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The study is concerned with the analysis of two flow domains of peristaltic motion in tubes. 
In  the first analysis the wall disturbance wavelength is much larger than the average tube 
radius. There is a simple algebraic relation between the average flow rate and pressure 
differential across a wavelength. In  the second analysis the disturbance wavelength may  
be as small as the average radius. A numerical technique may be used to determine the 
relation between average flow rate and pressure differential across a wavelength. 

1. Introduction. The object of this s tudy is to investigate analytically 
Ncwtonian flow induced by the peristaltic action of a flexible tube. The tube 
walls are excited by traveling sinusoidal waves that  cause points on the wall to 
move only transversely to the net average fluid flow. Harmonic waves are 
chosen both because they are readily dealt with analytically and because the 
intestines might, as a first approximation, be thought of as tubes whose walls 
are moving in this manner. 

An axisymmetric model is used with the stipulations that  the fluid be 
Newtonian and incompressible. The analysis is valid for small Reynolds 
numbers. 

2. Previous Work. The investigations involving flow in flexible but  passive 
tubes include those by Morgan and Kiely (1954), who considered propagation 
of small disturbances with long wavelength in a flexible tube free to move both 
axially and radially. Whirlow and Rouleau (1965) analyzed viscous flow in a 
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thick-walled viscoelastic tube under specified flow and pressure conditions. 
Olsen and Shapiro (1967) investigated large amplitude motion of a viscous fluid 
in an elastic tube under specified flow and pressure conditions. Most analyses 
involving passive tube walls are related to blood circulation in the arteries. 
Rudingcr (1966) summarized the analytical literature on blood flow and has a 
comprehensive bibliography. 

Analytical studies involving active tube flow with externally excited walls 
are mainly concerned with various peristaltic phenomena. Latham (1966) 
investigated analytically and experimentally the behavior of a two-dimensional 
channel peristaltic pump. Shapiro (1967) considered retrograde diffusion in a 
two-dimensional peristaltic pump. Burns and Parkes (1967) used a perturba- 
tion technique to study channel and tube peristaltic motion. 

Finally, there is a paper by Taylor (1951) concerned with swimming of 
flagellated organisms, utilizing Taylor series developments and perturbation 
techniques. Though this paper does not deal specifically with the flow of fluid 
in tubes, it is important to the present study because similar analyses are 
common to both. 

3. Long Wavelength Approximat ion  to Peristaltic Flow in a Tube. The 
method of analysis here is similar to that  employed by Latham (1966) for the 
case of two-dimensional channel flow. 

Consider the flow of a viscous fluid in a tube whose walls are executing 
traveling ring waves so that  the tube surface is defined by 

h(Z,  t) = a + b s i n ~  (Z - ct). (1) 

The tube geometry is shown in Figure 1, which exhibits average radius a, wave 
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Figure 1. Tube geometry 
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amplitude b, and wavelength A. The wave propagation velocity is o and the 
kinematic viscosity of the fluid filling the tube is v. The fluid is assumed to be 
Newtonian and incompressible. 

The R, Z coordinates are fixed in space while the r, z coordinates travel with 
the ring waves to the right at  a velocity c. The variables z and r are defined by 

z = Z -  ct; r = R.  (2) 

The axial velocity measured in the moving coordinates is w, while the corre- 
sponding radial velocity is u. Corresponding velocities in the stationary R, Z 
coordinates are U and W. 

The equations of motion and continuity governing fluid behavior in the tube 
a r e  

and 

ou ~u ~u 1 op [o~u ~ au u o2ul 
e-i- + u ~ - ~  + w - ~ 2  = - ~ e-k + ~ ~aR ~ + R ~R R ~ + ~ ] '  (3) 

0W 0W eW 1 ~p (e2W 1 eW a~W~ 
e--i- + U ~ + W ~-~ = - P e--Z + V k e R2 + -~ O--R + -O-Z~]' (4) 

OU U OW 
e--k + ~ + ~z  = 0. (5) 

The continuity equation (5) may  be written as 

g(RU) O(RW) 
O----g- + O----Z- = o. (6) 

Differentiation of (6) with respect to R results in 

g2U 1 OU U 02W 
OR 2 + R OR R 2 = - OR OZ" (7) 

Expression (7) together with the identity 

g2W 1 OW 1 O[R(OW/OR)] 
0R 2 + ~ 0-R = R 0R (S) 

when introduced into the equations of motion (3) and (4) yield 

_ _ _  (o~u o~w OU gU gU I gp + v 
W + v - ~ + w o z =  p o R  \ ~ 2  ~ o ~ - Z ] '  (9) 

and 

OW OW W OW 1 Op ( R  O[R(OW/01~)] 02W]. (10) 
ot + v ~-fi + OR = - ~ o~ + v oR + oz~ ! 
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In order to linearize these equations, the order of magnitude of the various terms 
in the equations of motion will be considered. Let  the symbol ~ represent an 
order of magnitude relation. 

