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This is an analytic study of mucous flow caused by ciliary motion. The computed flow 
data may be compared with that already found experimentally. The effects of mucous 
density, viscosity and layer depth on flow phenomena are investigated. The effects of 
cilia diameter, length, spacing and oscillation frequency arc determined from the equations 
governing the flow of the mucous blanket. A pertinent finding of the analysis is that  the 
mucous flow in the airway tubes can satisfy physical constraints only through the assump- 
tion of a variable viscosity in the covering mucous blanket. The mucous viscosity must 
increase considerably from the low value at the cilium layer to a much higher value at the 
air-mucus interface. 

Introduction. Cilia are small,  hair l ike cell s t ruc tu res  which pro jec t  f rom the  
free surfaces of  cells lining the  bronchia l  sys tem.  The  length  of  a bronchia l  
cil ium is on the  order  of  a few microns.  I t s  d i ame te r  is a f rac t ion  of  a micron  

and  the  dis tance be tween  cilia is a p p r o x i m a t e l y  three  and  one-hal f  d iamete rs  
(l~ivera, 1966, 10. 12). 

The  inner  lining of  the  bronchia l  s y s t em  is covered  b y  a mucous  b lanke t .  

The  mot ion  of  the  cilia causes the  mucous  layer  covering the  bronchia l  tubes  to  
m o v e  upward .  Ciliary propuls ion is unique  because i t  moves  fluid in com- 
p le te ly  open  a i rway  tubes .  

The  s y s t e m  can be described as consist ing of  t i ny  oscillating hair l ike e lements  
a t t a ched  to  the  t ubu l a r  wall. T h e y  propel  a re la t ive ly  th ick  layer  of  mucus  a t  
low ve loc i ty  agains t  the  forces of  g rav i ta t ion .  
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Mathematical analysis outline. The first problem considered in this analysis 
is to find the velocity distribution in the fluid surrounding one cilium as well as 
the force exerted by  one cilium on the fluid. 

The computations are then extended to describe the fluid motion and force 
exerted on the fluid by  an array of  cilia. The average of the velocity and of  
the force are computed. 

The problem is then reduced to steady state flow of a fluid layer up the wall 
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Figure l. Schematization of idealized cilia motion and overlying 
mucous blanket 

under the influence of gravity and ciliary action. Ciliary propulsion is replaced 
by  the action of a thin layer moving with a constant velocity upwards and pro- 
pelling the overlying mucous blanket with a known shear stress as shown in 
Figure 1. 

The viscosity of the mucus in the cilium layer is assumed to have a low value 
as the mucus issues from the membrane underlying the cilia. As the mucus 
moves extremely slowly along the length of the cilia and toward the air-mucus 
interface its viscosity increases, reaching a maximum at the interface. These 
assumptions were made on the basis of observation and by  the requirement that  
the mucous velocity at the air-mucus interface should be upward. An upward 
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interface velocity is necessary to remove dust particles that  enter with the 
inspired air from the airway tubes. Flow without velocity reversal in the 
mucous blanket was found to be impossible if a constant viscosity, correspond- 
ing to tha t  at  the cilia bases, was used in the computation. On the other hand, 
to assume low viscosity of aged, air exposed mucus in the immediate vicinity of 
the membrane underlying the cilia seems unreasonable. 

The motion of a cilium may be separated into two distinct strokes during the 
complete cycle. There is the effective stroke during which the cilium is 
extended straight and moves in the direction of flow of the covering mucous 
blanket. During the recovery stroke the cilium tip is bent  down toward the 
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Figure 2. A model of the cilium motion. The pen- 
dulous motion of the cilium is replaced by translatory 

motion of elementary circular cylinders 

cell membrane as the cilium goes in the opposite direction to the net mucous flow. 
During the effective stroke the projected area of the cilium in the direction of 
net flow is greater than during the recovery stroke. Hence there is a net 
propelling force on the fluid in the flow direction. 

For the purpose of the mathematical analysis, the cilium will be replaced by  
a straight cylinder of variable length, as shown in Figure 2. The not effect of 
the bending of the cilium during the recovery stroke is replaced in the mathe- 
matical analysis by  a sudden shortening of the cilium. 

