symmetric digraph X = K, x K, x --- x K, where
E(Y)) < E(K,)) and V(Y,) = V(K,). Clearly, the K, are prime since the
cartesian product of any two graphs cannot be complete. Moreover, E® > F®
for 1 < ¢ < n. Thus, according to (a), {FP}}_, gives the desired partition
of B(Y).

The conclusion of Lemma 2.2 is equivalent to the existence of a unique (up to
order and isomorphism) decomposition of a digraph into a cartesian product of
prime factors. Thus, we define digraphs X and Y to be relatively prime with
respect to the cartesian product if whenever X ~ XxZandY >~ ¥ x Z, 7
is the identity digraph K.

2.3 Theorem. Let digraphs X and Y be weakly connected and relatively
prime with respect to the cartesian product. Then I (X x Y) = I(X) + I(Y).

Proof. Lemma 2.2 allows us to invoke the proof given by Sabidussi (1960,
456) to assert that (X U Y) & (X x Y), since X and Y are relatively prime.
So, as shown by Harary (1959, 33) for undirected graphs, (X x Y) =
G(X) x G(Y). (In general, we can now say that for any digraphs X and 7Y,
GX) x G(Y) = G(X x Y)iff X and Y are relatively prime.) The theorem
now follows from Lemma 4.6 (Mowshowitz, 1968).

The situation involving the composition of two digraphs is less tractable.
The (necessary and sufficient) condition given by Sabidussi (1959, 694) for
G(X » Y) to be equal to G(X) o G(Y) when X and Y are undirected graphs can
be generalized as follows. Suppose X and Y are digraphs. Let the relations
R and 8 on V(X) be defined by

xRy i V(X;2) = Vi(X;9)and V(X;2) = Vo(X; p),
xSy HV(X;2)U{a} = ViX;y) U{yland V(X;2) U {a} = V (X; ) U {9},

and let A = {(z, 2) | € V(X)} (the trivial relation).
Now, the condition is

(*) Y is weakly connected whenever B # A and Y is weakly connected
whenever § # A,

It is easy to see that Sabidussi’s proof of necessity also shows that the condition
(*) is necessary for G(X o ¥) to be equal to G(X)o. @(Y). However, the
sufficiency proof given by Sabidussi does not appear to carry over to the
directed case. Moreover, since a counterexample is not fortheoming, we shall
have to be satisfied with a weaker result in the directed case.
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2.4 Theorem. Let X and Y be digraphs. Then
I(X oY) < I(X) + I(Y).
Proof. This follows immediately from Theorem 5.1 (Mowshowitz, 1968)
since G(X) o G(Y) < G(X o Y), as in the undirected case.

We will conclude the section by establishing a connection between the in-
formation content of undirected and directed graphs.

2.5 Lemma. Let G; and G5 be permutation groups with the same object
set V satisfying ¢/; < G,; and let P; and P, be the finite probability schemes
constructed from the orbits of G; and G, respectively. Then H(P,) < H(P,),
where H is the entropy function.

Proof. Let p; = m/n (1 < i < k), where n = |V| and n, is the number of
elements in the ith orbit of G,. Since @; and @, have the same object set, and
G, is a subgroup of G,, each orbit of G, will be a union of orbits of G,. So,
suppose O’ is an orbit of ¢, with O’ = O, U Oy (¢ # j), and that every other
orbit of G, is equal to some orbit O, (k # 4, k # j) of G;. Then

H(P,) — H(Py) = — p;log p, — p;log p; + (p; + p;)log (p; + p;),
= pillog (p; + p;) — log ;] + p,llog (p, + »;) — log p;],

= p;log[1 + (p;/p)] + p;log[1 + (p,/p;)] > 0.

Now, suppose that the orbits of G¢; are 0,;(1 < ¢ < ?’,1 <j < r), and the
orbits of G, are given by O; = |J}'; 0. Moreover, let p; = |Oy|/n,
i1y = p;. Clearly, we must have >'.; r, = h, the number of orbits of
Gy, and DPL, p, = 1. It is obvious from the above that

h' T ZTI_ P
H(P) - HP) = 33 [log (S5224)],
i=14=1 Pij
and since
T4
20=1P4 Ly, P, — H(P,) > o.
Dy
Since H(P,) = H(P,) iff G, and G, have the same orbits, the Lemma is proved.
2.6 Lemma. Let X be a digraph and X’ its associated graph. Then
G(X) < (X').

