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The  s t ruc tura l  in format ion  conten t  Ig(X) of a graph  X was t r ea ted  in deta i l  in three  
previous  papers  (Mowshowitz 1968a, 1968b~ 1968e). Those inves t iga t ions  of  lg po in t  up  
the  desirabi l i ty  of  defining and  examin ing  o ther  ent ropy- l ike  measures  on graphs.  To  this  
end the  chromat ic  in format ion  con ten t  It(X) of a g raph  X is defined as the  m i n i m u m  
en t ropy  over  all f inite probabi l i ty  schemes cons t ruc ted  f rom chromat ic  decomposi t ions  
hav ing  r ank  equal  to the  chromat ic  n u m b e r  of  X .  Graph- theore t ic  resul ts  concerning 
chromat ic  n u m b e r  are  used to establish basic proper t ies  of  I~ on a rb i t ra ry  graphs.  More- 
over,  the  behav ior  of  I c on cer ta in  special  classes of  graphs  is examined.  The  pecul iar  
s t ruc tura l  character is t ics  of  a graph on which the  respect ive  behaviors  of  the  en t ropy- l ike  
measures  I c and  Ig depend  are also discussed. 

1. Introduction. In this paper we will discuss an entropy measure I c defined 
with respect to a class of chromatic decompositions of a finite undirected graph. 
First, we will examine the behavior of this measure on arbitrary finite un- 
directed graphs, and then specialize to particular cases. Second, we will 
compare I c with Ig; finally, we will discuss the significance of the notion of 
graphical information content and summarize our results. 

We begin with some definitions.* A homomorphism of a graph X into a 
graph Y is a mapping r from V(X) into V(Y) such tha t  whenever [x, y] e E(X), 
[x, y]r = [xr yr e E(Y). An equivalent way of defining this notion is to 
define an elementary homomorphism of a graph X as the identification of two 
non-adjacent points; then a homomorphism is just a sequence of elementary 

* The definitions given here are largely those of Hedetniemi (1966). 
~- Present address: Department of Computer Sciences University of Toronto, Ontario, Canada. 
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homomorphisms. r is called a ful l  homomorphism of X into Y if [xr yr e E(Y) 
implies that  there exist points u, v e V(X) such that  xr = ur yr = v~b and 
[u, v] e E(X).  The image of X under the homomorphism r is the graph Xr 
with V(Xr = {x• I x e V(X)) and E(Xr = {[x~b, y i ]  I [x, y] e E(X)). Clearly, 
Xq~ C Y if r is a homomorphism of X into Y; moreover, Xr  is a section sub- 
graph of Y if r is a full homomorphism. I f  r maps V(X) onto V(Y), then r is 
called a homomorphism of X onto Y.  Note tha t  if r is a full homomorphism of 
X onto Y, then E(X)r  = E(Y); if, in addition, r is one-one, then r is an iso- 
morphism. A homomorphism r is said to be of order n if n = ] V(Xr and is 
complete of order n if Xr  T K n. 

A coloring of a graph X is an assignment of colors to the points of  X such tha t  
no two adjacent points have the same color. An n-coloring of X is a mappingf  
of V(X) onto the set {1, 2 . . . . .  n} such tha t  whenever [x, y] e E(X), xf  r yf, 
tha t  is a coloring of X which uses n colors. An n-coloring f is complete if for 
every i, j with i r j there exist adjacent points such that  x f  = i and yf  = j .  
A decomposition {V,)~= 1 of the set V(X) of points of X is said to be a chromatic 
decomposition of X, if x, y e V, imply that  [x, y] ~ E(X).  Clearly, ff f is an 
n-coloring of X, the sets {x e V(X) ] x f  = i} for i = 1, 2 . . . . .  n form a chromatic 
decomposition of X; conversely, a chromatic decomposition {V~)~= 1 determines 
an n-coloring f.  Thus, the sets V, are called color classes. The chromatic 
number K(X) is the smallest number n for which X has an n-coloring, or, 
equivalently, the smallest n for which X has a chromatic decomposition with 
n color classes. Note that  a graph X can have more than one n-coloring (or 
chromatic decomposition with n color classes). X is called n-chromatic if 
K ( X )  = n .  