The cilium model will consist of a cylinder of variable length hinged to a 
stat ionary point on an infinite plane. The cilium will be considered as a series 
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of infinitesimally short sections of circular cylinders in oscillating translatory 
motion. The axis of each cylinder element is perpendicular to the membrane 
and each has its own velocity parallel to the membrane. End effects near the 
cilium tip will be neglected. 

In  summary, the mathematical model of the cilium used in this study is 
defined as follows: 

(a) The cilium is a cylinder hinged to a large fiat plate. I t  performs simple 
harmonic transtatory oscillations. The translatory amplitude of each cylinder 
element is assumed to be proportional to the distance from the hinge point. 

(b) Throughout a particular stroke, the cilium tip will remain at a constant 
distance from the cell membrane. This distance is less during the recovery 
stroke than during the effective stroke. 

(c) Any cross section of the cilium taken parallel to the cell membrane will 
remain circular throughout the motion. 

(d) The effective and recovery strokes are of equal duration. 
(e) The mucus has Newtonian properties. 

With the cilium model defined in terms of oscillating cylinder segments for both 
effective and recovery strokes, let us investigate the two-dimensional flow of an 
infinite viscous fluid around an oscillating cylinder. 

The solution will give fluid velocity in the neighborhood of the oscillating 
cylinder as well as the drag force on the cylinder. 

Equations describing the flow around a slowly oscillating cylinder. The flow 
caused by the oscillation of a rigid body in a viscous fluid is characterized by a 
penetration depth 3 which is the distance from the body where the velocity has 
decreased by a factor e. $ is of the order of (v/oj)t where v is the kinematic 
viscosity of the fluid and oJ is the angular oscillation frequency of the body. 

In  the case of ciliary motion the frequency w is of the order of 100 radians per 
second: the cilium radius a is approximately 0.15 microns; the mucous viscosity 
v is of the order of 0.1 stokes; the cilium velocity is of the order of oJS, where S 
is the amplitude of the cilium during the effective stroke. These values result 
in a penetration depth 103 times greater than  the cilium diameter. This is the 
case of slow oscillation, which implies that  the time derivative of velocity can 
be neglected in the general equation of motion (Landau and Lifshitz, 1959, 
p. 91). 

The Reynolds number 2eoSa/J, is of the order of 10-s indicating creeping flow. 
The drag coefficient for uniform flow around a stationary cylinder at  small 

Reynolds numbers was found (Tomotika and Aoi, 1951) to be 

C D = (87r/Rg){1 - (1/32)(5/16 K - ~ + K) § 0[(R 9' In R)2]}, (1) 



CILIA INDUCED MUCOUS F L O W  423 

where R is the Reynolds number, and 

K =  � 8 9  + i n ( S / R ) ,  

is the Euler's constant y = 0.5772157 . . . .  Oseen's linearized equations of 
motion were used to obtain this expression for CD and for the stream function 

~b = Ua  sin O((�89 In (r/a) - 1] + a/r} + R cos O[(~K)(ria) 2 In (r/a) 

- (D In (r/a) 2 - (1[16 g - 1) + (a[r)2(l[16 g - {)]), (2) 

where r and 0 are polar coordinates measured from the center of the cylinder; 
U is the uniform velocity far from the cylinder. 

In  terms of ~b the velocity in the x direction (direction of the principal flow) is 

O~b cosO~r 
u =  s i n 0 ~ - +  r ~0 (3) 

Due to the smallness of the Reynolds number for the flow near the cilia the 
expressions for C D and ~b can be truncated to 

Cv = 8~r[R In (4vii Ula)] -1, (4) 

= U a  sin e [ ( r / a ) ( 2  In ( r /a )  - 1) + a / r ] [ 2  In (4v/[ U[a)] -1. (5) 

Force exerted on the f l u id  by  one c i l ium.  From equation (4) it follows that  the 
drag force per unit length on a uniformly translating cylinder is given by 

F x = 4~rlxU/ln (4v/Ua),  (6) 

where ~ is the absolute viscosity of the fluid. 
Consider the temporal average of the force on the fluid due to the oscillatory 

motion of a cylinder having a projected length L during the effective stroke, 
and a projected length yL during the recovery stroke; 0 < ? < 1. The motion 
of the cylinder is shown in Figure 2. The tip of the cilium moves on the path 
A B C D  in a complete cycle. 