At  R = h the radial velocity U is given by  

U = 2,rbc 
- - y - c o s  ( Z  - a ) .  (11)  

From equation (11) 

bc 
u ,,, ~ .  (12) 

The characteristic axial length is the wavelength 2. The characteristic time is 
the period 2/c. The characteristic radial dimension is the average radius a. 

From the above characteristic dimensions 

This results in 

and 

S[ ] ~ [ ]  S[ ] c[ ] and 8[ ] [ ] (13) 
s z  ~, ' st  ~ ), ' ~ - - R ~ - 5 - "  

S(RU) Rbc 
s-----if-~ a---~ (14) 

S(RW)  R W  
~---Z- ~ --Y-- (15) 

Then from the continuity relation 

bc 
W ~ - - .  (16) 

a 

The order of magnitude 

~U 
St 

of all terms in the equations of motion is 

c2b S W  c2b 
~2 St a~t 

u--SU ~ c2b 2 u O W  ~ c2b 2 

~R a~ 2 3R a2~ 

W S U  c2b 2 S W  c2b 2 
S'-Z " a,~ "2 W ~Z  ~ a2--~ (17) 

~2 U cb 

S Z  2 ~ ~.--~ 
S2W cb 

e ~  

~ Z  2 a~  2 

S2W cb 1 S[R(~W/~R)] cb 
R ~R ~ -~" 
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Consider the case in which the wavelength is much larger than  the average 
radius and the Reynolds number is small; a/2 << 1 and ac/v << 1. 

0v/v 
O--T] OR OZ N ~2 /a2~ = ~ << 1 (18) 

OU/  02W OU/  02W cUbU/vcb 
U -~-~ v ~--ff-~2 , W -~- ~ V O R O Z ~ -~5 /-~-~ << I (19) 

0 u/  cb/v b a 
v - - ~ / v  OR ~Z N ~t a / a22 = ~-~ << 1 (20) 

O t / R  OR ~ aA ] a a = ~A- << 1 (21) 

v O W  I v ~[R(OW/~R)] OW/v_V - ~[R(OW/~R)] c2b 2/vcb 
-~-R/~R OR , W O Z / R  OR ~ a2A [ a a << 1 (22) 

05W / v ~[R(OW/OR)] vcb /vcb a 2 
v ~ - ~ / - ~  OR "~ a~tU/a 8 = -~ << 1. (23) 

I f  the Reynolds number is small and the wavelength long when compared to 
the radius, it can be seen from expressions (18), (19), and (20) tha t  

0U 0~W 
~t << v ~--~-~-~, 

0 U  02W 
U ~--~ << v ~ - - ~ ,  

~ U  02W 
W ?-~ << v O-g- ~ , 

and 

~2U ~2W 
0Z 2 << OR ~-----Z " (24) 

Similarly, for terms in the equation of motion in the axial direction it can be 
seen from expressions (21), (22), and (23) tha t  

OW v O[R(OW/OR)] 
~t << R OR 

OW v O[R(OW/OR)] 
u Tk- << ~ 0R 

OW v O[R(OW/OR)] Ouw 1 O[R(OW/OR)] 
W ~  << ~ 0R ~g - - - ~  << ~ 0R (25) 
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The smaller terms may be deleted from the equations of motion, resulting in 
the following linear equations of motion 

_ _ _  = O ~ W  1 0 p  --  v (26) 
p OR OR 0Z 

and 

Furthermore, 

= _ 

O R / O Z  v - -  

o r  

1 Op v O [ R ( O W I O R ) ]  
p 0Z = R OR (27) 

02W v O[R(OW/OR)] vcb /vcb a 
OR ~ z  R OR ~ : ~ / - ~  = ~ << 1 

(2s) 

0p 0p (29) 0--~ << F2" 

Thus the pressure is approximately a function of the axial coordinate Z and 
time alone. I t  is only weakly dependent on R. 
of pressure on the radius, say 

p = p ( z ,  t) = p(z) 

since 

In  the moving 
reduce to 

and 

Due to the small dependence 

(30) 

z =  Z - c t .  

r, z coordinates the equations of motion and continuity 

dz = / z  ~0r2 + 7-~-r ! (31) 

O(ru) O(rw) 
Or- + o----z = o. (32) 

The solutions to (31) and (32) must  satisfy the following boundary conditions 
a t r  = h. 

