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A somewhat different approach to the principle of biotopological  map- 
ping, d i s c u s s e d  in previous pub l ica t ions ,  is given.  The organism is con- 
s idered as  a s e t  of propert ies ,  each of which is  in its turn a se t  of numer- 
ous subproper t ies  which are log ica l ly  included in the corresponding 
propert ies ,  Topology is introduced by an appropriate def ini t ion of neigh= 
borhoods,  and four pos tu la tes  are s ta ted  which concern the mapping of 
the spaces  corresponding to higher organisms on those of lower ones ,  A 
number of conc lus ions  are drawn from the pos tu la tes ,  Some of them cor- 
respond to wel l -known facts .  For example,  in man and some higher organ- 
isrns appropriate emotional  s t imul i  should produce gas t ro in tes t ina l  or 
card iovascular  d i s tu rbances ;  or some microorganisms should produce sub-  
s t ance s  harmful to other microorganisms (ant ib io t ics ) .  Some other con- 
e lus ious  are s t i l l  awai t ing  ver i f ica t ion .  One of them is ,  for example,  that 
there must  ex i s t  un ice l lu lar  organisms which produce an t ibod ies  to ap- 
propriate an t igens .  

In a series of publications (Rashevsky, 1954, hereinafter re- 
ferred to as I; 1955aMII; 1955bmIII; 1955c--IV; 1955d--V; 1956a 
- -VI ;  1956b--VII; 1956c--VIII; 1957a--IX; 1957b--X), we have 
suggested and outlined a topological approach to general biology. 
The aim is to emphasize the relational aspects  of biology and to ex- 
press the unity of the organic world. This approach is in no way in- 
tended as a substitute for the biophysical, metric approach used 
hitherto in mathematical biology. The two should rather supplement 
each other. Great as are the advances of the current metric physico- 
mathematical approach to biology, they leave entirely outside of 
their scope a large number of important relational phenomena. They 
also do not express the basic similarities between the most dif- 
ferent organisms. Such phenomena as sensit ivity to stimuli, some 
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forms of motion, digestion, excretion of wastes ,  etc. ,  are present in 
one form or another in every organism~ unicellular or multicellular. 
The quantitative aspects and frequently the physicochemical mech- 

anisms of any of these properties are very different in different or- 
ganisms. Yet they not only are present in all organisms, but the 

basic relations between those properties are the same for all 

organisms. 

This general observation leads to the formulation of the principle 

of biotopological mapping, as discussed in I. In some way all or- 

ganisms can be mapped on each other and all of them on some con- 
ceivable simplest organism, which may either exist  or have existed 
or which may be conceived as an abstraction possessing the mini- 
mum number of properties which makes us recognize an organism as 
such. For lack of a better name, we designated this simplest or- 
ganism as the primordial. If the relational structure of the primordial 
organism wore known and if the mathematical nature of the mapping 
were known, we would be in a position, barring purely mathemati- 
cal difficulties,  to describe the relational aspects of all organisms. 

The purpose of the present paper is to give a somewhat more 
general and yet  a somewhat more precise formulation of the princi- 
ple of biotopological mapping and to show how a number of known 
biological facts follows rather directly from this formulation and 
new phenomena are predicted by it. 

In I we pointed out that an organism is a set  of what we called 
"biological  functions,"  connected with each other by certain rela- 
tions which impart on that set  an "organiza t ion ."  Examples of 

"biological  funct ions" are sensit ivi ty,  locomotion, digestion, se- 
cretion, etc. We say,  for example, that the function of the stomach 
is to digest,  the function of a gland is to secrete. In a mathemati- 
cal discussion we have to use frequently the word " func t ion"  in 
an entirely different sense,  namely, as the mathematician under- 

stands it, e.g.,  x = f(y). Though in I we agreed to use the word 
function in the mathematical sense,  while explicitly using the com- 
bination of words "biological  function" in the sense in which the 
biologist uses it, yet  the notation is not a convenient one. Some 
"biological  funct ions"  are characterized by their intensity,  for ex- 
ample, the intensity or rate of secretion. Situations may arise 
where we would have such monstrous expressions as " the  inten- 
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si ty of a biological function is a function of the intensity of another 
biologic al funct ion."  

We shall therefore henceforth change our previous terminology and 
denote such things as sensi t ivi ty ,  locomotion, digestion, absorp- 
tion, secretion,  etc . ,  by the word "proper ty"  of an organism. We 
shall denote different properties by the letter P provided with a 
capital Latin subscript to designate the specific property. Thus 
Ps stands for sensi t ivi ty to external stimuli; P c - - f o r  property to 
conduct excitation; PM--for orderly movement (as contrasted with 
random thermal agitation); PA-- for  absorption, etc. Lower case  
Latin let ters will be used for running subscripts.  Thus we shall 
write P~, (i = S, C, M. . . ) .  

In a unicellular organism the one cell ,  which const i tutes  it, pos- 
s e s ses  all the basic properties P r  Those properties are related in 
a manner to be d iscussed below. One of the character is t ics  of 
multicellular organisms is that different cells  specia l ize  in dif- 
ferent properties. Some cells  retain some properties and lose 
others. The relation between two different properties Pi and Pk, 
whether they belong to the same cell  of a multicellular organism or 
to different cel ls ,  remains the same as in a unicellular organism. 
For example, one type of cell  may be sensi t ive to external stimuli, 
but may not be motile; another cell may not be sensi t ive but may 
possess  motility. Yet just  as in a unicellular organism a stimulus 
under certain conditions produces a movement, so will a stimulus 
applied to the sensory cell result  in a movement of the motile cell.  

