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Generalized equations are developed for the age structure of growing cell populations when 
other parameters besides chronological age are taken into account. These are summarized 
in a parameter which we call "chronological age." The theory is Markovian in spirit and 
leads to an integro-differential equation for population density which generalizes several 
equations now appearing in the literature. Approximations to the fundamental equation 
are suggested. 

Introduction. Recent interest in a mathematical  description of the age struc- 
ture  of growing cell populations has centered on the use of an equation proposed 
by  yon Foerster (cf. also Scherbaum and Raseh). This equation is a first 
order partial differential equation for a function n(a, t) defined so tha t  n(a, t) da 
is the number of organisms at time t whose ages lie in the interval (a, a + da). 
Properties of solutions to the von Foerster equation have been studied ex- 
tensively by Trucco and by Nooney. Similar ideas are also contained in some 
work of Oldfield. The age a tha t  appears as an independent variable in n(a, t) 
is always interpreted as the chronological age of the organism. In  consequence, 
the properties of two organisms belonging to a single age-cohort and subjected 
to identical environments are identical. Thus, the important  feature of bio- 
logical variability is omitted from the description of the age structure of a single 
cohort. This observation has been made and elaborated on by  Stuart  and 
Merkle in a discussion of cancer chemotherapy and by Rubinow in a s tudy of 
hemopoeisis. A recent pair of studies by  Bell, Anderson and Petersen has 

included cell volume as an additional variable determining population size. 
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The introduction of the volume parameter and a postulated growth rate allowed 
a fairly accurate description of observed volume distributions in cell culture 
lines as discussed in their papers. Tsuchiya, Frederickson, and collaborators 
have extensively developed the consequences of treating cell mass as an 
indicator of cell age, following the work of Koch and Schaechter, who intro- 
duced the idea. 

I t  is the purpose of this paper to present Markovian equations which 
generalize those of yon Foerster and of Bell and Anderson. These equations 
take into account the notion of a physiological age in addition to the chrono- 
logical age. We therefore assume that  there exists a variable, a, which is a 
state variable for the organism and will be called the physiological age. The 
property of a that  will be used is tha t  it can be assigned a numerical measure. 
For simplicity it will be assumed tha t  a is a scalar quantity, although it is 
probable that  a more accurate theory would require consideration of vector a. 
A precise interpretation of a will also be unspecified except to note that  an 
analogous quanti ty appears in a theory of aging proposed by  Sacher. The 
physiological age can also be identified with the number of chromosome faults 
as in the theory of Szflard, or with the "vital i ty" parameter appearing in a 
stochastic version* of the theory of Strehler and Mildvan. In Bell and Ander- 
son's theory, the physiological age can be identified with cell volume. Tsuchiya 
and his coworkers have obtained similar results in their use of the cell mass as a 
state variable. 

The theories mentioned above as well as that  to be discussed in this paper 
can all be classed as Markovian. That  is to say, growth and death rates depend 
on the state of the cell and time, bu t  not  on how long a cell has been in a given 
state. One might expect that  a Markovian theory of growth would be in- 
adequate for all bu t  the simplest situations and that  a more general theory 
including the time in given states would be required. Such a theory has indeed 
been developed and used in demography (see, for example, the references in 
Bartlett),  but  the resulting equations are very difficult to work with. However, 
a renewal process can sometimes be approximated by  a Markov process pro- 
vided that  additional parameters are introduced to describe the system. 

Kendall 's model for bacterial growth is an illustration of this procedure. 
Our introduction of a new parameter (or set of parameters) therefore makes the 
resulting Markovian theory somewhat more plausible, although it cannot be 
construed as a justification for the theory. 

Derivation of Equations. The chronological age of an organism will be 

* A l t h o u g h  t he  a u t h o r s  do n o t  m a k e  t h e  p o i n t  expl ici t ly ,  i t  is clear  t h a t  t he  v i t a l i t y  t h e y  discuss  
is  real ly  a m e a n  va lue  a n d  t h a t  f luc tua t ions  a re  possible.  
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denoted by a. The function of principal interest will be a number density to 
be denoted by n(a, a; t) and such tha t  

f f? da da n(a, a; t) 
1 1 

is the total number of organisms between the chronological ages a 1 and  a2, and 
physiological ages a 1 and a 2. Thus the number density n(a, t) appearing in 
yon Foerster's t reatment  of the problem can be expressed in terms of n(a, 
a; t) as 

n(a, t) = J o  da n(a, t). (1) 