Proof. By the definition of X', (x, y) € E(X') iff (y, ) e E(X'). Suppose
¢ € G(X). Then (z, y) and (y, ) are in E(X') iff (», y) or (y, x)isin E(X). But
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this is true iff (z, y)¢ or (y, )¢ is in E(X) which, in turn, can hold iff (x, y)¢ and
(y, z)¢ are in E(X’).

An immediate consequence of Lemmas 2.5 and 2.6 is the following.

2.7 Theorem. Let X and X' be as in 2.6. Then I (X') < I (X).

3. The construction of digraphs with given information content. As noted
earlier, an undirected graph is just a symmetric digraph, from the standpoint
of the automorphism group. Thus, it is natural to expect digraphs to exhibit a
greater variety of group structures than undirected graphs. For example, the
smallest undirected graph (excluding K) whose group consists of the identity
alone hasg six points. In the case of digraphs, as we shall show presently, for
every n > 1 there exists a digraph X with » points for which G(X) = {e}.
This of course means that for every » > 1 there exists a digraph X with n points
such that I (X) = log . Much more can be said, however. We will now give
a construction showing that for every » > 1, there exists a weakly connected
digraph X such that

Lo n
Iy(X) == Z ilog_i

where 7, (1 < ¢ < h) are any positive integers satisfying >?_; n; = n.

First, some preliminaries. We will call a digraph X a path of length n (= 0) if
V(X) = {#o, g, « . -, 2y} and B(X) = {(x1, %3), . - -, (¥p—1, %)} (if 2 = 0, V(X)) = {=},
E(X) = §); X will be called a (directed) cycle of length n (> 1), if

V(X) = {2, 25, ..., 2,} and

E(X) = {(xl’ xz): (xz’ xa): vy (xn-l’ xn): (xm .’111)}
(ifr =1, V(X) = {2}, E(X) = 0).

3.1 Lemma. Let X, be a (directed) path of length n (= 0)and Y, a (directed)
cycle of length n (>1). Then (@) The orbits of G(X,,) consist of the individual
points of X, so I (X,) = log (» + 1); (b) G(Y,) has exactly one orbit V(X), so
I(Y,)=0.

Proof. (a) Let V(X)=1{0,1,...,n} and E(X)={(0,1),(1,2),...,
(n — 1, %)} as in Figure 3; and let X, be the associated symmetric digraph.
From Lemma 2.6 we have that G(X,) < G(X}), so that each orbit of G(X;) is a
subset of an orbit of (X;). Now, the orbits of X, are

{0,n},{1,n — 1}, ,{7%—1,%—-——-2':—1 + 1} ifn + liseven

2
{0,n}, {1,n — 1},...,{";2— 1,"; + 1}{”;2} ifn + 1is odd.
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Since 0d(0) = 1, od(n) = 0, 0 and » must be in different orbits, so {0}, {n} are
orbits of G(X,). Hence, any automorphism of X, must be an automorphism
of the subgraph X consisting of points 1, 2, ..., » — 1. But X, isisomorphic
to X, _,. Thus, by repeating the argument, we see that {0}, {1}, ..., {n} must
be the orbits of G(X).

(8) Let
V(Yn) = {1’ 2, .00 n} and E(Yn) = {(1: 2): (29 3)a vees (n -1 n): (nr 1)}

as in Figure 3. It is obvious that the cycle (12..-n) is an automorphism of
Y,, so G(Y,) has but one orbit.