Another characteris t ic  of more complex multicellular organisms 
is the much larger number of different properties as compared with 
the simpler or unicellular ones. Thus a sensory cell in a lower 
organism may be sensi t ive to chemical stimuli in general. In a 
higher organism, different sensory cel ls  may be sensi t ive to dif- 
ferent chemical stimuli. For example, different taste  cells  of the 
human tongue are sensit ive to salt,  sour, sweet,  and bitter. In I 
we designated those additional properties as "subs id iary  biological 
funct ions ."  In our present  terminology it is more appropriate to 
speak of '"subpropert ies ."  The sensi t ivi ty  to bit terness,  which we 
shall denote by Psi, and the sensi t ivi ty  to sourness Ps2 are in- 
cluded in the sensi t ivi ty  Ps" Thus Ps is a set  of subproperties 
Psc~ ((x = 1 , 2 . . . ) .  The Pso~ s are subsets  of Ps,  or elements of Ps" 
The same holds for any other property Pi" Denoting a "subprop- 
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er ty"  by P/a (i -- S,C,M.. .  ; g-- 1 ,2 ,3 . . . ) ( i n  other words numbering 
the subproperties in an arbitrary manner) we have 

Pi~ C Pi" (1) 

When we examine the mapping of different organisms on each 
other, we see that the set  S 1 (Picr of the subproperties of Pi in one 
organism maps on the set  82 (P~)  of another organism; and both 
map on the sot Pi of the primordial. The set  P/ is thus the largest  
or the most inclusive of all subsets Pi~" 

The sets Pt may be conceivably infinite. Thus Ps contains amongst 
its subsets the sensit ivi ty Ps).t~ radiation of wave length )t. Thus 
Ps has, at least  theoretically, the power of the continuum. Actu- 
ally, however, in any given concrete organism, the sets  Pi are all 
finite, though some of them may have very large cardinal numbers. 
An arbitrary ordering of the subsets  P/c~, as done above, does not 
present therefore any practical difficulty. 

It must be also noted that two subsets Pi(x and P//~ of P~ arenot  
necessar i ly  disjoined, so that we may have 

Picr (~ PiE = 0.A. P i ~ n  Pi/3 4 0, (2) 

where ^ denotes the exclusive " o r . "  As an example we have the 
secretion of proteins and the secretion of regulatory substances.  
Both are included in " s ec r e t i on"  in general. Some secreted pro- 
teins are regulatory substances,  and some regulatory substances 
are proteins. 

Let  us examine more closely some of the sets  P/. 
We have already discussed some of the subsets Psc~ of Ps" As a 

further example let  us consider that a painful stimulus may be a 
stimulus of any modality with an intensity above a certain in- 
jurious limit. This does not contradict the known fact that there 
are special  nerve fibers for conduction of pain. Let  Ps~ denote 

�9 ~ , . , �9 i 

the sensit ivi ty to a stimulus of modahty c~i, while Pscc.ta~ denotes 
the sensi t ivi ty to the stimulus of modality g~ and in't~e'nsity f3. 
Then we have 

Ps c~i(~) C Ps~i (3) 

and the sensi t ivi ty to pain caused by stimuli of modality 0c i is 
represented by 

Psc~i(,) = U Pscx,(Z) (4) 
~ o  
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whore fl0 is the threshold of pain. The sensitivity to painful stim- 
uli of any modality is then represented by the subset of Ps : 

Ps ~= U Psai(~)" (5) 

eso~i C Vs 

The set  which represents the property of conduction, Pc, con- 
sists of subsets Pc co which are conductions at different rates. 
Other subsets are conductions mediated chemically and conduc- 
tions mediated electrophysiologically. 

Of special interest is the set  PM of all orderly movements. In 
this set are included such movements like those of cilia and flagella, 
as well as the movement involved in the protrusion of a pseudopod. 
The fact that different psoudopoda may succeed each other in a 
rather random fashion does not make the movements in each pseu- 
doped disorderly or random. On the other hand, movements of trans- 
port duo to either diffusion or to active transport, secretion or ab- 
sorption, are also subsets of P~. Thus one important subset of 
Pg is the set PM1 of all movements which may be called movements 
on the physically molar level. Another important sot is the set  of 
orderly movements PM9 on the molecular level. 

The set  PA of properties of absorption includes as subsets the 
absorption PAl of building substances for the organism and the 
absorption PA 9 of energy-yielding substances. The absorption PA a 
of energy i s  an element of PA" That absorption may either proceed 
through absorption PA4 of radiant energy directly, like in auto- 
trophic plants, or through absorption of energy-yielding substances, 
PA2" We have 

PAs C PA2 and PAs C PA," (6) 

Hence 

PA2 n PA~ r 0. (~) 

This gives us another example of (9). 
The set  PMe of the properties of metabolism includes as subsets 

the anabolism or synthesis Pue,., catabolism P..Me2, and storage P"em 8" 
Those contain other subsets. Thus, for example, synthesis of 
proteins is included in PMel; storage of fats and storage of sugars 
are both included in PMe S' etc. 
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How are the different sets ,  Ps, PM, etc. ,  related in the primordial 
organism? We do not know the full answer to that question, but 
certain partial relations may be inferred from the logical analysis  
of what is usually meant by the concept of organism. An organism 
is a set  S o of se t s  Pi in which certain relations of "immediate suc- 
c e s s ion"  are established.  Therefore those relations between the 
sets  Pi of S o can be best  represented by a directed graph (cf. I). 

