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A similarity between the concepts of reproduction and explanation is observed which 
implies a similarity between the less well understood concepts of complete self-reproduction 
and complete self-explanation. These latter concepts are shown to be independent from 
ordinary loglcal-mathematical-biological reasoning, and a special form of complete self- 
reproduction is shown to be axiomatizable. Involved is the question whether there exists 
a function that  belongs to its own domain or range. Previously, Wittgenstein has argued, 
on intuit ive grounds, tha t  no function can be its own argument.  Similarly, Rosen has 
argued that  a paradox is implied by the notion of a function which is a member of its own 
range. Our result shows that  such functions indeed are independent from ordinary 
logical-mathematical reasoning, bu t  that  they need not  imply any inconsistencies, In-  
stead such functions can be axiomatized, and in this sense they really do exist. Finally, 
the introduced notion of complete self-reproduction is compared with "self-reproduction" 
of ordinary biological language. I t  is pointed out tha t  complete self-reproduction is 
primarily of interest in connection with formal theories of evolution. 

1. Self-Reproduction and Self-Explanation. I f  an observer has examined and 
experimented with an object long enough tha t  he can reproduce it or construct 
a model of it, he can be said to have understood it. Or, to be more precise, he 
has understood those properties of the object tha t  he has modeled. There is, 
therefore, a definite sense in which an explanation can be identified with a 
reproduction. 

I f  the object is concrete, for example a physical automaton, the explanation 
of it can be thought of as a description of how to reproduce the automaton from 
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given physical parts. Since it is usually understood that  the description can be 
effectively interpreted, it is in fact the whole reproduction tha t  constitutes the 
explanation. The properties and the availability of the necessary parts are 
postulated, and not  explained, in such a first-level explanation. A higher-level 
explanation would have to explain these lat ter  concepts in other terms. 

I f  the object is abstract,  for example a theorem in a formal theory, the 
explanation of it involves a proof sequence whose last element is the theorem in 
question. Thus, the problem of explaining the theorem is the problem of 
finding a proof sequence that  reproduces the theorem. In such a first-level 
explanation the axioms and rules of inference of the theory are taken for granted 
as well as the consistency of the theory. These concepts may, however, them- 
selves be explained in an unexplained metatheory, and in this way  a chain of 
higher-level explanations is conceivable. 

Because of this similarity between explanation and reproduction, an explana- 
tion of reproduction can be thought of as an explanation of explanation, or as a 
reproduction of reproduction. Although such a reproduction of reproduction 
merely is a second-level concept, it is often referred to as "self-reproduction" 
(compare, for example, yon Neumann, 1966; Penrose, 1958). This will not be 
done here, simply because such a second-level concept is incompletely serf- 
referring in the sense that  it requires externally reproduced objects (externally 
explained concepts). Instead we will use the name "serf-reproduction" for a 
completely serf-referring reproduction process. 

Let  7r 2 be a function that  reproduces (explains) an enti ty ~1: 

= (1) 

When interpreted as a reproduction process, equation (1) may be read: =2 is 

the behavior function of an automaton that reproduces the entity =i. From 

the input =i the automaton thus produces a sequence of constructs a,/9, �9 �9 �9 

that ends up in the final output =i. 

When interpreted as an explanation process, equation (1) may  be read: 7r~. is 
an explanation function that  produces a proof  sequence of the theorem 7rl, 
that  is, a sequence that  begins with the axiom a of the reference theory and ends 
with the theorem 7r 1. To obtain a more general setting, we might consider 7r~. 
not merely as an explanation function but  as an explanation relation, thus 
admitting several proof sequences of one and the same theorem. 

I f  we shift our attention from the enti ty ~r~ towards 7r 2 and ask for its repro- 
duction (explanation), we are led to a further relation ~r3, such that:  
~3(~r2) = < . . . ,  ~r2>. Continued enquiries produce a chain of higher-level 
explanations: ~r 1 E DTr2; 7r 2 E DTr3; ~3 E DTr4; - . . ,  such that  ~h belongs to the 
domain, D~r~ + 1, of ~ + 1 and therefore is explained by  ~r~ + 1. 
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Our problem is to find out whether there are explicability chains tha t  are 
complete in the sense that  they are cyclic, as in the example: ~r 1 E D~r2; ~r2 E D~r 1. 