P) 3
- > o > ¢ - O0—>—o> o ] 4
0 1 2 n—2 n—1 =n
7 5
X, Y,
I(X,) =log(n + 1) I(Y,) =0

Figure 3. Path and cycle digraphs

3.2 Theorem. Let nbe any positive integer, and suppose P = {n,;} is a parti-
tion of » where ny =m (1 <j < r),m, # ny, (4 #4p), andi = 1,2,...,k
Then there exists a weakly connected digraph X with » points such that G(X)
has exactly r = >F_, r; orbits, and for each n,; there is an orbit 4 with |4| = n,;;
and, hence,

k
IX) = H(P) = = 31, (% log ;ﬁ)

Proof. Ifn = 1,theproofistrivial. Soletn > 1. Foreachi=1,2,...,k
consider the digraph X; = L, _; x C,, where L, _, is a path of length», — 1, and
C,, is a cycle of length n,. Since L, _, and C,, are relatively prime with respect
to the cartesian product, the set of orbits of G(X)) is just the cartesian produet of
the respective orbits of G(L,, ;) and G(C,,). Hence, G(X,) has exactly r, orbits
each consisting of n; elements, since by Lemma 2.8 G(L,,_,) has r, orbits each
consisting of one element, and G(C,,) has one orbit with n, elements. Now con-
sider the digraph X = X, + X, + .-+ + X,. Since X; # X, for i # j, it is
clear from the discussion preceding Theorem 2.1 that G(X) = G(X,) + F(X,) +
-+ 4+ G(X,), that is, G(X) is the direct sum of G(X,), ..., G(X,). Hence, the
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orbits of G(X) are just the union of the orbits of the G(X,), that is, G(X) has »
orbits, r, of which each contain %, elements for + = 1,2, ..., k. Moreover,
since each L, _; and C,, are weakly connected, X; is weakly connected; and,
thus, X is weakly connected, as required.

Figure 4 illustrates the theorem for n = 24, P = {1%, 23, 32, 42},

P AL

L G Ly O L O Ly o
A
4 A
X, =Lgx C Xy=1L, x Cq X3 =L, x Cq X, =Ly x Oy
X=X, 4+ Xo+ X5 + X,
_ 1 1 2 2 of 3 3 of 4 4
I(X) = — [4(ﬂ log ﬂ) + 3(—5; log ﬂ) + “(ﬁ log ﬂ) + a(-z—i log ﬂ)]

= H({1*, 2°, 3%, ¢4%})

Figure 4. The construction of a 24-point digraph with given information content

4. An extension of the information measure to infinite graphs. In an earlier
paper (Mowshowitz, 1968) we defined a graph] as an irreflexive symmetric
binary relation on a finite set. By dropping the finiteness restriction, one
obtains an arbitrary graph which may have infinitely many points and lines.
The definitions given in Section 2 of the previous paper are the same in the
general case with the following modifications: Let X be an arbitrary graph.

A sequence ’
S = (""l—ﬂ,’ "',l-—-l’l(hll “"Zn ...)

of lines I, = [z, #,,,] € B(X) may be finite or infinite. However, as in the

I To simplify the diseussion, we will consider only undirected graphs, and use the notation of
the earlier paper (1968).
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finite case, two points x and y are connected if there is a finite sequence § with
initial point z and endpoint y. As before, the set of automorphisms of X forms
a group G(X). An orbit (which may contain infinitely many points of X) of
@(X) is given by {xg | g € (X)} for some z € V(X). Again, the collection of
orbits of G(X) is a decomposition of V(X) into disjoint subsets whose union
is V(X).

An arbitrary graph X is said to be countable if |V(X) U E(X)| is countable;
X is locally finite if d(x) (the degree of x) is finite for every x € V(X). In what
follows we will be dealing exclusively with countable graphs which may or may
not be locally finite.

Ideally, any extension /, of the measure I, to the (countably) infinite case
should satisfy: (2) [,(X) = I,(X) for all finite graphs X; (b) /,(X) is defined and
unique for all countable graphs X. Unfortunately, the particular extension we
will examine satisfies (@) but not (). However, the reason for its failure to
satisfy (b) turns out to be interesting in itself, as will be seen presently.

Let X be a countable graph. A sequence {X,}°.; of finite graphs X, with
V, = V(X,) and E, = E(X,) is said to converge to X as a limit (written
lim,_,, X, = X) if lim,,, V, = V(X) and lim, ., £, = E(X) where the
latter two limits are simply limits of a sequence of sets. Note that in general,
if {4,}7-1 is a sequence of sets 4,

liminfA, = {J (‘” A,,)
n=k

n— 00 k=1

and

lim sup 4, = () (°° An)'
n-> k=1 \n=k

{A.}7-1 is said to converge to A (written lim,,, 4, = 4) if lim sup

A, =liminf A4, = A. Moreover, if {4,}7.; converges to 4, then any sub-

sequence {4, }i-, also converges to 4.