The following remarks concerning the relationship between homomorphisms 
and n-colorings (illustrated in Fig. 1) are necessary for the sequel. I t  is 
easy to show (Hedetniemi, 1966, 10) that  a graph X has a complete n-coloringf 
if and only if there exists a complete homomorphism ~ of X onto the complete 
graph K..  From this it follows that  if K(X) = n, then X has a complete homo- 
morphism of order n; and that  the smallest order of all homomorphisms of a 
graph X is just the chromatic number K(X). Thus, it is clear that  to each 
chromatic decomposition { Vi}~= 1 of an n-chromatic graph X, there corresponds 
a homomorphism r of X onto Kn such that  each Vt is of the form 

{xr = u Ix  e v ( x ) }  

for some u e V(Kn). 

2. The chromatic information content of a graph. Since the automorphism 
group of a graph X gives rise to a unique decomposition of V(X), we were able 
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Figure 1. Homomorphisms and n-colorings 

to define Io (X  ) (Mowshowitz, 1968a) as the entropy of a unique finite probability 
scheme associated with X. As we indicated above, there is, in general, no 
unique chromatic decomposition of a graph. So, in order to define a unique 
information measure which reflects the chromatic structure of a graph, we shall 
have to consider maximizing or minimizing the entropy function over a certain 
class of chromatic decompositions. For reasons which will become clear 
presently, we choose to minimize. 

2.1. Definition. Let X be a graph with n points, and let 

r = v , l  = n , ( f ' ) )  

be an arbitrary chromatic decomposition of X where h = K(X). Then the 
chromatic information content I c (X  ) of X is given by 

I c (X  ) m i n { _  ~ n,(l?) log n~(~}  " 
= ~ i=l n 

The principal reason for restricting the class of chromatic decompositions, 
over which to minimize, is convenience, since a great deal is known about the 
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chromatic number of a graph. Moreover, as illustrated by the graph of 
Figure 2, Ic(X ) does not necessarily give the minimum over all chromatic 
decompositions. However, the following theorem shows tha t  in certain cases, 
lc(X ) does give the minimum over all chromatic decompositions. 

I . z ~  k+l 
2 ~ 2 k + l  k§ 

• 

Figure  2. 

2.2. Theorem. Let X be a graph with n points and 

be an arbitrary chromatic decomposition of X. Suppose X does not have a 
complete ]c-coloring for ]C > h = K(X). Then 

ic(X ) r a i n (  ~ nt(l? , It)log n~(l?, ]c)} 
= ? , ] c  - n t = l  

Proof. Let f be the ]c-coloring corresponding to a chromatic decomposition 
{V~}~=I for Ic > h. S ince f i s  not complete, there exist i a n d j  (i # j)  such that  
[x, y] ~ E(X) for every x e V~ and y e Vj. So, without loss of generality, let 
i = ]C - 1 a n d j  = ]C, and let {U~}~j~ be the chromatic decomposition given by 
U~ = Vi for 1 _< i _< ]C-  2 and U k_l = Vk-l~J Vk. Then the respective 
entropies of the finite probability schemes P~ and Pk-1 associated with {V~}~= 1 
and {Ut}~j ~ are given by 

H(Pk) = - log -- and 
i=l n 

k - 2 ~  
H(P~_I) = - W ~ l o g  n~ 

~ n n 
nk-1 + nk]o,  nk-1 + nk 

o 

n n 

Hence, 

H(Pk) - H(Pk_I) 

= - n k - 1  l o g - -  + n k l o g  ( n e _ l  + n k ) l o g  
~ n k -  ~ n e  nk _ ~ + n~ 

1 
= ~ [ - h e _  1 l o g  h e _  1 - ne  l og  n e  + (nk_ 1 + nk) l o g  (nk_ 1 + nk)]  
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= -  nk-1 log 1 H- H-nk log 1 - b  >_ 0. 
n n~_l nk / J J  

So, for each chromatic decomposition of X with k( > K(X)) color classes having 
corresponding probability scheme Pk, there exists a chromatic decomposition 
with h(=K(X)) color classes having probabili ty scheme Ph such that  
H(Pa) < H(P~). This means that  a chromatic decomposition of X, which 
gives rise to a scheme with minimal entropy, must have K(X) color classes, 
which proves the theorem. 

Figure 3 illustrates the fact that  a graph can have different chromatic de- 
compositions with a fixed number of color classes. 

e 

a d 

c vf  

b 

191: {a, b, e, f}, {c), {d} V2: {a, d} {c, e}, {b, f}  

Figure 3. Chromatic decompositions of a graph 

Since the minimal order of all homomorphisms of a graph X is K(X), Ic(X ) 
can be interpreted as the amount of information needed to construct a complete 
homomorphism of minimal order, or, equivalently, as the amount of information 
needed to construct a K(X)-coloring. I f  X is taken to be a planar graph which 
corresponds to a map (that is the points of X represent territories and two 
points x and y are adjacent if and only if their respective telTitories have a 
common frontier), then Ic(X ) can be viewed as the amount  of information 
needed to color the map (using as few colors as possible) so that  no two bordering 
territories have the same color. 