Among such eventual complete explicability chains, tha t  is, self-explanations, 
we shall distinguish between symbiotic and atomic self-explanations according 
to the following characterizations. 

Characterization 1. A symbiotically self-reproducing (symbiotically self- 
explaining) pair of distinct entities 7r 1 and ~r 2 must have a complete explicabflity 
chain of length two (or longer if more than a pair of  entities), such that  (in the 
pair-case): 

= 

-5(-1) < . , - l > J  (2) 

Characterization 2. An atomically self-reproducing (atomically self-explaining) 
enti ty ~r must constitute a unit-length complete explicabflity chain, such that :  

~(~) = <~>. (3) 

Atomic self-reproduction (self-explanation) shall result from symbiotic self- 
reproduction when all the distinct entities of the symbiotic case coalesce. 

As is seen from equation (3), the existence of an atomic ~r implies the existence 
of a function that  belongs to its own domain and range. Previously, Wittgen- 
stein (1921; see in particular aphorism no 3.333) has argued, on intuitive 
grounds, that  no function can be its own argument. Similarly, Rosen (1959, 
1962) has argued that  a paradox is implied by  the notion of a function which is 
a member of its own range. Indeed, we shall see (Section 3) that  such functions 
really cannot be derived from ordinary logical-mathematical reasoning. They 
need not, however, as we shall see in Section 4, imply any inconsistencies. 
Instead, an atomically self-reproducing enti ty can be axiomatized, and in this 
sense it really does exist. 

2. Models of Sequences. The above independence and consistency questions 
will be studied in relation to axiomatic set theories. We need, therefore, a 
set-theoretic model of the sequences that  appear in equation (1). This equation 
contains, beside the sequence of its right member, also sequences in its left 
member. The here occurring 7r-relations will namely, as usual, be represented 
with sets of ordered pairs (sequences of length two). 

An ordered pair is by  definition an enti ty <x, y> such that:  

(V x, y, u, v): [<x, y> = <u, v>] <:~ [(x -- u) & (y = v)]. (4) 
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Sequences of arbitrary length are recursively defined in terms of ordered pairs 
as follows (see for example Mendelson, 1964): 

(x~ = x, 
(5) 

(x l ,  x2, .  � 9  xn+l~ = ( ( x ,  x2 , .  �9  xn~, x~+l~.  

The first set-theoretic model of the ordered pair was introduced by Wiener 
(1914), namely: 

(x, y~ -- (((x}, ~}, ((y}}}. (6) 

The dissymmetry between the two elements of (x, y),  which makes this enti ty 
satisfy equation (4), is introduced by using the empty  set, ~ .  A similar 
model was at tha t  time also suggested by Hausdorff (1914). A few years later 
Kuratowski (1921) offered a model free from any auxiliary sets, namely: 

(x, y~ = ((x}, (x, y}}. (7) 

Comparing the two models we see that  Wiener's raises the logical type of the 
pair by three units over tha t  of its elements, whereas Kuratowski's raises the 
type by only two units, fur thermore ,  Wiener's model continues to separate 
the two elements of the pair even when they  are identical, whereas in Kura- 
towski's model the separation mechanism ceases to work when the elements 
become identical. In  this respect Kuratowski's model is more in conformity 
with Leibniz' Identitas Indiscernibilium and will prove quite suitable for our 
purposes. 

I t  should be mentioned that  Quine (1945) has suggested a model in which 
the logical type of the pair is the same as that  of its elements. Hence by 
equation (5), all sequences, independent of their length, will maintain the type 
of their elements. This is certainly an attractive feature although not necessary 
for our purposes. Even though Quine's model does not conform with Leibniz' 
principle in the above sense, it appears that  it can be modified towards harmony 
with this principle. However, Quine's model is based on the assumption that  
all entities of our universe of discourse are classes. Even though this assump- 
tion is fulfilled in Quine's "New F o u n d a t i o n s . . . " ,  with the Quine axiom of 
individuals (Quine 1945, 1961), we want primarily to discuss the independence 
of complete self-reproduction in a less specialized axiomatic set theory, namely 
the yon Neumann-Bernays-GSdel theory, which possesses a standard model. 
Therefore, we will base the following discussions upon the Kuratowski model of 
sequences (eqs. (7) and (5)) which also in more general contexts is by far the 
most widely used. 