We define one biological property Pk as immediately succeeding 
another, Pi,  if the manifestation of Pi causes  the manifestation of 
Pk without involving the manifestation of any third property Pz 
(l r i ;  l r k). As examples we may give excitation and conduction. 
However, to the extent that both P/ and Pk contain subse t s  P~c~ and 

Pk/3, a sequence of manifestations of different subse ts  may be in- 
volved in the sequence P i - - )  Pk" Thus, for example, the excita- 
tion of a nerve is immediately followed by conduction of an im- 
pulse. But in different types of nerves both the excitation and the 
conduction may represent a sequence of somewhat different physi- 
cochemical processes .  If Pk succeeds  Pi, then we say that Pi pro- 
ceeds  Pk" 

There will be a general agreement at leas t  on the structure of 
some parts of the primordial graph. Thus we have in general 
Ps ~ Pc , and Pc --) PM" In some organisms we have only P~2' 
while in others both PM1 and PM2 are present, but at l eas t  one of 
the two se ts  of properties is exhibited by all organisms. As a re- 
sult  of PM1 as well as of Pw~ we have in general ingestion, PF ,  or 
excretion of substances .  Thus PM --~ PF " The process  of diges- 
tion, which corresponds to a set  PD of properties, occurs either as  
a result  of PM1 or of P~2 or both. Hence we also have PM ---* PD" 
Then again PA --~ P~e" Metabolic p rocesses  being essent ia l  to the 
proper performance of sensit ivi ty,  conduction, and motion, we have 

also PMe ~ PS; PMe--~ PC ; P~e-- )  P~" The metabolic p rocesses  
are also essent ia l  for the reproduction PR of the organism. Hence 
PMe --') Pit, and by the same token, PM ---) Pit " 

There is even in the primordial organism also a set  PH of prop- 
erties of homeostasis .  The connection between PH and the other 
Pi is not directly evident from a priori considerations.  However, 
undoubtedly there is a connection PMe --~ PH, as well as a con-  
nection of PH to nearly all other Pi 's.  

We have already remarked that in a multicellular organism the 
different Pi~ (0t = 1 , 2 , 3 . . . )  map on the Pi of the primordial. We 
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have studied previously (I,V) different kinds of possible mappings. 
We shall consider here the most general conceivable mapping. Let 
S~ be the set  of sets P~ which represents a multicellular organism, 
and Si~--the set of sets P~ which represents the primordial organism. 

Those sets are not yet  spaces, since no topology has been in- 
troduced into them. By connecting the different points Pi of Sp or 
P~a of g0 by appropriate arrows, which indicate the relations of im- 
mediate succession, we obtain a one-dimensional continuous space, 
if we consider the arrows as continuous lines or as one-dimensional 
simplexes. But actually those arrows merely indicate the relation 
of immediate succession. As simplexes they have no physical 
meaning. It is therefore much more logical to construct spaces S o 
and Sp by introducing into the sets S o and S~ a tepology by an ap- 
propriate definition of neighborhoods. Considering the P~a and P~ 
as points in the topological spaces S0 and Sp, respectively, this 
this can be done in the simplest manner by defining the neighbor- 
hoods in g0 and Sp in the following way: 

The neighborhood of a point in S o (or Sp)consists of the point 
itself and of all those points which it immediately precedes. 

Since the relation of immediate succession can be represented by 
an arrow of a graph, we see that to each g0 and to Sp there is a 
corresponding graph.  Instead of saying that a point a immediately 
precedes b, we may say that " a  is connected to b by an arrow." 
Then the above definition of neighborhoods can be stated thus: the 
neighborhood of a point in S o (or Sp) consists of the point i tself 
and of all points to which arrows originate from it. 

We shall subject the mapping of S 0 onto Sp only to the condition 
of being continuous. If now the graph of the primordial organism is 
given, the possible spaces S o are obtained in the following manner: 

As we have remarked above (p. 73), the more complex an or- 
ganism the "narrower" the specialization of its cells; in other 
words, the smaller a subset Pi that each cell type represents and 
therefore the larger the number n of subsets. Denote by P~(") any 
set  of n subsets of Pi. Denote by P~(~)r (r = 1 , 2 , 3 , . . . ,  n) the n sub- 
sets of p.(n). For example, i f i = S ,  and n - -2 ,  and if Ps had only 
three possible subsets, Psi, Ps2, Pss, which denote respectively 
the sensitivities to light, sound, and touch, then Ps (2) would be 
either (Ps,, Psa), or (Ps,, Psa), or (Ps2, Psa)" Actually, of course, 
each Pi includes much more than two subsets. We now proceed as 
follows: 
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(A). For each set P~ in Sp, which is represented by a point on 
( a  t )  the corresponding graph, we choose n i subse t s  P/cr " These sub- 

se ts ,  for all poss ible  values of i, will be the points of the space 
S 0. If in Sp the point Pi is connected by an arrow to the point Pk, 
then in S~ at least one point P!~P is connected by an arrow to at 

- ( n k )  . . t ~  
least one Pk/g , the . . . .  directions of the arrows being properly pre- 
served. If in S0, P~ --~ Pk, then no P ~  is connected to any Pk~" 
(~ means "no t  a " . )  

In this manner neighborhoods of S o are mapped on neighborhoods 
of Sp. The mapping is continuous. 

The proposed representation of S o and Sp as topological spaces ,  
in which neighborhoods are defined in the above manner, is more 
consis tent  than their representation by one-dimensional complexes 
or graphs. In the graphs used in I-VI the directed lines,  or arrows, 
stand only to represent certain relations between the biological 
properties, namely, relat ions of immediate precedence and immedi- 
ate success ion .  As one-dimensional complexes those l ines have 
no physical  meaning. To the extent, however, that to each S0, as 
well as to the Sp, there corresponds a graph, we may conveniently 
use the terminology of graphs in our discussion.  But actually 
while a graph, considered as a one-dimensional complex, is a 
polyhedron in a metric space,  S 0 and Sp are topological spaces ,  
which are not metrized up to this point. This point of view is in 
line with Alexandroff's and Hopf's (1935) attitude of not separating 
the combinatorial and set- theoret ical  methods in topology. 