Another closely related interpretation of I c is in terms of the notion of 
independence. A set S of points of a graph X is called independent if no two 
points of S are adjacent in X. (Note that  the color classes of a chromatic de- 
composition are independent sets.) The number of points of X in a maximally 
independent set is the independence number of X. Intui t ively speaking, Ic(X ) 
is inversely related to the number of points in a maximally independent set. 
This is clear for the complete graph and the null graph, since Ic(K,) = log n 
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(K(K~) = n) and Ir = 0 (K(_~) = 1 ) ;  and the independence numbers of K~ 
and -Kn are 1 and n, respectively. Of course, the relationship is only suggestive, 
since two graphs with the same independence number can have different 
chromatic information content. 

3. Properties of the measure I~ 
In  this section, we will prove some general results concerning chromatic in- 

formation content and then look at the behavior of Ir on uniquely n-colorable 
graphs, Kronecker product graphs, and trees. 

3.1. Theorem. Ic(X ) < log K(X) for any finite undirected graph X. 

Proof. This follows immediately from Definition 2.1 using the same argu- 
ment as in Lemma 4.1 of a previous paper (Mowshowitz, 1968b). 

Now, we give some results which are simple consequences of Theorem 3.1 and 
of known facts about  the chromatic number of  a graph. 

3.1a. Corollary. For a graph X and complete homomorphism r 
I A X )  <_ IAXr 

Proof. K(X) < K(Xr and Io(Xr = log K(Xr since Xr  is complete. 

Various bounds for the  chromatic number of a graph are known. I t  is 
obvious that  upper bounds are directly applicable in the present context. We 
use one such bound in the following: 

3.1b. Corollary. Let  X be a graph with do = max d(x) where d(x) denotes 
x 

the degree o fx .  Then I~(X) < log (do + 1). 

Proof. This follows from the fact tha t  K(X) _< do + 1. 

I f X  and Y are graphs with the same set of vertices, K(X U Y) < K(X) �9 K(Y); 
if V(X) n V(Y)  = ~ ,  then K(X u Y) -- max {K(X), K(Y)}. So, we have 

3.1c. Corollary. Let X and Y be graphs. 

(i) Ic(X u Y) < log K(X) + log K(Y) 
(ii) Ic(X u Y) <_ log (max {K(X), K(Y)}) 

Then 

if V(X) = V(Y)  
if V(X) c~ V(Y)  = Z .  

The following relates the chromatic information content of a graph to that  of 
its complement. 
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3.1d. Corollary. Let X be a graph with n points. Then 

(i) Ic(g)  <_ log In - K(X) + 1] 

(ii) Ic(X ) < log - log K(X). 

Proof. (i) and (ii) follow from the inequalities 

2r~ _< K(x)  + K(X:) _< n + 1 

and 

3.1e. Corollary. 

n _< K(X) �9 K(-~) _< , respectively. 

For graphs X and Y, 

Ic(X + Y) < log Ix(X) + K(Y)] 

539 

Proof. The result follows from the fact that  K(X + Y) = K(X) + K(Y). 

Hedetniemi (1966, 14) calls a graph X uniquely k-colorable ff it has only one 
homomorphism of order/r that  is, if for any two homomorphisms 41 and 42 of 
X onto K.,  and any two points x, y, x4z = Y41 if and only if x42 = Y4a. 
Uniquely k-colorable graphs are particularly well-suited for our purposes, since 
if X is uniquely k-eolorable, where k < n = ]V(X)I, then ~(X) = k and X has 
a unique chromatic decomposition with k color classes. Thus, if  {Vt}~=l wi th  
I Vtl -- n~ is the (unique) chromatic decomposition of a uniquely /c-colorable 
graph X, 

I t (X)  = - n l~ �9 
i = 1  

Figure 4 shows some uniquely k-colorable graphs. 