I f  the amplitude of the oscillation of the cilium tip is S, then the amplitude 
of a cylinder element located at a distance Z from the wall is 

So(Z)  = S Z / L .  (7) 

The instantaneous velocity at this point is 

u = - S i c ( Z / L )  sin tot. (s) 

The instantaneous value of the force is obtained by integrating the force per 
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unit length over the length of the cilium. The temporal average is obtained by 
integration over a full period 

Fx = (l /T) dt Fx(Z , t) d Z .  (9) 
J 0  L 

The symmetric oscillation between the rigid wall and the layer thickness ;,L 
does not contribute to the net  force. 

Integration of equation (9) yields approximately 

2 S ~ ( 1  - r2)L~ (lo) 
-F~ = In [r + ~,)/4,v] 

Ve loc i t y  f i e ld  due  to osc i l la t ing  c i l i u m .  The fluid velocity u in the x direction 
can be obtained from equations (3) and (5) as 

u = V a  sin 2 ~[a-1(2 In r / a  - 1) + 2/a  - a/r2][2 In (4v/l Vla ) ]  - 1  

+ U a  cos 2 e{a-~[2 111 (r /a)  - 1] + air2}[2 In (4~,/]U]a)] - 1  - U.  (11) 

I n t e r f a c e  ve loci ty .  Define the region ~L < Z < L as the mucous sublayer. 
The dynamic variable of interest is the average mucous velocity ~ at the inter- 
face between the mucous blanket and the mucous sublayer. 

The value of ~ during the effective strokes ul may be computed from equa- 
tion (11) by averaging u over the "effective area" of one cilium, and the dura- 
tion of the stroke. In  performing the space average it is assumed that  the 
fluid velocity in the vicinity of a particular cilium is not influenced by neighbor- 
ing cilia. Thus, the region of influence of a single cilium is a < r < ha, where 
n _~ 3.5, corresponding to the observed average spacing between cilia. 

The average velocity ul is then 

fo'~ f;o K~ u rdr ,  (12) = --~r d8 L d Z  =(n2 _ 1)a2(1-- y)L 

where the "effective area" per cilium is 

A c = 7ra2(n 2 - I). (13) 

Integration of (12) yields approximately 

1 + n 2 

The average interface velocity during the  recovery stroke g2 lies between two 
extremes. I f  the mucous sublayer were inviscid, the interface velocity would 
remain gl- For a very high sublayer viscosity the interface would move 



CILIA INDUCED MUCOUS FLOW 425 

opposite to the net flow at the velocity ~*. ~* corresponds to ul, but is 
evaluated at the height of the cilium during the recovery stroke. The velocity 
during the recovery stroke is therefore estimated to be 

= + ( 1 5 )  

where 

+ n2 - 1}. 
~ * =  ~o~S {[In 4~/(1 ~,)o~Sa] -1 (n-5--L-~_ 1 In n - �89 (16) 

Since the effective and recovery strokes are assumed to be of equal duration, 
the net interface flow velocity is 

= (ul + u2)/2. (17) 

Interface shear stress. In  order to compute the flow of the mucous blanket it 
is necessary to know the interface velocity ~ and the interface shear stress rw- 
The shear stress may be obtained by considering a sublayer element in equi- 
librium. The element is subjected to shear stress on both interfaces, ciliary 
forces and gravitational force. Since the sublayer is an order of magnitude 
thinner than the mucous blanket, the gravitational forces in the sublayer will 
be neglected [rw >> gpL(1 - 7)]; thus, 

Fx 
~ = Ao ~~ L' (18) 

where/zo is the viscosity of the sublayer. 

Numerical results. The average flow velocity of the sublayer was computed 
for a cilium diameter of 2a -- 0.3 microns, cilium length of L = 7 microns, a 
cilium spacing n -- 3.5, a ratio of recovery to effective stroke y -- 0.75, and a 
circular frequency oJ = 100 Rad/sec. 