The above procedure of constructing S 0 from Sp does not prevent 
the possibi l i ty  that more than one P.(2 i) will be connected to a 
----P~), or that one P/(~')is connected ~o ~ several  --P:%k). The total 
number of poss ibi l i t ies  for prescribed values of ni (i --- S,C,M, etc) 
is very large. To each poss ib le  set  of connections permitted by 
(A) there corresponds a different multicellular organism. Moreover, 
it must be rememberer that the se t  Pt can be divided in many dif- 
ferent ways into p:~d subsets .  Thus we may have two sets  S O 
which are homeomorph, but in which two topologically identical 

p (ni~ points ~ctr represent  different subse t s  of Pi" Such two sets  repre- 
sent  again different multieellular organisms. 

It is an interesting combinatorial problem to determine the total 
number N of poss ib le  different se t s  S o which correspond to a given 
Sp. This number will give us the total number of poss ib le  or- 
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ganisms. If any of the Pi ' s  are infinite se ts ,  then of course N will 
be infinite. As we remarked, actual ly for any given organism, n i 
are always finite. But inasmuch as theoret ical ly some, if not all, 
of the P . ' s  may be infinite and even not enumerably infinite, we 
have here a poss ib ly  interesting problem in se t  theory. Namely, 
for given cardinal numbers of the Pi 's  what is the cardinal number 
of the se t  of poss ib le  se ts  So? 

The organism may be considered as the more complex, the more 
connecting arrows there are in S o between the different p:~i) and 
p(~k). The maximum de~ree of complexity is obtained when each 

P (hi) �9 ~ n re ~ p!nk) W c point Pin is connected by a ar w to each k/3 " e shall all 
such a S O the m a x i m a l  S O . 

The rule (A) for constructing S O from Sp is very general and con- 
tains only the restriction of continuity. We shall,  however, add to 
it another restriction. A space  S 0, constructed according to (A), is 
not necessar i ly  connected. To see this we may consider the par- 
t icular case  when all ni ' s  are equal (n i = n). We may then connect 

�9 , n ( n )  each point P ~ )  of S o to jus t  one corresponding poln~ t-k/~ in such a 
manner that we have n disjoined graphs, each of which is homeo- 
morph with S p .  It is to be noted that with the above definition of 

neighborhoods in S O a connected graph implies a connected space 
S o , in the more general topological meaning of the word "connec-  
t ion."  Biological ly this would mean that a multicellular organism 
simply cons is t s  of n separate organisms, which in no way interact 
with each other. To avoid this absurdity we add the requirement: 

(B). S O is connected. 

Requirement (B) implies some geometrical and combinatorial re- 
lations in So, re la t ions which are in general by no means simple, 
but which may have definite biological predict ive value. We shall 
not d i scuss  here this question in detail,  but merely i l lustrate  i ts  
nature on an example. 

Let  again n~ = n, and consider the graph of S 0. In the absence  
of requirement (B) this graph may consis t ,  as we have seen,  of n 
disjoined identical graphs. 

Because  of n~ = n, we can conveniently nuniber all the P[c~)a and 
l 

p(n) in such a manner that q = r, in other words, so that P[~)r-'~ 
koc r 

p(n) 
k ~  r " 
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To make the whole graph connected, we must have at leas t  n - 1 
lines joining different non-corresponding points of the n identical 
graphs. Let  such a cross-connection be made between the points 
p(n) and p(n) Since we already have p(n) ~ p(n) there- 

iOtr k (Xr+ l i ~ r  + l ~ kO~r+ I '  

fore the point P(")kCCr+1 will have two predecessors, namely, P~(~) and 

p(n) Each of the las t  two points will have at least  one im- 
iO~r + 1" 

mediate predecessor. 
We call a point a a predecessor of b, if a precedes b. However, 

a may precede b either immediately by being connected to b by an 
arrow a ---* b, or not immediately by being merely connected to b by 
a sequence of arrows, or by a directed way (III, p. 114). Accord- 
ingly we shall speak of immediate and non-immediate predecessors. 
Hence, requirement (B) assures us that of the n points which corre- 
spond to Pi, n -  1 points will have more predecessors in S O than 
Pi has in Sp. In other words, .while a certain point Pk in Sp may be 
reached from only one point P~, in S O we shall have at leas t  n - 1 
points corresponding to Pk, each of which will have at leas t  two 
immediate or non-immediate predecessors. The maximal S o is of 
course always connected. 

If Pi is a predecessor of Pk, then anything that affects Pi is 
going to affect  Pk �9 Hence the biological meaning of the above is 
that in a multicellular organism, due to requirement (B) the number 
of biological properties which affect a given property is greater 
than in a unicellular organism. 

As in I, we prove in quite a similar manner the following: 
Theorem I. The rules (A), when applied to two different primordial 

graphs Sp result always in different graphs S O . 
On the other hand, the theorems in IV require some modifica- 

tion. The general situation is now much more complicated. For 
the case of a maximal S O we have the following: 

Theorem II. If in the graph of Sp there is a way (III, p. 114) 

from Pi to Pk, which goes through one or more intermediate points 
P~, then in the maximal S O the number of disjoined ways from any 

point P(ni)iaq to any p(nk)kr is equal to nmin' where nmi n is the smallest 
of all ne'S , which belong to any of the intermediate points Pc" 

Proof. If nm~ n is the smallest  of all n ' s ,  then we can pick out 
nmi = points amongst every of the n~'s,  and construct nmi n disjoined 

ways from P ('i) n(n,) ~aq to t-'k~ r .  More than n i ~ disjoined ways are im- 
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possible,  because  some of them would have common points amongst 

the nm~ = points of P (nm) m ( X  " 

How about unicellular organisms? They exhibit a great  variety 
of properties P~, and they also map on each other and on the pri- 
mordial. Some microorganisms, as we remarked above (p. 76), do 
not have any PM1 (non-motile microorganisms), but all of them have 
PM2" Similarly different microorganisms have different Psa, but at 
l eas t  some elements of Ps occur in all of them. Generalizing by 
induction, it is natural to postulate: 

(C). The spaces  So, . which represent  all possible  unicellular or- 
ganisms are obtained from Sp by assigning to one cell any possible 
space S o , with the exception of such elements Pi(~ i) or combina- 
tions thereof as would be incompatible with the s ize of a cell or 
with physical  laws. 