Y 
2-eolorable 

Figure 4. 

w 

3-eolorable 

Uniquely k-colorable graphs 

Since the task of computing I t (X)  is considerably simplified in the case of 
uniquely k-colorable graphs, it is worthwhile trying to determine such graphs. 
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Hedetniemi (1966, 16) mentions that  K n and K~ - x (the graph formed by  
removing a point from K~) are uniquely n- and ( n -  1)-colorable; K'~ 
is uniquely 1-colorable, and all connected biparti te (2-chromatic) graphs are 
uniquely 2-colorable. The same author also shows that  X = X1 + X~ is 
uniquely k-colorable if and only if  X1 and X 2 are, respectively, uniquely/c 1- 
and k2-colorable where lc = kl  + k2. 

3.2. Theorem. 
m and n points, respectively. 

I~(X1 + X2) = 

Let X 1 and X2 be uniquely kl- and k2-colorable graphs with 
Then 

n [ m l o g m + n l o g n ]  __m 1~(X1) + - - I ~ ( X 2 )  + l o g ( m  + n ) -  �9 
m + n  m + n  m + n  

Proof. Let 
kl m f  

IAX~ )  = - ~ ~- log 
f = l  

Then it is clear that  

m--! and 
m 

k2 ~ nl 
log-.  

i=l n 

kl k2 n i  
I t (X1  + X2) = - --~1 mi n log  m, =~1 n, log 

~= m +  m + n  t= m + n  m + n  

- - -  m t logm i +  ~ n  i l o g n ~ -  (m + n )  l o g ( m + n )  

m~ log m~ + ~ n~ log n~ 
m + m  t ~=1 

= log (m + n) 

= log (m + n) 

m + n  
- -  (m log m + n log n - m I t (X1)  - n It(X2)), 

from which the result follows. 
In  particular, if  X 1 =~ X2, we have 

3.2a. Corollary. I c (X  1 + X2) = I c (X  ) + 1 where X 1 and X2 are uniquely 
k-colorable graphs isomorphic to X. 

Proof. I t  is obvious that  any two isomorphic graphs have the same chro- 
matic information content. So, setting Io(X1) = I t (X2)  = Ic (X)  and m = n 
in the theorem, we obtain the desired result. 

As an example, consider the path  L 2 of length two. I t (L2)  = log 3 - ~ and 
lc(L2 + L2) = log 3 + �89 = Ic(L2) + 1, 
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As an additional basis for comparison with Ig, we consider the behavior of I c 
on the Kronecker product of two graphs. Hedetniemi (1966, 26) points out 
tha t  if X = X1 | X2, then either there exist homomorphisms r and r of X 
such that  X41 = X1 and X42 = X2, or X 1 or X2 is totally disconnected. 
Using this fact, he proves some results concerning K(X 1 | X2) which we sum- 
marize as follows. 

3.3. Lemma. Let X and Y be graphs. Then 

(i) K(X | Y) < min {K(X), K(Y)} 
(~) K(x | x) = K(x) 
(iii) If X| Y D Y' ~ Y, thenK(X| Y) = K(Y),and, henceK(Y) < K(X). 

An immediate consequence of the lemma is 

3.4. Theorem. Let X and Y be graphs. Then 

(i) lc(X | Y) < log [min {K(X), K(Y)}] 
(ii) Ir | X) < log ~(X) 

(iii) I f X  | Y D Y' ~= Y, then Ic(X | Y) < log K(Y). 

We conclude the section with a discussion of the chromatic information 
content of some particular kinds of trees. First, note that  all trees are 
2-chromatic and, thus, as indicated earlier, all trees are uniquely 2-eolorable. 
Moreover, It(T) < log 2 = 1 for any tree T. 

3.5. Theorem. Let  L~_ 1 be a path  of length n - 1 for n >/ 2. Then 

I l o g 2 n -  l [ ( n  + 1)log(n + 1 ) +  ( n -  1 ) l o g ( n -  1), i f n i s o d d  
Ic(L~_l) ! 

[1, if n is even 

Proof. Let V(L,~_ 1) = {xl, x2 . . . . .  x~} and E(L,~_ 1) -- {Ix1, x2] . . . . .  
[x~_l, xn] }. Since Ln_ 1 is uniquely 2-colorable, we need only produce a single 
2-coloring to determine the desired chromatic decomposition. Let f be a 
coloring defined by  

{12 if x,f  = 2 
x j =  1, x j =  2 and x t + l f =  i f x J =  1 

A simple induction shows that  f is always a 2-coloring, and it is obvious that  
I{x e V(Ln-1) I xf  = i}] equals (n + 1)/2 for i = 1 and (n + 1)/2 - 1 for i = 2 
when n is odd, and n/2 for both i = 1 and i = 2 when n is even. So, when n 
is odd, 