W ~-~ m c 

Oh (33) 
St 
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As dp/dz  = f ( z )  integrate (31) at constant z to obtain 

1 dp (h 2 _ r 2 ) .  ( 3 4 )  
w = - c 41~ dz 

To an observer moving at the velocity c in the axial direction, the pressure 
and flow appear stationary; and therefore, the flow rate q measured in the 
moving coordinates is a constant that  varies with neither time nor position 
along the tube axis. 

q = 2~r f :  rw dr (35) 

where w is given by  equation (34). 

q = _clrh2 _ 7rh 4 d p .  
8ix dz (36) 

The pressure gradient dp/dz  may then be expressed as 

dp 81~q 81~c 
- -  ( 3 7 )  

dz 7rh 4 h 2 

Substituting equation (37) into the equation for w yields 

w = - c  + 2 + (h 2 - r2). (38) 

The transverse velocity u may be found by  integrating the continuity equation 
at constant z. Noting that  u = 0 at r = 0, 

f ~  r ~w ru = -- ~ dr. (39) 

Since u(0, z) = 0, this requires that  

dh pcr3 2qr 2qr a] 
u = dz [h  a ~rh s + 7rhSJ" (40) 

Consider the flow rate Q measured in the stationary R, Z coordinate system. 
The axial velocity W measured in the stationary coordinates are 

W = w + c. (41)  

Hence 

2rr f ~  W R  d R ,  (42) Q 

o r  

Q = q + 7rch 2. (43) 
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Now compute the time average flow (2. 
T = 2/c and 

o r  

I f  T is a complete period for h, then 

1; 
(2 = -~ Q dt (44) 

(2 = q + ~'c(a 2 + b~'/2). (45) 

The flow rate q depends on the pressure gradient dp/dz as shown in equations 
(36) and (37). 

In  the investigation that  follows for a tube with wall disturbance wavelengths 
as short as the average radius, the case of no pressure drop across a wavelength 
will be considered. Therefore, the present investigation is limited to the same 
ease. The pressure change over one wavelength, Ap~, is the same whether 
measured in the moving or stationary coordinates. ~'or simplicity of integra- 
tion, evaluate it in the moving coordinates: 

Ap,,, = f ~  ~zz dZ. (46) 

For the case of a sinusoidal traveling wave, the value h = a + b sin [(27r/)t)z] 
is introduced into equations (37) and (46). ApA is evaluated in terms of a new 
variable r which is defined by 

27rz 
r---- ~ (47) 

Ap~ = 7r 2 a + b sin r) 4 + (a + b-sin r) 2 dr  (48) 

[ 8/x2 (a 2 q P3 %/ Ap~ = ~.(a 2 + b2 ) + b2 ) 

For the special case where Ap~ = 0, 

2 L~a~ u 3VJ" 

+ 7rcP1 ( % / ~ ) ] .  (49) 

(50) 

From equation (40) for the ease of a sinusoidal traveling wave the radial 
velocity is given by 

2 b roos,2 l,,z[ 4(o2 b ,2( 
2h 3 r 2 + 2a 2 + 3b 2 1 - (51) 

utilizing the result of equation (50). 
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Inserting the expression (50) for q into the expression (37) for the axial 
velocity yields an expression for axial velocity in a tube with sinusoidal traveling 
ring waves: 

[ 4( a9" -- b2)2 _ r2)} w-- -c {1+  (h2 _" 

The expression (50) for ~) may be checked by  an independent method for the 
completely occluded case in which b is equal to a. 

For the completely occluded ease 

c~r (~ h2 dZ Oo=-% (53) 
J 0  

or 

3,/ra2c 
= 

which is the same given by  equation (50) for the completely occluded ease. 
I f  b/a << 1, equation (50) leads to 

-= 4~'cb 2. (55) 

Approximate Computation of Peristaltic Flow in a Tube with Square Cross- 
section. Latham (1966) shows that  for a two-dimensional channel with a long 
wavelength disturbance on the walls and no pressure change over an integral 
number of wavelengths, the total flow rate per unit width is 

3cb2a 
Qr = (a 2 + b2/2), (56) 

a is the average channel half-thickness and b is the disturbance height. 
In a square channel with an average transverse dimension 2a for both width 

and depth and small amplitude b << a, the average flow rate Qc would be 
approximately 

Qc " 12cb2. (57) 

The expression for Qc includes the assumption that  having a square channel 
with equal disturbances on all four walls exactly doubles the average flow 
velocity over that  of a two-dimensional channel of the same average width. 
This speculation is only justified intuitively. 