The las t  restriction is essent ia l  for example in the following 
case: Consider the property PH of homeostasis .  Amongst its ele- 
ments the se t  PH contains the subset  PHt of temperature regulation. 
While some microorganisms show other homeostatic properties PH~ 

for example osmoregulation (Presser ,  1950), no unicellular organism 
can show temperature regulation, because,  as simple calculat ions 
show, the maintenance of any appreciable difference in temperature 
between a single cell and its environment would require such rates 
of heat  producing reactions as are incompatible with known physi- 
cochemical laws, because of the tremendous specif ic  surface of a 
single ceil .  

In addition to (C), we postulate: 

(D). All possible multicellular organisms are represented by 
So, and conversely,  any organism which corresponds to an S O is 
possible.  

A number of interesting conclusions follow almost immediately 
from (A)-(D), without a more detailed specification of the structure 
of the primordial space 8p. 

From (A) it  follows that if we have an S 0 , in which P~a --'* Pk/~, 
then in the primordial we have Pi ~ Pk" Hence, from (D) it follows 
that there exis t  organisms, in which Pig --* Pkv, whore /z and v are 
in general different from ~ and ft .  From (C) it follows that there 
exis t  unicellular organisms, in which Piu --) Pkv, unless the exist- 
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once of either Pi~ or Pkv, or both, is incompatible with the size of 
a single cell. 

Thus from observations of some relations within an organism, we 
may infer the existence of other organisms in which different but 
corresponding relations exist. 

Let us consider the sequence Ps --* Pc ---* P~" As we have 
seen, an important subset of PM is P~I' the subset of molar orderly 
movements. In a unicellular organism this may be represented by 
amoeboid movements or ciliary or flagellary movements, which we 
shall denote correspondingly by PMa , P~c' P~I" We have 

P~,, C Pu, ; P~r C PMt ; Bur C Pu," (S) 

In a higher animal different cells specialize in the three different 
subsets; the leucocytes, for example, in PMG ; ceils of respiratory 
epithelium in P~c ; spermatozoids in P~I. 

A subset of P~I is represented by contractile muscular t issues.  
A movement of a unicellular organism, for example an amoeboid 

movement, plays several roles in the life of the organism. 
(a) It propels the organism as a whole in space, towards food or 

away from the enemy; 
(b) it orients the organism differently with respect to different 

stimuli, thus 
(c) changing possibly the effectiveness of the stimulus; 
(d) it helps ingestion of food into the digestive vacuole, and 
(e) it may cause an eventual movement of food in the latter. It 

al  SO 

(f) in general affects the transport of substances inside the coll. 
The sets of movements which produce correspondingly the ef- 

fects (a), (b), (c), (d), (e), and (0 are included in P~I" In line with 
(h), (B), and (D), .different cell typos specialize in some higher 
organisms in each of those subsets of movements, which we shall 
denote correspondingly by P~(a); P~(b); P~(c); etc. We have 

PM(o) c PM (9) 

and similarly for P~(b) and the others. 
The skeletal muscles are general representatives of PH(~}; they 

also represent the subset P~(b)" The ciliary muscle of the eye or 
the muscles of the tympanic membrane have properties which be, 
long to P~(c)" 
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Instead of the general sensitivity Ps we also have in a higher 

animal several subsets of Ps, some of which we discussed above. 
The same holds for Pc " 

Let Pay denote the set of visual sensitivities of all kind. We 
have 

Ps~ C Ps" (10) 

In a primordial we have Ps --* Pc --~ P~" Hence it follows from 
(A) that in some higher organisms we must have: 

Pay ~ Pc -"* Pg(~)" (11) 

In words: There exists higher organisms, in which gastrointestinal 
movements are affected by visual stimuli. A well-known example 

is the vomiting at the sight of some unpleasant things. By the 
same argument, we have more generally 

Ps~ "* Pc -'~ Pltc~t), (12) 

which states that in some animals different sensory stimuli affect 
the gastrointestinal motility. 

As we have seen, the more complex an animal, the more subsets 

P~a are connected to a given subset Pk/3, if Pi---* Pk" Hence, the 
higher the animal, the greater the variety of sensory stimuli, which 

affect the gastrointestinal motility. Man is the highest of the 

presently existing animals, though there is no reason to assume 

that it is represented by a maximal S 0. We should, however, expect 
the human gastrointestinal tract to be more sensitive to a great 

variety of sensory stimuli, than in any of the other animals. 

To the extent that our psychological experiences are manifesta- 

tions of a complex interplay of sensory activities, we may state 
that it follows from (A), (B), and (D) that in man, as well as in 
some animals, psychic disturbances produce gastrointestinal trou- 
bles. This is a well-known fact. This does not follow, however, 
and cannot follow from any metric biophysical theory, unless spe- 

cifically assumed. It does follow, however, from the general 
principle of biotopological mapping, .as formulated here. It cannot 
be deduced from considerations of natural selection, since its 
adaptive value is, if anything, negative, at least for the usual 
occupations of man. 

By the same argument we see that there exist animals, in which 
sensory stimuli and specifically in man, psychic disturbances, 
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affect the cardiovascular phenomena. We merely substitute in (12) 
P~(D for Pie(d)" In this connection it is interesting to note that 
"st imulation of almost any afferent nerve of the body can affect  
the heart ra te"  (Carlson and Johnson, 1953, p. 161). 