Ic(L~-l) n + l l o g n 2 n  n -  1 2n 
= 2n + 1 + ~  logn-Z-l_ 1 '  

and when n is even lc(Ln_ 1) = 2(n/2n log 2n/n) = log 2 = 1, as required. 
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A star S~ is an  n-point  t ree  wi th  a point  of  degree n - 1; all o the r  points are 
of  degree 1. Clearly, 

Ie(Sn) = 1 log n + n - 1 log n 

n n - - 1  

since we can assign color 1 to  the  (distinguished) poin t  of  degree n - 1 and 2 
to  each of the  o ther  points.  We  consider a general izat ion of  the  star ,  for  which 
we need to  define the  not ion of  distance.  I f  x and  y are connec ted  points of  a 
g raph  X,  the  distance p(x, y) between  x and y is the  minimal n u m b e r  of  edges 
in a pa th  wi th  initial  point  x and endpoin t  y. 

3.6. Theorem. Le t  St( C X) be a s tar  wi th  dist inguished point  x0, and  let  X 
be homeomorphie  to  St. Le t  n~ = I(x e V(X) lp(xo, x) = i}l for  

i = O, l ,  2 . . . . .  k where k = m a x  p(xo, x). 

X 

I f  

t he n  

r = 5 n , ,  s = S n , ,  
e v e n  f odd 

r s n 
_n + n l o g s  w h e r e n  = IV(X)]. Ic(X ) = log r 

Proof. B y  induct ion  on It. The  cases k = 0 and k = 1 follow tr ivial ly  f rom 
the  preceding remarks .  So, suppose the  theorem holds for /c = m( > 1) and  
the  mapping  f wi th  x f e  {1, 2} is the  (unique) 2-coloring of  X.  Then  i f  
k = m + 1, i t  is clear t ha t  the  mapp ing  f '  given b y  xf '  = x f  for  

x e { y  e V(X) I P(Y, Xo) <- m} 

and  

{~ i f  y f ' =  2 
xf '  = i f  y f '  1 

and  p(y, %) = m 
and  p(y, %) = m 

is the  desired 2-coloring for the  case k = m + 1. 
theorem follows immedia te ly .  

for  p(x, Xo) = m + 1 

The conclusion of  the  

Figure  5 i l lustrates the  theorem.  

4. Comparison of the two measures of graphical information 
The  principal reason for in t roducing the  measure  I c in addi t ion  to  the  one 

s tudied  in earlier papers  (Mowshowitz 1968a, 1968b, 1968c) is to  poin t  out  the  
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/ 
• 

I~(X) = ~% log ~ + ~ log !_e~o 

:Figure 5. Chromat ic  informa-  
t ion con ten t  of  a g raph  horneo- 

morlohic to  a s t a r  

dependence of such measures on certain peculiar structural features of a graph. 
In one sense, we are only belaboring the obvious, since it is clear from the way 
an entropy measure on a graph is defined tha t  it cannot characterize the graph's 
structure completely. However, the juxtaposition of these two different 
measures serves a useful purpose in the sense tha t  it prevents one from making 
outrageous claims about how adequately the information content of a graph 
reflects the complexity of a graph; and, on the positive side, it suggests the 
possibility of studying classes of entropy measures defined on graphs. 

I t  is fairly obvious from the preceding section tha t  there is relatively little 
agreement between Ig and Ic. This, of course, follows from the fact tha t  the 
symmetries (automorphisms) of a graph X are, at best, tenuously related to the 
various colorings of X. For example, the automorphism group of a cycle of 
length n is transitive for any n; whereas, the chromatic number of such a graph 
is two or three, depending on whether n is even or odd. A more serious source 
of divergence is provided by the class of trees. The chromatic number of a tree 
is two, so Ic(T) < 1 for any tree T. However, for every n _> 7, there exists a 
tree T with n points whose automorphism group consists of the identi ty 
alone, so tha t  Is(T ) = log n. Figure 6 presents graphs X and Y for which 
Is(X ) < Ic(X ) and Ig(Y) > I~(Y). 

As one would expect, it is rather difficult to determine classes of graphs on 
which I s and Ic agree. Two simple examples are furnished by null graphs and 
stars. Figure 7 exhibits two graphs on which the two measures agree. 