3. The Independence of Complete Self-Reproduction. We want to demonstrate 
the independence of complete self-reproduction with respect to an ordinary set 
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theory, namely the yon Neumann-Bernays-GSdel theory (NBG). This will be 
done by  showing that  symbiotic, as well as atomic, self-reproduction implies 
the negation of the axiom of restriction, a negation which is known to be in- 
dependent from NBG. 

The axiom of restriction, axiom R: 

VS: (S r ~ )  ~ 3 u : [ ( u ~ S )  &V v: ( v � 9  =~ (v r (s) 

says that  with each nonempty set S there exists an element u of S, such that  
no element of u is also an element of S. Ax iom/~  is known to be both  con- 
sistent and independent, that  is completely independent, with respect to 
ordinary set theory in the form of NBG (see Mendelson, 1964; Mendelson is one 
of the contributors to this result). This means that  also 7 R is independent 
from NBG. We can in fact consistently add either R or its negation, 7 R, as an 
axiom to NBG (provided, of course, tha t  this set theory is consistent). 

Let  us first see that  both symbiotic and atomic self-reproduction imply 
epsflon cycles. 

Theorem 1. Symbiotic self-reproduction, as characterized by  equation (2), 
implies the presence of at least one epsilon-cyele. 

Proof. Equation (2) is obviously equivalent to the following statement:  
"(lr 2, ( . .  -, 7r2) ) �9 Ir 1 and (~rl, ( . .  -, ~rl) ) �9 ~r2." I f  each of the sequences 
(" �9 ", ~1) and ( .  �9 ~2) is of length two or larger, the Kuratowski sequence 
model (eqs. (7) and (5)) transforms the above version of equation (2) into: 

"{{~rs}, {Tr 2, {{. }, {-, 7r2}}} } �9 ~r 1 and {{~rl}, {7rl, {{. ), {., ~rl}})) �9 ~r~." 

Here the presence of epsilon cycles is transparent.  One of these is for example: 
~1 E {7rl} �9 {{~rl}, { }} �9 ~r 2 �9 {~2} �9 {{v2}, { }} �9 ~r~, that  is, a cycle of length six. All 
epsilon cycles are illustrated with the graph of Figure 1. There are two in- 
dependent sources of these cycles. One is the par t  of Characterization 1 that  
reads: "~r 1 E D~r 2 and ~r 2 �9 D~I." This par t  alone produces the innermost cycles 
of Figure 1, each of length six. (In the atomic case this part  corresponds to 
the existence of a function that  is a member of its own domain.) The other 
cycle source is the part  of Characterization 1 that  reads: "<. �9 ~rl} e R~r s and 
<" �9 ", ~r2} ~ R~I." This part  alone produces the cycle of length ten in Figure 1. 
(In the atomic case it corresponds to the existence of a function that  belongs to 
its own range.) Finally, if instead the sequences <. �9 7rl} and <- �9 ~r2} are 
of unit  length, that  is, equal to <~1} (=  ~1) and <~r2} (=  ~2) respectively, the 
epsflon cycles reduce to the innermost cycle of length six in Figure 1. This 
completes the proof of Theorem 1. 
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Figure 1. Epsilon graph of symbiotic self-reproduction as characterized 
by equation (2). Art arrow from label x to label y means that x ~ y 

Theorem 2. Atomic self-reproduction, as characterized b y  equat ion (3), 
implies the presence of  an  epsilon cycle. 

Proof. Equat ion  (3) is equivalent  wi th  <=, 7r> E =, or, according to equat ion 
(7), {(~}} ~ 7r. There is therefore an epsilon cycle, 7r e {7r} ~ {{~}} ~ 7r, which is of  
length three i f  7r, (Tr} and ({7r)} are all distinct,  bu t  shorter i f  t h e y  are not  distinct.  
(Later,  in Section 4, we shall ac tual ly  narrow the  characterizat ion of atomic 
self-reproduction towards a definition such t h a t  bo th  the epsilon cycle and  the  
explicabflity cycle will have uni t  length.) 