4.1 Lemma. Let {X, }7., be a sequence of finite graphs, and let A(n) be the
number of orbits of G, = G(X,). If sup,h(n) < hy, then sup, I (X,) <
log hy.

Proof. TFor each n, let k,(n) be the number of elements in the sth orbit of
Gy, f(n) = |V(X,)], and Jeb £,(n) = [h(n)/f (n)}k(n). Clearly,

h(n)_]g.i(_n) _ 1
&y hn)
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and
= 55106 S < 1og )
for each n. But

I(X,) = — (z L kn) R )l n)/f (0T ()

")
n) g.f(” 1 h(n) h(n)
n)

vl—‘

i(n

(n
K kyn) | kyn)
= — 27 o 277,

2 m) e )
So, k(n) < kg for all n gives sup, I,(X,) < log ;.

A sequence {X,}_; of finite graphs X, will be called a defining sequence for a
countable graph X if X, < X, ,, for every n, and lim,_,, X, = X. Note that
for any sequence {4,}7_; of sets 4, with 4, < 4,,, for all », the limit
lim, , 4, always exists and is equal to (-, 4,; so, lim,,, X, = 2., X,.
It is clear that every countable graph X has a defining sequence. For, if X is

a countable graph, we can take V(X) = {x, %5, ...} and define a sequence
{X.}w-1 by the relations

V(X;) = {z,} and E(X;) = 0;
V(Xy41) = V(X,) Y {xn+1} and
E(Xn+1) = E(Xn) U {[xn+1: y] € E(X) I ye V(Xn)}
It is trivial to verify that X, < X, for all », and
IimX, = U X, = X.

Now we are in a position to define an extension of I,.

4.2 Definition. Let {X,}7., be a defining sequence for a countable graph X.
Then the structural information content I,(X; X,) of X with respect to the sequence
(X, )®., is given by [(X;X,) = lim,,, I,(X,), if the limit exists. If
lim,_, ., I,(X,) diverges, we will write [,(X; X,) = co. Consider the countable
graph X (shown in Fig. 5) defined by the sequence {X,};., where X; = C, (the
cycle of length four), X, = C, U Kp,and X, ,, = 2X,_; forn = 2.

Now, it is easy to see that

0, ifnisodd,
IQ(XTL) = {log 3 — % ifnis even,

for all n. Hence, lim inf,_,, I ,(X,) = 0 and lim sup,_ . {,(X,) = log3 — %,
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so I, is not defined for the sequence {X,}.,. However, the subsequences
{Yow=rand {Z,}7., with Y, = X,,_;and Z, = Xp,forn = 1, 2, ... are both
defining sequences for X, and [(X; ¥,) = 0 and [,(X; Z,) = log 3 — .

EREINEIEREIRISNEEIEIE

X =lim X, =n(:)1X,,

n-—w

Figure 5. A countable graph with no unique information content

What this example points out is that the information content (whenever it
exists) of a countable graph depends on the way the graph is defined (or con-
structed). From one point of view, this is a shortcoming of the definition.
However, from the standpoint of measuring the complexity of a countable
graph, it might be desirable to have a measure which is a function of the way
in which the graph is constructed. For example, such a measure might be
useful for characterizing the relative complexity of an algorithm. For, if the
computation at each step can be associated with a finite graph (or, perhaps, a
digraph), the algorithm can be represented as a sequence of finite graphs. In
any case, it is intuitively plausible that in certain cases the complexity of an
object is not an intrinsie property of some structural feature, but rather depends
on the way the object is constructed.

Now we shall examine some of the properties of the extension 7,.

4.3 Theorem. Let X be a countable graph with defining sequence {X,}. ;.
Then () If X is finite, [,(X; X,) exists and is equal to I ,(X). (b) There exists
a subsequence {¥,}., such that I,(X; ¥,) exists.

Proof. (a) Since X is assumed finite, it is clear that there exists a positive
integer N such that X, = X, foralln,m > N. Hence

lim I,(X,) = L,(X).

(b) If the sequence {I,(X )}, is bounded, there is a convergent subsequence
{I (X, )}%=1; if not, there is a subsequence whose limit is infinite. In either
case, the subsequence has a limit, so we can choose a subsequence {Y,}2_ ; of the
defining sequence such that [ «X; ¥,) exists.