From Ps ---* Pc --~ PM it follows, according to (A), that 

Psi---* Pc# "--) P~,, (18) 

where Pw/ is any subset  included in PM" 
Hence we may substitute for P~:y any subset contained in P~2" 

But PM2 represents the different molecular orderly movements, such 
as,  secretion. In particular the set  P ~  of "secre t ions  of different 
digestive enzymes"  is included in P;~2 and hence in Pu" Therefore 
we have 

Pscx""* Pc,8 "-'* PAr (14) 

In words: In some animals sensory stimuli affect  the secretion of 
digestive enzymes. In men we should expect  psychological states 
to affect such a secretion. 

A biological property of an organism is affected whenever any 
predecessor is affected. If a given Pic~ has, say, n predecessors 
and if we assume equal probability for any of them being disturbed, 
then the probability that an observed disturbance of the property 
Pic~ is actually due to a disturbance of a predecessor,  and not of 
P~a itself,  i s  (n - 1)/n. To know the total number of predecessors  
for a given P~cr we must know the structure of Sp which we do not 
know. But even from a simple general consideration as that made on 
page 76 we see that for PM, and therefore for any Pu(d) or P~, 
n 5 4, at the very least.  Hence the probability of a given gastro- 
intestinal disturbance being due to disturbances of other parts of 
the organism is greater than 0.75. To the extent that the psycho- 
logical disturbances involve Psccs and Pcz'S, we can infer that 
the percentage of all observed gastrointestinal disturbances, which 
is due to psychic disturbances,  is greater than 60%. It is said to 
be actually over 80%. Consider now in Sp the relation of P~ to 
some following P~'s. Molar movements are followed by feeding re- 
actions PF" So are the molecular orderly movements, because 
diffusion gradients and active transport bring food from the sur- 
roundings towards the cell in non-motile cells .  Hence 

e~ -~ PF (15) 
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in the primordial. Denote by P~(8~o) the subset of Pg which con- 
tains all the secretory properties. Since P~(s~o)C P~, therefore 
from (15) and from (A) and (B) it follows: 

E (So): P~(s,c) c So.PFa c S0.P~(s,c) -~  PFa" (16) 

In words: There are organisms in which secretory phenomena 
produce feeding reactions. An example of this is offered byUrechis 
which secretes mucous bags that filter out food particles and are 
eventually swallowed (Presser, loc. cir. p. 145). Another example 
is the secreted spider-web which catches the prey. 

In some unicellulars the movements P~I affect the transport of 
substances both within the cell (by stirring "the protoplasm") and 
outside of it. (Ingestive movements of cilia.) Denoting phenomena 
of transport in general by PT, we thus have: 

E(Sou): P~I CSo .P r C S o u . P # / I ~ P T .  (17) 

Hence it folIows from (A) and (C): 

P~ C Sp.P T C Sp.:).Pg ~ Dr,  (18) 

where D is the sign of implication. Hence, in the primordial we 
have PM "--* Pr" But then it follows from (A): 

E(S0): PMIaC So.Prz C So.PM1 a ~ PT~" (19) 

Put for P ~  the movements of skeletal muscles, which are pro- 
polling the organism in space. Put for PT/3 the set of circulatory 
phenomena. Then (19) states that in some higher organisms such 
movements of skeletal muscles affect the circulation. Example: 
The venous circulation in man is largely due to the "kneading" 
action of skeletal muscles. Effects of body musculature on circu- 
lation are also known in a number of lower animals (Presser, loc. 
cir.). 

The general principles (A)-(D) apply to both animals and plants. 
The latter are perhaps characterized by the fact that PMll = 0; the 

subset of all amoeboidal movements of the cell is empty. We have 
C But P~I ~ 0, since we have the flow of water in plants. 

The set of flagellate movements is not empty in lower unicellular 
plants. Similarly the subset of Pc which contains the conduction 
due to electrochemical phenomena (nerve conduction) is empty in 
plants. However, from Ps --) Pc --* P~ in the primordial it follows: 
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E(S0): escc C So.Pc# c So.PM~ c So. Psa ~ Pc# ~ PM~," (20) 

This applies to plants as well as to animals. If Psa denotes any 
sensitivity to external stimuli, Pcp--chemical mediation, and P~y 
denotes either the movement of water through tracheae or the move- 

ment of food-containing solvents through sieve cells, then (20) 

states that adequate stimulation of plants, say by light, affects 
both the flow of sap and the translocation of metabolites. 

The subset of all secretions, which is included in PM2, includes 
such subsets as secretion of wastes, secretion of poisons, secre- 

tion of substances useful to other organisms, and secretion Of sub- 
stances lethal or otherwise harmful to other organisms. From (C) 
it follows that there must exist microorganisms which secrete sub- 
stances that are either lethal or otherwise harmful to some other 
organisms. The toxins of some pathogenic bacteria is one ex- 
ample. The se t  of substances harmful to some other organisms in- 
cludes the subset  of substances harmful to some microorganisms. 
The antibiotics, like penicillin, are an example. 

By the same token there must exist  microorganisms which pro- 
duce substances that are useful to other organisms, which is a well 
known fact. 

The finding of different possible subsets of a set  Pi may be a 
matter of logic. A set  Pi consists  of all conceivable subsets  in- 
cluded in it, as long as the existence of such subsets is com- 
patible with physical laws. Sometimes the possibili ty of a subset  
Pia is shown by experiment. 

In many relatively higher animals there are cells which upon 
stimulation with appropriate substances,  the antigens, produce 
special proteins, the antibodies. The production of antibodies is 
thus a subset  of the set P~e of metabolic phenomena. The sen- 
sitivity to antigen is a subset  of the set  Ps �9 We shall designate 
the former by PM~(,), the other by Ps(a)" From (C) it  follows that 
there must exist  unicellular organisms which produce antibodies 
when stimulated by an appropriate antigen. So far no such micro- 
organism has been definitely found, though there is a report of 
antibody production by yeas t  (Fox and Plaisted,  1953; Cushing and 
Campbell, 1957). 