Parenthetically we note that  an even more detailed theory can be developed 
for a probability density nr(a, a; t) defined such tha t  nr(a, a; t ) d a  da is the 
probability that  there are r individuals in the population and that  each one of 
them has a chronological age between ~ and da. The distinction between a 
completely stochastic theory and one expressed in terms of number densities is 
unimportant when the functions specifying growth and death are independent 
of population size. Under these conditions it can be shown tha t  the mean 
values derived from a stochastic theory satisfy the equations derived in this 
paper. This is not necessarily true for cell concentration dependence. The 
modifications required to develop a completely stochastic theory will be dis- 
cussed elsewhere. The present paper will use the assumption of independence 
of concentration, and so will be written in terms of population density n(a, a; t). 

We define a function ~(a ,  a, a'; t) which measures the rate of physiological 
growth in a time interval dr. More precisely ~F(a, a, a', t) da' will be the rate 
at time t of transitions a ---> (a + a', a + a' + da') conditional on a chrono- 
logical age a. By convention we will assume tha t  a' is positive although there 
are phenomena such as recovery from radiation damage tha t  might require 
negative a' for their description (Elkind and Sutton, 1960). The transition rate 
at time t from age a will be denoted by (I)(a, a, t) and by definition is 

~P(a, a, t) = f o  W2"(a, a, a', t) da'. (2) 

This rate will always be assumed finite. The rate at  which organisms die at  
time t will be denoted by 2(a, a, t). At this point we can write the fundamental  
equation for n(a, a; t) as 

n(a, a; t) = n(a - d t ,  a; t - dt)[1 - ~P(a, a, t) dr] 

§ n(a - dt, a - a', t - dt) ~ ( a  - dt, a - a', a', t - dt) da' dt 
o 

-- ~(a, a, t) n(a ,  a; t) dr. (3) 
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The first term on the right describes organisms whose physiological age does 
not grow in (t, t + dt); the second describes organisms whose physiological age 
does advance in (t, t + dr), while the third describes the removal of organisms 
by  death. Terms representing immigration or emigration can be added in an 
obvious way. 

I f  we expand equation (3) around a and t and retain first order terms in dt, 
we find that  n satisfies 

~n ~n - (~ + r  + f :  n(a, a -- a', t) tF(a, a - a', a', t) da' (4) 
~-7 + ~a = 

which is a generalization of the yon Foerster equation. A modified form of this 
equation must  be supplemented by  boundary  conditions which describe the 
production of new cells by  mitosis if this is par t  of the system being described. 
As an example, let us consider the case of binary fission. For  simplicity we 
will assume that  newborn cells are characterized by  a physiological age a = 0. 
We now define a rate of reproduction of daughter cells by  cells with parameters 
a and a, calling this rate p(a, a, t). The number of newborn cells at  time t will 
be denoted by  n(0, 0, t), and satisfies~ 

n(0, 0;t) = e f f n(a, =; t) ,(a, t) da (5) 

In  addition to specifying this boundary condition, we must  also modify 
equation (4), since cells disappear from an infinitesimal (a, a) rectangle by  
fission as well as by  death or changes in a. The modified equation can be 
written 

~n ~n -- ()t + ~P + p)n + f :  n(a, a -- a', t)tF(a, a -- a', a', t )da ' .  (6) 
~-7 + Oa = 

Approx imate  Equations.  I t  is impossible to write a solution in closed form 
to equations (4) or (6) as it is in the case of the yon Foerster equation. How- 
ever, it is possible to derive approximations to these equations which are them- 
selves much easier to deal with. The first of these is the Fokker-Planck 
approximation in which it is essentially assumed that  the increment in physio- 
logical age is small, in a sense to be specified more exactly below, in the time 
interval (t, t + dt). The second approximation is one in which a is taken to be 
a discrete variable. 