Theorem 4.3 shows that there always exists a defining sequence for a count-
able graph for which I, is defined. The variation in information content given
by different sequences, however, can be infinite. Consider the countable graph
X (shown in Fig. 6) with defining sequence {X,}7., given by X, = K,, X, =

3—=n.M.B.
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2K, U K,,and forn =2
rK; if X, = K,.

X {i, rlir=k}
"1 TK, if X, = rK,and m = ir.
{Lrlir=k dorifr=k
Clearly, I(X;,-1) =0 for all » = 1,2,...; and I(X,,) is of the form

k(r/kr log kr|r) = log k where |V(X,,)| = kr. In the latter case, it is obvious
that lim,_,,, I (X,,) = co. Hence, there are defining sequences for X given
by Y, = X,,_, and Z, = X,, such that /(X; ¥,) = 0 and 1(X;2,) = .

R (AR B (I

X, X, X3 X,
X = lim X,

Figure 6. A countable graph showing an in-
finite variation in information content

4.4 Theorem. Let X be a countable graph with defining sequence {X,}2. .,
and let h(n) be the number of orbits of G(X,). If sup k(n) = ky < oo, there
exists a defining sequence {Y,}2_, such that 7 (X; ¥, < log A,.

Proof. By Lemma 4.1,
sup, I,(X,) < log A,
80
I(X;7,) < logh,

whenever it exists. Theorem 4.3 assures the existence of the appropriate
defining sequence.

When the condition of the theorem is satisfied, it is easy to see that G(X) has
finitely many orbits. However, the graph given in Figure 6 shows that if ¢(X)
has only a finite number of orbits (namely, one) it is still possible for 7 (X; X,)
to be infinite.

A less pathological case is characterized in the following.

4.5 Theorem. If X is a countable graph and |E(X)| < o0, [(X; X,) = 0
for all defining sequences {X,}=_;.

Proof. Let Y be the (finite) subgraph of X defined by E(Y) = E(X) and
V(Y) = {x e V(X) | d(z) > 0};let A, with |4,| = 7, (1 < ¢ < h)be the orbits of
G(Y). Since |E(X)| < o, it is clear that there exists a positive integer N such
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that E(X,) = E(X) for all n = N where {X,}7_; is an arbitrary defining
sequence for X; and |V(X,)| = |V(Y)|. Let |V(Y)| + k, = |V(X,)|. Then

h 7 r+k k r+k
I X — i n n n
o(Xa) 2:17'+Ic,,10g 7 +r+knlog k,
where
h
[V(Y)] = Z ty =1
i=1
Hence,
h
: I X — . r{ r + kn 0 kn r + kn =
im LX) = 3 lim | tog ™) 4 lim | tog T <

since {k,} is a monotonically increasing sequence and lim,_, , (log z)/z = 0.

Since the notion of a defining sequence allows for infinite variation in the in-
formation content of the same countable graph, it is appropriate to consider
various restriction on such sequences. In particular, it seems reasonable to
require that the groups of the respective graphs in a defining sequence for a
countable graph X reflect the orbit structure of G(X). So, let us call a defining
sequence {X,}<_; for a countable graph X a G-defining sequence if G(X) has a
finite (infinite) number of orbits when and only when {A,};-; is a bounded (un-
bounded) monotonically increasing sequence, where %, is the number of orbits
of (X,). An immediate consequence of this definition and Theorem 4.4 is

4.6 Theorem. Let{X,}7.be a G-defining sequence for a countable graph X.
If G(X) has finitely many orbits, there is a subsequence {Y,}°., such that

I(X; Y,) exists and is finite.
Some simple examples of G-defining sequences are given in Figure 7.

CLAOR.
0000,

Figure 7. @G-defining sequences

Many other special types of defining sequences could no doubt be invented
which would yield results more profound than Theorem 4.6. However, it
seems likely that such an investigation would be more fruitful if one were
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interested in particular applications of an information measure on infinite

graphs.
The author is indebted to Professors A. Rapoport, M. Kochen, N. Rashevsky,
and to Dr. S. Hedetniemi for advice and criticism.
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