This is an example of prediction made from the general principles 
proposed here. 
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Another conclusion is also interesting. We have Ps(a) < Ps and 
PM,(a) C P ~ .  We also have in higher organisms: 

Ps(~)-~ Pi~ ~ " ' "  Pray ~ PMe(a)' (21) 

where Pi~---* "'" Pm~' denotes the possible intermediate sequence 
of points of So, which as yet are unknown. From (A) and (21) it  
follows that in a primordial 

Ps --") Pi ~ " ' "  Pm --~ PMe' (22) 

and then again from (A) that there exist  multiceIlular organisms in 
which 

Ps~ ---* Fir  -'-'* " ' "  P ~ o  ~ PMe(a)" (23) 

Here Psi, stands for sensitivity to any stimulus, such as light, 
heat, etc. Expression (23) states that in some  c a s e s  antibodies 
may be formed in multicellular organisms by "physica l  s t imuli ."  
This reminds us of the "physical  allergy" phenomena (Boyd, 1956), 
which seem, at least  in some cases,  to be connected with actual 
formation of "something"  that can be transferred passively by the 
serum (Sherman and Seebohm, 1950). Alternative explanations of 
the observed phenomena seem, however, possible (Boyd, loc .  cir .) .  
Thus the above conclusion cannot be regarded as verified. Neither 
does it seem to be yet  disproved. 

By the same line of reasoning we should expect that some plants 
produce antibodies. Indications of the existence of such a phe- 
nomenon have been found (Wallace, 1950). Again, however, a 
different interpretation of Wallace's observation has been suggested 
(Luria, 1950). The evidence against production of antibodies by 
plants is considered by some to be conclusive (Cushing and Camp- 
bell, lee .  c i t . ) .  However, in view of the fact that still very few 
plants have been investigated, the search would be worth while 
to be continued. Should, however, such a search fail definitely, 
this would lead to definite conclusions which are again verifiable 
by experiments. As has been remarked, in plants the set  PMll of 
amoeboid movements is empty. There are other subsets Ptcr which 
are empty in plants. Plants are characterized by the set P0 of 
subsets P "  which are empty in them. If plants do not produce i0r 
antibodies, then P~e(a) is empty in plants. Either then P~,(a) is an 
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element of P0, and in a sense enters into the definition of plants, 
or there must be some physicochemical relation between some of 
the P" and PMe such that the absence of P "  implies the ab- i ~  (a)  ' i s  

sence of PMe(,)" The first possibili ty does not seem very likely. 
The second possibil i ty suggests immediately a possible physico- 

chemical connection between PMI; and PMe(a)" There may be a 
common biophysical or biochemical factor involved in certain type of 
movements of the cell and production of antibodies. It may, per- 
haps, be significant that antibodies are apparently produced by 
reticuloendothelial cells which resemble more than others some 
amoeboid forms. If there is a relation between PMll and PMe(a)' 
then, however, we should look for antibody production by unicellu- 
lars not to yeast~, but rather to amoebae. 

The above is meant to illustrate that even in its immediate and 
simplest consequences, the postulates (A)-(D) do have a predictive 
and heuristic value. More of this should be found by further elab- 
orating the set- theoretical  properties of S o and Sp �9 

We have considered two subsets of Pc: the subset of what may 
be called nervous conduction and the subset of humeral chemical 
conduction. We shall denote the former by PcI" The set  Pc1 in- 

cludes two important subsets,  Pclo and Pc lh ,  such that 

PcI 0 c PcI and Pclh C Pc~" (24) 

The first one, Pc1 ~ , we shall call, for lack of a better term, non- 
hysteresis  conduction; the second, Pclh, hysteresis  conduction. 
The first is characterized by independence of a given conduction 
phenomenon on the past  history. The other is characterized by the 
fact that the character of the conduction depends on past  con- 
ductions. No more detailed specifications are necessary here. In 
its simplest form a hysteresis  conduction may manifest  i tse l f  
merely by the fact that a given response to a given stimulus is 
facilitated by repetition. In- its most complex manifestations hys- 
teresis conduction may result in most complicated phenomena of 
learning in higher animals. Whatever physiological or biological 
theory of learning we accept, whether we consider it based on the 
existence of self-circuited neurons (Rashevsky, 1948) or on synaptic 
changes of a physical or chemical nature (Shimbel, 1950), or any 
other different conceivable mechanism, in all of them we deal with 
hysteresis  conduction in the central nervous system. Conduction 
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here is understood not only along a nerve-fiber,  but including syn- 
aptic transmission as well. 

From (C) it  follows that there must exis t  unicellular organisms 
which exhibit  some form of hys teres is  conduction. The turning 
around of a paramecium in a capillary tube with fewer turns after 
several  trials is an example of this (Presser ,  loc. cir., p. 842). 
Whether we call such phenomena elementary acts  of learning or not 
is immaterial. Relat ionally they are isomorphic to the more com- 
plex phenomena of learning in higher animals. 

So far as  relations between the different Pi 's  and P~c~'s are con- 
cerned, we have considered only the relation of immediate preced- 
ence R, and immediate success ion  ~,  its converse.  If we represent 
S o and Sp by directed graphs then we have here a graphical repre- 
sentation of the c lass  of relations R. We can apply to this some 
standard expressions  of the theory of relations, but we do obtain 
only relat ively trivial results .  We give here jus t  two illustrations. 

Thus, if we use the rather convenient notations of J.  Riguet 
(1948) and denote by pr 1 the argument of the relation R, we have 
the formula: 

pr 1 SR C pr 1 R ,  (25) 

where SR denotes the product of the relations S and R .  
In particular we have 

pr 1 R 2 C pr 1 R .  (26) 

If R is the relation between P ~  and Pk$ when Pi~immediate ly  
precedes  Pkz,  then R 2 is the relation between two points such that 
there is a third one, immediately preceding the second one and 
immediately succeeding the first. We shall say that the second 
point is a second-order  successor  of the first one. In that case  
(26) s ta tes  that the number of points Pi which have immediate suc- 
cessors  is l e s s  or equal to the number of points which have second-  
order successors .  