Comparing equation (57) and equation (55) shows that  there is a five per cent 
difference in flow through a square channel and a tube of equal cross-sectional 
areas when the wall disturbance heights are equal and much smaller than the 
average channel or tube thickness. 
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4. Short  Wavelength A p p r o x i m a t i o n  to Peristalt ic F l o w  in  a Tube.  Consider 
the flow of a viscous incompressible fluid in a long tube whose walls are located at 

R - -  h = a + b s i n k ( Z -  ct). (58) 

The tube geometry is shown in Figure 1. 
The wavelength may  be of the order of a. For sufficiently low wall velocities 

and high fluid viscosities the fluid motion may  be described by  the linearized 
Navier-Stokes equations (59) and (60) and by  the continuity equation for in- 
compressible fluids (61). The equations of motion differ from those used in the 
previous section for a long wavelength traveling wave disturbance by  their 
inclusion of the second partial derivatives with respect to Z and by  the inclusion 
of the equation of motion in the radial direction. 

Equations (20) and (23) show that  the second partial derivatives with respect 
to Z are of the same order as the second radial derivatives if the wall disturbance 
wavelength is of the order of the mean tube  radius a. 

In addition, from equation (28) the radial pressure derivative may be seen to be 
of the order of the axial pressure derivative if the wall disturbance wavelength 
is of the order of the mean tube radius. Therefore, the equation of motion in 
the radial direction (59) must  be included. 

The pertinent equations for this particular fluid flow are then 

1 ~p V2 u u 
~R R 2 (59) 

and 

1 ~p = V2w, (60) 
~Z 

~u u ~w 
~-k + ~ + ~ = 0. (6~) 

The notation used in this analysis will differ slightly from that used for the 
case of the long wavelength disturbance in Section 3. Here u and w will be 
used to denote velocity components in the radial and axial directions re- 
spectively. A non-dimensional radial variable r is defined as 

r = kR 

where k is the wave number k = 2~/a. And a non-dimensional axial parameter 
s is introduced as s = k ( Z  - ct). 

From equations (59), (60), and (61) it follows that  

v2p = o. (62) 
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At the boundary R = h, the axial and radial velocities are 

u = - b k c c o s s  
at R = h. (63) 

w ~ 0 .  

The solution for p is assumed to be separable and of the form 

p_ = Po(8) + pl(r) + ~ fn(r)Fn(s). (64) 
n = l  

Since equation (62) must be valid for all s and all r it will be satisfied if 

d2po(S) 
ds 2 = o, (65) 

d2p~(r) 1 dp~(r) 
dr - - - - ~  + r dr -- O, (66) 

and 

[ d2fn(r) Fn(s) dry(r) d~F~(s)] 
F~(8) ~ + + fn(r) = O. (67) 

= 1 r dr ds 2 J 

First consider the homogeneous equation (65) for po(S) which has for its solution 

po(s) = A '  + B's. (68) 

Since the case to be considered is one in which there is no pressure change 
over a complete wavelength, the linear B's term is inadmissible in this analysis. 
I f  there were a pressure change over a complete wavelength, it  could be in- 
corporated in the analysis by the B's term. The constant term has no effect 
on fluid motion and may thus be omitted with no change in velocities subse- 
quently obtained by use of the equations of motion. 

Now examine Io l(r), which is defined by the homogeneous differential equation 
(66) whose solution is 

pl(r) = A" + B" In r. (69) 

The constant A" term in pl(r) may be combined with the constant term in 
p~(s) and may be omitted for the same reason. This means tha t  p is in reality 
the overpressure caused by the wall disturbance, rather than  the actual total  
pressure. The coefficient B" of the logarithmic term in equation (69) must be 
zero because the pressure should be finite at  r = 0. 

This brings the form of the pressure expression to 

oo 

P ~ fn(r)F~(s). (70) 
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Satisfying the homogeneous partial differential equation (67) term by term 
yields 

d2f~(r) Fn(s) dfn(r) d2Fn(s) r ~ Fn(s) ~ -I- - -t- O. (71) r dr ds 2 jn~rl = 

Since the pressure should be finite for r = 0 and periodic over s = 2~, it follows 
tha t  

~k = Io(nr)[A, ~ cos ns + Cn sin ns]. (72) 
n = l .  