Next ,  we wan t  to demonst ra te  t h a t  the  existence of an epsilon cycle implies 
7 R, the negat ion of the  axiom of  restriction. 

Theorem 3. The presence of  an  epsilon cycle implies 7 R. 

Proof. Let  us carry out  the  proof  for one of  the  displayed epsilon cycles, for 
example ~r e {Tr} e {{Tr}} e 7r, the  cycle of atomic self-reproduction. I t  is obvious 
how the proof generalizes to a general case. We first define a nonempty  set 
S = {~, {Tr}, {{Tr}}}, whose elements are the  elements of  the  cycle. Since 
{{w}} E 7r, obviously each element u of S satisfies 3 v: (v r u) & (v e S). If,  for 
example,  u = 7r, the  element {{Tr}} of u is also an  element of S. Hence we have 
demons t ra ted  t h a t  3 S: S # ~ & V u: [(u E S) ~ 3 v: (v ~ u) & (v ~ S)], which is 
precisely , R  (compare eq. (8)). This completes the  proof. 

Theorem 3 implies, via Theorem 1 and  2 t h a t  complete self-reproduction is 
independent  f rom NBG. For  i f  i t  were not  independent ,  i t  could be derived in 
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NBG. We could then demonstrate the existence of epsilon cycles in NBG, that  
is, we could derive ~R in NBG, which contradicts the independence of 7 R 
relative to NBG. Thus we have reached: 

Corollary 1. Complete self-reproduction is independent from ordinary set 
theory in the form of NBG in the following sense. The existence of  a sym- 
biotically self-reproducing entity, as characterized by  equation (2), cannot be 
derived in IgBG. Nor can the existence of an atomically serf-reproducing 
entity, as characterized by  equation (3), be derived in NBG. 

The consistency of complete self-reproduction with respect to NBG will not 
be dealt with here.~ Instead we want  to demonstrate the consistency of 
atomic self-reproduction relative to another axiomatic set theory, namely  
Quine's New Foundations. 

4. The Axiomatizability of Atomic Self-Reproduction. In  order to be able to 
deal with the consistency of atomic self-reproduction, we will have to specify 
all relevant properties of this concept. This means that  we must sharpen 
Characterization 2 towards a definition of atomic self-reproduction. 

What  further characteristics can naturally be imposed ? First of all we 
should require of an atomic enti ty ~ that  it be a unit class. Next, with the 
automata-interpretation of serf-reproduction in mind, it is natural to consider 
not only a single reproduction step as the normal activity of the reproducing 
automaton, but  also a repetition of such steps. This means that  not only the 
production sequence (~} shall be associated with ~r(~r) but  also the production 
sequences (Tr, ~r}, (Tr, 7r, ~r}, etc. Again, with the proof-sequence interpretation 
in mind, it is natural to accept a sequence like (~r, ~)  as a proof of ~. I t  begins 
with the axiom ~r, ends with the explained enti ty ~, and appears not to hide any 
unexplained rules of inference. We are thus led to the following definition of 
atomic serf-reproduction (which obviously obeys Characterization 2; compare 
eq. (3)). 

Definition 1. An atomically self-reproducing (atomically self-explaining) en- 
t i ty  is a unit-class relation ~ such that:  ~r~(~) (~ stands in the relation ~r to 
(~)),  Irlr(Ir, lr), Irlr(~r, ~r, 7r~, etc. 

J" Both atomic and various forms of symbiotic self-reproduction are consistent with respect t~ 
NBG. This is easily established with a modeling technique due to Ernst  Specker 1957, and 
further elaborated upon by Petr  H~jek 1965. Independently,  Dana Scott suggested the s a m e  

modeling technique in the unpublished manuscript "A Different Kind of Model for Set Theory" 
which was read at the 1960 International Congress on Logic, Methodology and Philosophy of 
Science at  Stanford. We are grateful to Professor Scott for pointing out these works as a 
solution to the above consistency problem. 