I t  was found that  the value of ~ depends very weakly on the viscosity of the 
sublayer;/z = 0.01 poise results in ~ = 6.63 mm/min; tz -- 0.5 poise results in 

= 6.75 ram/rain. This value compares favorably with the reported value of 
4.2 mm/min (Ewert, 1965). 

Flow of the mucous blanket. The mucous blanket can be idealized as a layer 
of fluid pumped vertically up against the force of gravity g by a shear stress 7w 
applied at the outer boundary which is moving with the velocity ~. Since the 
mucous blanket layer is of an order of magnitude thicker than the height of the 
cilia, the fluid transport in the cilia region will be neglected. 
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The viscosity of the mucous blanket changes appreciably with depth. Air 
flowing past the blanket to the lungs tends to dry the mucus. The cells under 
the blanket continually add moisture to it making the outer blanket region 
more viscid than the inner region. There is also a temperature gradient across 
the mucous blanket which accentuates the viscosity increase towards the air- 
mucus interface. 

Two approaches to the flow of the mucous blanket may be taken: one follow- 
ing the  statement contained in (Ewert, 1965) and implied in (Lucas and 
Douglas, 1934); " the mucous sheet produced by glands and goblet cells and 
covering the epithelium is composed of two layers, an outer viscous stratum 
resting on the tip of the moving cilia and an inner s tratum of lower viscosity 
which forms a suitable medium for the vibrating cilia." 

This approach implies that  the outer layer is basically solid and moves with 
the average sublayer flow velocity ~, as computed in the preceding section. 

In  the second approach it is assumed tha t  the viscosity changes linearly with 
depth according to 

Correspondingly, the kinematic viscosity is then 

In  the expressions for v and #, ~ is the blanket thickness, and ~ is the position 
in the blanket measured from the blanket-sublayer interface. 

Mucous viscosities reported in the literature are of the order of 100 poise 
while the viscosity of water is 0.007 poise at 37~ The value of a can be of the 
order of magnitude of 10 a. 

The Newtonian approximation of mucous properties is rather crude and can 
be justified only because of the simplifications it makes in the already complex 
analysis. 

The equilibrium of a blanket element requires that  

or  

=-gp,  (21) 

[ a ,($) = - g .  (22) 
d~ 
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The boundary conditions to be satisfied by the velocity u(~) in the blanket are 

du 
= 0 at the air-mucus interface ~ = 8, (23 )  

d~ 
u = ~ at the sublayer-blanket interface ~ = 0, (24) 

du = 7w at the sublayer-blanket interface ~ = 0. (25) 
d~ /~o 

Integration of (22) and introduction of the boundary conditions yields 

u = ~ - g ~ ( l  +a) ln ( l+voa2  a l ) +  g~.%~ (26) 

The volumetric flow may be computed by integration of the velocity profile 
over the blanket thickness, as 

Q=wDS{~ 2you 2982 [(1 + a)2ln ( l a  +a)2-2-3ot]}; (27) 

where D is the diameter of the member containing the mucous blanket. 
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Figure  3. M i n i m u m  flow r a t e s  
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Under normal circumstances the flow must be positive in order to keep t h e  

mucus moving away from the lungs, and the mucous velocity at the mucus-air 
interface should be positive to prevent foreign particles from entering the lungs. 
The minimum flow occurs when the velocity at the air-mucus interface is zero. 
This minimum flow rate was computed and is presented as a function of Vo and 

in Figure 3. 

C o n c l u s i o n s .  (a) There is good agreement between the computed average 
mucous velocity and observed values. (b) The computed minimum rate of 
flow is of the right order of magnitude. (c) For a large the flow rate is propor- 
tional to the square of the maximum cilium tip velocity tos times (3 - r)(1 - r~). 
The dependence on viscosity is nearly linear while the dependence of Q on the 
viscosity variation a is 

O proportional to In  a for large a. 
Gr 

(d) The dependence of Q on the cilia geometry is Q proportional to L / [ a 2 ( n  2 - 1)]. 
Thanks are due to the Bio-medioal Engineering Center at Northwestern 
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