With the stipulations that  the velocities be periodic with the fundamental 
period s = 27r and be finite, the solutions of the differential equations (59), 
(60), and (61) are then 

w = Vo - A,~ Io(nr) + -~ 

+ s {C n [1 io(nr) + 2i~(nr)] 

and 

+ Bnlo(nr)t sin ns 

+ Djo(nr ) )  cos ns (73) 

cos ns + ~ [ ~ I o ( n r ) +  D~Ii(nr)] sin ns. 
n = l  

(74) 

equation (73) may be integrated over 0 < R _< h to yield the instantaneous flow 
rate at any location on the tube axis. 

The flow rate is defined as 

Q -- 2,~ Rw(R) dR. (75) 
0 

Substituting equation (73) for the axiM velocity into equation (75) yields 

Q=TrfVoh2  2 | k2h2 (nkh)) + - p'n__~ 1 [~'~ (--~ Ii(nkh) + ~ I2 B ~ h  ii(r&h)] sinns 

) ] } + -~ II(nkh) + T Ie(n]ch) + Ii(nlch ) cos ns �9 (76) 
n = l  n 

I t  now remains to evaluate the constants V0, An, Bn, Cn, and D n in the equations 
for radial velocity, axial velocity, and over-pressure by use of the boundary 
conditions (63). 

As the radial boundary defined by equation (58) does not coincide with a con- 
stant R surface, the standard boundary value problem technique of satisfying 
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equations (73) and (74) term by term is not an acceptable method for evaluating 
the constants in the series for the fluid velocities. 

The technique used to evaluate the constants was a computer-aided process. 
The velocity series equations (73) and (74) were truncated at  some n = N, and the 
included constants evaluated so as to satisfy boundary conditions at a selected 
number of points along a wavelength. This technique gave values to all the 
constants in the truncated series. The number of terms included in the series 
could be changed to s tudy the effect on the solution. And the program gave 
velocity, instantaneous flow, and average flow numerical results at  selected 
stations over a wavelength as well. 

5. Results. The instantaneous flow rate Q as well as the non-dimensional 
velocities u/c and w/c were calculated for a wide range of tube geometries with 
the aid of a digital computer. 

Q 
~ c d  2 

0.5 

0.4 

0.5 

0.2 

O.I 

0.0 

\  -ooo 

I 

0.0 0.1 0.2 0.3 0.4 

Figure 2. 

b 
a 

Non-dimensional flow rate for tube with short wavelength wall disturbance 

The average non-dimensional average flow rate Q/~rca 2 is displayed in 
Figures 2 and 3 for a range of the two parameters b/a and a/h. A similar curve 
is plotted on the same figure for the tube analysis of Section 3. 

For b/a <_ 0.90 and 0.02 <_ a/h <_ 0.05 the analyses of Sections 3 and 4 give 
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b 
5 

N o n - d i m e n s i o n a l  flow r a t e  for ~ube w i t h  long 
w a v e l e n g t h  wal l  d i s t u r b a n c e  

F igu re  3. 
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o 
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~ 
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N 

F i g u r e  4. N o n - d i m e n s i o n a l  flow r a t e  versus  n u m b e r  of  t e r m s  
inc luded  in  t h e  series (76) for flow in  a t u b e  
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the same flow rate. Therefore, the long wavelength approximation is valid in 
this flow regime. 

However, there is less than ten per cent difference in flow predicted by  the 
long and short wave analyses for 0.05 _< a/~ <_ 0.25 and b/a <_ 0.33. 

Convergence of  the series (76) for flow in a tube  was examined to determine 
the region of validity. The number of terms retained was varied and the effect 
on the flow rate noted. A graph of computed flow rate versus the number of 
included terms is shown in Figure 4. 

From the flow rate variations it may be said that  the series (76) when 
terminated after the twentieth term gives valid results over the region shown 
in Figure 5. The series (72), (73), and (74) for fluid velocities and overpressure 
are valid over the same region. 

Computer calculations were performed over a geometry region larger than 
that  shown in Figure 5 in order to determine the domain of validity. 

The table shown below reports data relative to the transport  of chyme through 
the small intestine. 

Quantity Value Reference 

Average length; in male of small 
intestine 

Average maximum inflated diameter 

Peristaltic wavespeed 

Wavelength ratio 

Amplitude ratio 

Time for chyme to pass through 
small intestine 

22~ feet 

25 mm 

2 cm/min 

a 
= o . 1 5 6  

b 
- = 0.60 a 

4�89 hours 

Piersol 

Piersol 

Evans 

Houssay, et al. 