422 L. LOFGREN 

For another formnlation of atomic self-reproduction, we need the concept of 
a Quine individual (compare Quine, 1961), defined as follows: 

Definition 2. S is a Quine individual if and only if: 

V u: (u ~ S) <:~ (u = S). (9) 

Al though of  remote  origins, the  two definitions ac tua l ly  do specify one and  
the  same t y p e  of  ent i ty .  

Theorem 4. An en t i t y  7r is a tomical ly  serf-reproducing (atomical ly serf- 
explaining) i f  and  only  if  7r is a Quine individual .  

Proof. W e  first prove t h a t  ~ = {Tr} is equiva len t  to  the  s t a t emen t  t h a t  7r is 
a tomical ly  serf-reproducing. Le t  7r be an  a tomical ly  serf-reproducing en t i t y  
according to  Definit ion 1. Since ~ is a unit-class relat ion,  i t  is a set of  a single 
ordered  pai r  which means  t h a t  7r is a funct ion.  Therefore,  since each of  the  
sequences <It), (~, It) etc.  s tands  in the  relat ion 1r to  7r, we mus t  have  
<Tr~ = <Tr, ~ = <Tr, 7r, 7r~ . . . .  . This  condi t ion is equiva len t  wi th  ~ -- <Tr, ~ 
(compare eq. (5)). On the  o ther  hand,  <Tr, 7r~ �9 Ir because 7rTr<Tr~. Hence  

e 7r, and  since ~ is a un i t  class we mus t  have  7r = (~}. Le t  us, for the  p roo f  of  
the  converse,  assume t h a t  7r is an en t i t y  such t h a t  7r = (~}. This means  t h a t  
. = {.} = {{.}} = {{{.}}} = = {{{.}, {., = (oompare 

eq. (7)). Hence  7rTNr, t h a t  is, 7r~r<Tr}. We  also have  7r = (~r} = {(Tr}} = <~r, 
~) ,  t h a t  is, ~ = <Tr~ = <Tr, 7r} = <Tr, 7r, ~} . . . .  . This  means  t h a t  ~ is a uni t -  
class re la t ion such t h a t  ~ < ~ } ,  ~<~r,  ~r~, ~r~<~, v, 7r}, etc.,  t h a t  is, ~r is an  
a tomical ly  self-reproducing en t i t y  (Definition 1). This completes the  p roof  of  
the  equivalence between 7r -- (~} and  the  s t a t emen t  t h a t  ~r is an  a tomical ly  
self-reproducing ent i ty .  Nex t ,  we shall p rove  the equivalence between 7r = (~} 
and  the  s t a t emen t  t ha t  ~ is a Quine individual .  I f  ~ = (v}, we obviously have  
V u: (u �9 ~) <~ (u = ~), t h a t  is, ~ is according to  Definit ion 2 a Quine individual.  
On the  o ther  hand,  if  ~r is a Quine individual ,  the  iden t i ty  ~r = ~ implies t h a t  
~r �9 7r. Fur the rmore ,  since a Quine individual  can have  b u t  one element,  we 
must  have  v -- (~}. This completes the  p roof  of the  last  s ta ted  equivalence 
and  thus  also the  proof  of the  whole T h e o r e m  4. 

B y  a work  of Scot t  (1962), we know t h a t  the  s t a t emen t  " the re  exists a Quine 
indiv idual"  is complete ly  independent  ( tha t  is, bo th  independent  and  con- 
sistent) wi th  respect  to  set t heo ry  in the  form of Quine's New Founda t ions  
(Quine, 1961). We have thus  reached the  following corollary.  

Corollary 2. The existence of  an  a tomical ly  self-reproducing (atomical ly 
serf-explaining) en t i ty  (Definition 1) can be consis tent ly added  as a new and  
independent  ax iom to set t heo ry  in the  fo rm of  Quine's New Foundat ions .  
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5. General Comments on Complete Self-Reproduction and its Relation to 
Theories of Biological Evolution. Corollary 2 shows that  no inconsistency is 
implied b y  the concept of atomic self-reproduction, that  is, inconsistency with 
respect to a set theory like Quine's New Foundations. Let  us in this connection 
examine an interesting suggestion of Rosen (1959, 1962), namely that  a serf- 
reproducing automaton has a behavior function which is a member of its own 
range and that  " the very notion of such automata  appears to contain an 
internal inconsistency." I t  is not clear what  is meant  with such an unqualified 
"internal inconsistency." I f  instead the statement had been formulated " the 
existence of such automata  is inconsistent with respect to a theory which 
contains the axiom of restriction," it would have been clear and correct. How- 
ever, if the alleged inconsistency had been referred to a theory like Quine's New 
Foundations (with or without Quine individuals) or to ~BG,  it would have been 
incorrect. 