From our brief survey of the properties of I~, it would appear tha t  this 
measure is much less well-behaved with respect to graph operations than  Ig. 
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( ) i 
• Y 

Ig(X)  = 0 Ig(Y)  = l o g  3 
lc(X) = 1 I t(Y)  = 1 

Figure 6. Graphs on which Ig and I o differ 

X 

lg(X) = I t (x )  = 

Figure 7. 

w v 

u 

Ig(Y) = Io(Y) = log 5 - 3 

Graphs on which Ig and l o agree 

However, it is quite possible tha t  the operations considered are not appropriate 
for the measure I c. That is to say, the operations we chose to consider in con- 
nection with Ig are of the following kind. To each graph operation o (such as 
the cartesian product), there corresponds a group operation V (such as the 
cartesian product for groups) such that  G(X) V G(Y)  < G(X  o Y)  for any graphs 
X and Y. When the orbits of G(X) V G(Y)  are cartesian products of orbits of 
G(X)  and G(Y), this condition insures tha t  every orbit of G(X o Y)  is a union of 
orbits of G(X)  V G(Y) .  This, in turn, insures that  Io (X  o Y)  <_ Ig(X)  + Ig(Y) .  
In order to have a comparable result for the chromatic information content, we 
would have to find an operation o on graphs which satisfies the following: if 
{W,n}~= 1 is a chromatic decomposition of X o Y with t = K(X o Y), then each 
W m is a union of sets of the form U, • Vj where { Uk}~: 1 and (V,}~=I are chro- 
matic decompositions of X and Y, respectively, with h -- K(X) and k = K(Y). 
The binary operations (cartesian product, composition and Kronecker product) 
studied earlier might be found to satisfy this condition for certain classes of 
graphs. In any case, specifying such operations and finding conditions which 
insure tha t  l c ( X  o Y)  = I c ( X  ) + I c (Y )  are certainly interesting problems for 
further study. 
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5. Conclusion 
What  we have at tempted to accomplish in this and the preceding papers 

(Mowshowitz 1968a, 1968b, 1968c) is the development and exploration of some 
tools for measuring the structural complexity of a particular mathematical  
object. The basic idea in our approach to this problem consists in constructing 
a finite probability scheme from a decomposition of the set of points of the 
object in question. As we have seen in the case of the measure Ig defined 
relative to the automorphism group of  a graph, the entropy of  such a finite 
probability scheme provides a compact analytic device for a partial charac- 
terization of the relative complexity of an object. 

The previous papers were devoted to a systematic s tudy of the measure Ig in 
order to demonstrate the usefulness of the concept of structural information 
in classifying graphs according to their relative complexity. In the present 
paper we have discussed an entropy measure I c defined relative to a class of 
chromatic decompositions of a graph and compared it with the previous 
measure. 

Perhaps the most significant fact to emerge in this s tudy is the (mathematical) 
feasibility of using the entropy function to characterize the structure of an 
object. More general objects than graphs can be studied from this point of 
view. For example, suppose an object X is defined as a system X -- < U; 
El,  E2 . . . .  , E k > where U is a non-empty finite set and each E~ is a binary 
relation on U. I f  X - -  < U ; E 1  . . . .  , E k >  and Y =  <V;  ~'i,~v2 . . . . .  F~>  
are two such objects, we can define a homomorphism of X into Y as a mapping 
r of U into V such that  for every x, y e U, (x, y ) e  E~ implies tha t  (x, y)r 
= (xr yr e F~ for each i = 1, 2 . . . . .  It. A homomorphism r which is a one-one 
mapping of U onto V can then be called an isomorphism of X onto Y; and if 
U = V, it is reasonable to call r an automorphism of X. As in the case of 
graphs, it is easily verified that  the set of  all automorphisms of  an object X 
forms a group under the usual composition of mappings. 

I f  r is a homomorphism of X onto Y, it is clear that  the sets given by  
(x e U I xr = y} for some y e V form a decomposition of the set U. Moreover, 
the orbits of the group of the object X form a decomposition of U. Thus, just  
as we did for graphs, we can define an information measure on such an object 
by  taking the entropy of a finite probabili ty scheme constructed from the 
decomposition given by  its group; or we can define a measure relative to a class 
of decompositions corresponding to a class of homomorphisms. In  any case, it 
is feasible to develop the notion of structural information content for a variety 
of mathematical objects. 

The author is indebted to Professors A. Rapoport ,  M. Kochen, N. Rashevsky,  
and to Dr. S. Hedetniemi for advice and criticism. 
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