Houssay, et al. 

Ful ton  

The long wavelength analysis formula for flow rate yields a non-dimensional 
flow rate for the amplitude ratio b/a = 0.60 of Q/~rca 2 = 0.915. This may  be 
roughly considered as an average non-dimensional axial velocity W/c.  From 
the intestinal length and the time required for chyme to traverse the small 
intestine, the average chyme velocity may  be seen to be 2.54 cm/min. From 
the long wavelength analysis, the average chyme velocity for this intestinal 
model is predicted to be 0.915 • 2 era/rain or 1.83 cm/min. The latter velocity 

10---B.M.B. 
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Q 

Figure  5. Reg ion  of  va l id i ty  for shor t  wave leng th  t u b e  
solut ion t r u n c a t e d  a t  N -- 20 

0 7r ~r ~ r  2~r 
2 

Figure 6. 

S 
Non-d imens iona l  axial  ve loc i ty  in t ube  

a b 
----- 0.25 ----- 0.24 h a 
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is p red ic ted  on the  basis of no average pressure gradient  in the  in tes t ine  and  
s teady  peristalt ic waves t h roughou t  the  process. The  calculated ve loc i ty  
differs f rom the observed by  28 per  cent.  A slight driving pressure g rad ien t  
would increase the  average calculated axial  veloci ty  and  thus  reduce the  error.  

I U 

0 77" ~TT 2Tr 
2 

Figure 7. 

S 
Non-dimensional radial velocity in tube 

a b 
- = 0.25 - = 0.24 a 

The effect of  pressure gradient  on the  average  flow ra te  was eva lua ted  ana ly t ica l ly  
bu t  since no exper imenta l  da t a  could be found  on this subject  the  analysis was 
not  r epor ted  in this paper.  

Tha nks  are due to  the  Bio-Medical Engineer ing Center  a t  Nor thwes te rn  Uni-  
vers i ty  for awarding one of  the  authors ,  Charles Bar ton ,  a t ra in ing s t ipend 
under  N . I .H .  Training Gran t  5T16M874-04 which pe rmi t t ed  the  comple t ion  of  

this paper .  

LITERATURE 

Burns, J. C. and T. Parkes. 1967. "Peristaltic Motion." J. Fluid Mech., 29, 731-743. 
Evans, Sir C. L. 1956. Principles of Human Physiology. 12th edition, London: 

J. & A. Churchill Limited, p. 915. 
Fulton, J.F. 1946. HoweU's Textbook of Physiology. New York: W. B. Sanders Co., 

1002. 
Houssay, B. A., J. T. Lewis, O. Orias, E. B. Menendez, E. Hug, V. G. Foglia and F. Leloir. 

1951. Human Physiology. New York: McGraw-Hill, 347. 
Latham, T .W.  1966. "Fluid Motions in a Peristaltic Pump." M.I.T., M.S. Thesis. 



65{} C. BARTON AND S. RAYNOR 

Morgan, G. W. and J. P. Kiely. 1954. "Wave Propagation in a Viscous Liquid Con- 
tained in a Flexible Tube." JASA,  26, 323-328. 

Olsen, J. H. and A. H. Shapiro. 1967. "Large Amplitude Unsteady Flow in Liquid-filled 
Elastic Tubes." J.  Fluid Mech., 29, 513-538. 

Piersol, G. A. Ed. 1930. Piersol'a Human Anatomy. 9th Ed. Philadelphia: J. B. 
Lippincott Co. 

Rudinger, G. 1966. "Review of Current Mathematical Methods for the Analysis of 
Blood Flow." Prec. Biomed. Fluid Mechs. Symposium ASME,  N .Y .  

Shapiro, A. I-I. 1967. "Pumping and Retrograde Diffusion in Peristaltic Waves." 
Prec. of a Workshop on Ureteral Reflux in Children. 1VAS-NRC, Washington, D.C. 

Taylor, Sir G . I .  1951. "The Action of Waving Cylindrical Tails in Propelling Micro- 
scopie Organisms." Prec. Roy. See. Lend., A211, 225-239. 

Whirlow, D. K. and W. T. Rouleau. 1965. "Peristaltic Flow of a Viscous Liquid in a 
Thick-Walled Elastic Tube." Bull. Math. Biophysics, 27, 355-370. 

RECEIVED 5-7.58 