Let  us first consider the Fokker-Planck approximation. With the notation 

t) = f :  (a') n tri'(a, a, a', t) da' (7) t~n(a, 

Notice  t h a t  t h e  n u m b e r  of  cells w i t h  chronological  age  be tween  0 a n d  dt a t  t i m e  t is n(O, O, t)~dt 
so t ha t ,  for t h i s  special  va lue  o f  a, n h a s  t h e  d i mens i on  ( t ime) -1  r a the r  t h a n  ( t ime ) -  ~. 
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we make the following assumptions: 

1. /L1,/~2 < 
2. /xj = 0 f o r j  > 3 
3. ~ ( a ,  a, a' ,  t) is analytic in a for all a, a' and t 
4. n(a,  a; t) is analytic in a for all a and t. 

Notice tha t /~(a ,  a, t) is the n ' th moment of the increase in physiological age in 
(t, t + dt). The assumptions given above are sufficient to deserve the Fokker- 
Planck equation from a master equation.:~ In order to derive the Fokker- 
Planck approximation, we note first of all that  the range of integration appear- 
ing in equation (6) can be extended from (0, a) to (0, oo), with the proviso that  
n(a ,  a; t) - 0 for a < 0. With this change made, we expand the integral term 
in equation (7) in the following manner: 

f :  n(a,  - or', a' ; t) u,l(a, - a',  a' ,  t) da'  o~ 

- ~  + ~ -  ~o,~ . . . x 

tiC(a, a, a'; t) -- a' ~tF(a' a, a'; t) 
~a 

r 1 ~9 2 
= on  - ~ (~ln) + ~ ~ (~2n) 

+ (~,)22 ~2~F~a~ (a, ~, ~', t) . . . .  ) da' 

(s) 

where we have made use of assumptions 1 and 2 above to drop terms containing 
/~j for j > 3. Thus, in this approximation, equation (4) can be replaced by 

~n ~n - ~ n -  c9 c9 2 
~-~- + e--a = ~-d (/xln) + �89 ~ (/x2n)" (9) 

The particular model discussed by  Stuart  and Merkle is characterized by  
A = 0,/x2 = constant. They did not discuss the dependence of n on chrono- 
logical age, although it is not difficult to do so when mitosis is not involved, that  
is, when one simply follows a cohort from birth to death. An equation 
analogous to equation (9) with/x 2 = 0 appears in the work of Bell and Anderson. 
Their equation includes the depletion by  reproduction t e rm--pn  on the right- 
hand side. 

When the physiological age of an organism can be characterized by  an 
integer, as in the Szilard model, it is possible to derive a set of equations 
analogous to equation (6) by  the same type of argument. Let  n(a,  r, t) be the 

:~ Parenthetically it might appear tha t  assumptions 1 and 2 might be generalized to allow a 
cutoff at  j > 2. That  this does not  lead to sensible results is shown in a recent paper by Pawula. 
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number density of organisms of chronological age at t ime t, with the number of 
defects, or equivalently, the physiological age, equal to r. Let  tot(a, t) be the 
rate per cell at which defects are accumulated at t ime t, given a chronological 
age a and the presence of r defects; let 2r(a, t) be the death rate per cell under 
the same conditions. Then a derivation similar to tha t  indicated in equation 
(3) suffices to establish the set of equations: 

~n(a, O, t) 
Ot 

~n(a, r, t) 
~t 

~n(a, O, t) + 
8a = (too + 20)n( a, 0, t) 

~n(a, r, t) + ~a (tot + ~tr)n(a, r, t) + r , r -- 1, t)r > 1. (10) 

These equations are valid under the assumption that  defects are accumulated 
singly. When mitosis is an important  feature these equations must  be modified 
to take it into account. Let the rate of reproduction per cell with physiological 
age r be denoted by  Pr. Then equation (1O) is to be replaced by  

~n(a, O, t) ~n(a, O, t) + 
~t ~a 

~n(a, r, t) ~n(a, r, t) + 
~t ~a 

(to o + ~t o + po)n(a, O, t) 

= -- (tot + :~r + pr)n(a, r, t) + t o r _ l n ( a , r - -  1, t)r___ 1 (11) 

analogous to equation (6). These hold under the assumption that  a # 0. 
The production of cells with physiological age equal to zero is described by  the 
boundary condition 

n(O, O; t) = 2 ~r f n(a, r; t)pr(a , t) da. (12) 

A general solution to the equations just  derived would seem to be out of the 
question. However, the examination of a simple case is quite instructive. For 
simplicity we consider a situation in which the physiological age is measured in 
discrete units. The two assumptions which specify the model are: 

1. The rate at  which defects are acquired (or tha t  the physiological age 
advances) is ix per unit time where/x is a constant. 