The point is that  our ordinary logical-mathematical-biological reasoning is 
carried out  in a language that  does not commit itself on questions like the axiom 
of restriction, R. I t  does not  contain statements equivalent to R or to 1 R  but  
is open for a further axiomatic development along either alternative. This 
complete independence of R, which is reflected in an intuitive discomfort with 
the concept (compare Wittgenstein, 1921; Rosen 1959, 1962), should not be 
confused with an inconsistency, however. 

In trying to resolve the alleged paradox of Rosen, Gut tman (1966) claims 
that  no "logical difficulty" is implied upon postulating an automaton r  tha t  
produces another automaton r that  is slightly different from r  no matter  how 
small this difference may be. Here (I)* and (I) are the behavior functions of the 
two automata,  and (~*(A) = r is to have the meaning that  an automaton with 
behavior (I)* from the input A, produces an automaton with behavior r  
Guttman's  claim is incorrect in the sense that  (I)*(A) = (b & (b* r (~ & 
(I)* c r implies an epsflon cycle just as well as r  = (I) (a function that  is a 
member of  its own range). This is easily seen with the aid of Kuratowski 's  
pair model: 

[O r O* c �9 = O*(A)] ~ [r  = O] ~ [(A, O) �9 O] 

[{(A}, {A, r  �9 r  ~ [ r  �9 (A, r �9 {(A), (A, r �9 q5]. 

I t  would seem that  many misunderstandings concerning the concept of self- 
reproduction are due to the different meanings which are commonly at tached 
with it. Von Neumann (1966) and Penrose (1958), for example, use the word 
self-reproduction for a second-level reproduction, whereas we, following Rosen 
(1959), use self-reproduction in a complete sense. 

In ordinary biological language the name self-reproduction is mostly used 
5---B.M.B. 
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for second-level reproduction, for example, when the mechanisms of cell- 
division are used to explain the "self-reproducing" properties of the cell. That 
no logical difficulty arises in connection with this type of "self-reproduction" is 
well known (and can in fact also be demonstrated as an easy consequence of the 
Kleene recursion theorem). 

There is, however, one area of biology where self-reproduction, in the com- 
plete sense of this paper, is of interest. This is the theory of biological evolu- 
tion. I f  we ask not merely how a cell can reproduce in a suitable surrounding, 
but how this property has evolved, then we are faced with an explanation of 
reproduction in a complete sense. Our results show tha t  such a theory of 
evolution cannot be derived with an ordinary logical-mathematical-biological 
reasoning, but tha t  it instead will have to contain new and independent axioms. 
The question of how these should be formulated offers interesting problems. 
As has been demonstrated in the above, one possibility is to axiomatize atomie 
self-reproduction. Another and more interesting possibility may be to intro- 
duce axioms on a deeper level, such tha t  atomic or similar forms of self- 
reproduction can be derived. The question whether an eventual axiomatization 
of symbiotic self-reproduction can serve this purpose is open. 

Finally we want to emphasize tha t  it is not a priori clear that  a formal theory 
of biological evolution should exist. I f  such a theory could be formulated, 
however, it still remains to investigate whether it is recursively axiomatizable 
(that is, whether there are effective methods for the decision if a given well- 
formed expression is an axiom or not). Informal theories of evolution, on the 
other hand, have already proved to be influential both within and far beyond 
the biological domain. The problem to examine the formalizability of such 
theories seems to be a highly rewarding task. 

This work has been jointly sponsored by the U.S. Air Force Office of Scientific 
Research under Grant AFOSR 7-67, by the U.S. Air Force Systems Engineering 
Group under Contract AF-33(615)-3890 and by the National Aeronautics and 
Space Administration under Grant NGR 14-005-111. 
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