2. The rate at  which ceils die is of the form Ar = A + B r  where A and B are 
constants, that  is, it is proportional to the physiological age. 

We will assume that  the ceils do not reproduce themselves, hence we will 
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simply follow a cohort of cells from birth to deathl The equations characteriz- 
ing the model are 

~n(a, O, t) ~n(a, O, t) 
+ - (A  + tz)n(a, O, t) 

~a ~t 

~n(a, r, t) ~n(a, r, t) 
+ - izn(a, r - 1, t) - (l~ + A + Br)n(a ,  r, t)r >_ 1. (13) 

~a ~t 

In  order to  solve this set of equations we introduce a generat ing funct ion 

v(a, z, t) = i n(a,  r, t)z r. (14) 
r = O  

This generating funct ion is the solution to 

~_~v ~v - -  (15) ~a + - ~ = ( ~ z - ~ - A ) v - B z ~ v  
Oz 

subject to an initially specified v(a, z, 0). Application of the standard method 
for solving first order partial differential equations (Duff, 1956) leads to the 
relation 

via , z, t) = e (~IB)z(1-e- ~t) e_(~+A)tv( a _ t, ze -Bt, 0). (16) 

In order to follow the development of a cohort of cells, we will assume that a 
just-born cell (a = 0) has a physiological age equal to zero as well. In 
mathematical terms this condition can be written 

n(a, r, 0) = -hroa(a)$r.0 (17) 

where 8(a) is a Dirae delta function,  8r. o is a Kronecker  delta,  and iV o is the  
initial number  of  cells. Thus,  v(a, z, 0) is 

~(a, z, o) = NoB(a). ( is)  

From this and  equat ion (16) it  follows t h a t  

n(a, r, t) = r! (1 - e-St)r~(a - t). (19) 

The delta funct ion indicates t h a t  for this  population,  in which no mitosis 
occurs, the  chronological age is equal to the  t ime. The average physiological 
age can easily be calculated from the generat ing funct ion and  is found to be 

+<a, t) : ~ r n(a,  r, t) =-IV o -~ (1 - e -m) 
r = 0  

exp - (~ + A ) t  + N 
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W h e n  A - B = 0, t h a t  is, no dea ths  occur,  this  express ion reduces to  

~(a, t) = N 0 ~ t  ~(a - t) (2~) 

I n  th is  case the  m e a n  physiological  age is p ropor t iona l  to  biological age, 
a l though  there  is va r i a t i on  a round  the  m e a n  as ind ica ted  b y  the  Poisson 
d is t r ibut ion  for the  n(a, r, t): 

e - ~ t  
n(a, r, t) = N o ~ (/~t) r 8(a - t). (22) 

The  p a r a m e t e r  ~ in equa t ion  (20) is 0 a t  t = 0 and  t = oo and  reaches a single 
m a x i m u m .  While  a decline in m e a n  physiological  age wi th  t ime  migh t  seem 
paradoxica l ,  the  exp lana t ion  is a s imple  one; the  cells t h a t  survive  the  longest  
t e n d  to  be  those  wi th  the  lowest  physiological  age. Similar  resul ts  can be 
ob ta ined  for  a pa r t i cu la r  model  to  be  used  to  solve equa t ion  (4). This  model  
is specified b y  

= A + Ba,  tF = Wo exp ( - f i a ' )  (23) 

where  A, B and  W 0 are constants .  F o r  this  case the  Lap lace  t r a n s f o r m  wi th  
respect  to  a p lays  the  s ame  role as the  genera t ing  func t ion  for the  solution of  
equa t ion  (13). Since no new qua l i ta t ive  in fo rmat ion  emerges  f rom the  analysis,  
we will no t  p resen t  the  resul ts  here. 

The  preceding  resul ts  for  a scalar  physiological  age are easily generalized,  a t  
leas t  formal ly ,  to  yield equat ions  va l id  for  the  case of  a mu l t i va r i a t e  physio-  
logical age. I n  v iew of  the  fact  t h a t  d a t a  to  suppor t  such a model  are  not  

p resen t ly  avai lab le  and  t h a t  the  consequences of  the  presen t  t heo ry  are not  
ful ly developed,  we will no t  give an  accoun t  of  the  more  compl ica ted  t heo ry  a t  
the  presen t  t ime.  
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