Consider the property: " C e i l s  are sens i t ive  to different forms of 
l ight" as a relation between the cell c and light l. In symbols cRl.  

Let  in the relation xRy ,  R(x) denote the se t  of all y ' s ,  such that 
�9 Ry.  Let  

( x )  = R [ x ]  -- ( 2 7 )  R 
x ~ X  x~. X 



90 N. RASHEVSKY 

Then (Riguet, loc. cit.) we have: 

X t c X 2. 3 . R ( X z )  c R(X2) ,  

X~ c X 2. ~.R[X 2] c R[X~]. 

(28) 

(29) 

R(c) is the set  of all forms of light to which a given cell is 
sensi t ive.  If X is a given se t  of cells ,  then R(X) is the se t  of all 
forms of light to which we find sensi t ivi ty  amongst cel ls  of the 
se t  X; while R[X] is the set  of all forms of light, such that every 
cell of X is sensi t ive to all of them. If X 2 is the set  of all cells 
of an organism and X 1 a se t  of cells  of a part of it, then expres- 
sions (28) s ta te  that the number of different forms of light to which 
we find sensi t ivi ty  amongst the cells  of a part of the organism is 
less  or equal to the number of all forms of light to which we find 
sensi t ivi ty amongst cells  of the whole organism. Expression (29) 
s tates that the number of different forms of light such that every 
cell of a given part of an organism is sensi t ive to it is greater or 
equal to the number of different forms of light such that every cell 
of the organism is sensi t ive to all of them. 

By applying expressions (28) and (29) to the inverse relation 
(different forms of light affect  different cells) ,  we find even more 
trivial statements: 

The number of cel ls  which are sensi t ive to any wave length of 
light is greater or equal to the number of cel ls  which are sensi t ive 
to only some selected spectral range. And: The number of cel ls  
which are sensi t ive to all wave lengths within a given spectral 
range is less  than or equal to the number of cel ls  which are sensi- 
tive to all wave lengths within a wider spectral range. 

The above statements while true have no predictive or heuristic 
value. It is,  however, rather likely that by studying in a similar 
manner more complicated relations between pairs of points in S o 
and Sp we shall arrive at much more valuable conclusions.  

A systematic  application of theory of relations to biology and an 
attempt to build an axiomatic biology on this bas is  has been made 
in the noteworthy research of J. H. Woodger (1937). Though 
Woodger's approach differs seemingly very radically from ours, the 
possibi l i ty cannot be denied that the further development of both 
approaches may establ ish a number of points of contact between 
them. In any case ,  to Woodger belongs the credit of having clearly 
emphasized the importance of relational a spec t s  in biology and to 
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have made the first  systematic  mathematical study of those rela- 
tional aspects .  

The principal difficulty found in the present  approach is that the 
graphs of Sp or S o do not represent merely such simple relations 
as immediate succession.  Two biological properties of which one 
immediately succeeds  the other are usually characterized by other 
relations which are more inclusive than the relation R of ~mmediate 
success ion.  

No elaborate scient if ic  system can be developed on the basis  of 
one or two general principles only. Other principles or postulates 
will have to be added in the future to those presented here. Some 
of them are likely to be of a restricting nature, reducing somewhat 
the generali ty of (A) or (C), just  as (B) does restr ict  (A). As we 
have already suggested in I, the principle of maximum simplicity, 
introduced by us (Rashevsky,  1948), or as David Cohn (1954, 1955) 
aptly cal ls  it, the principle of optimal, design, may be used as 
another general mathematical principle, together with the principle 
of biotopological mapping. The principle of optimal design may 
possibly eliminate some of the possibi l i t ies  presented by (A). 

The general formulation presented here, unlike the ones suggested 
in I-VI, does not give any indications as to arrangements Of vari- 
ous differentiated cel ls  into organs. It seems that an additional 
rule of a relational character must be added to (A)-(D). 

It may be asked as to whether we should not expect  on the basis  
of the foregoing to have organisms which are sensi t ive to X-rays 
or y-rays ,  or which can perform other tasks than those so far ob- 
served. The answer is in the affirmative, since, for example, 
sensi t ivi ty to y - rays  is included in sensi t ivi ty  to radiation. Does 
it then follow that we must predict organisms to develop in the 
future, which will have such properties? Not necessar i ly .  

Through sc ience  and technological invention man has found 
means to detect  y-rays and to perform numerous tasks which no 
organism can do directly. All such performances we do not con- 
sider as part of the biological properties of the human organism. 
But all such performances are definitely the resul t  of biological 
manifestat ions of the human organisms, in particular of the brain. 
And relationally it is quite consis tent  to extend the notion of or- 
ganism to include the results  of the direct biological properties. 
Relationally there is no difference between the Urechis secreting 
a mucous bag which catches  food and then swallowing it, or the 
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spider  secre t ing  i ts  web, and a human-being manufacturing as a re- 
su l t  of his  brain-work a machine which p r o c e s s e s  food and makes 
i t  pos s ib l e  for it  to be swallowed.  

Such an ex tens ion  of the re la t ional  pr inciples  will n e c e s s i t a t e  

a more de ta i l ed  s tudy of re la t ions  between an organism and i ts  
surroundings,  which thus far have been cons idered  only ske tch i ly .  

The  pr inciple  of  optimal des ign may then lead to the conclus ion  

that  organisms which pe rce ive  X-rays or y - r a y s  d i rec t ly  may not  

develop,  because  i t  is s impler  to develop an appropriate  brain 

which can invent  t echnolog ica l  dev ices  for the performance of  such 

tasks  than to develop an organism which performs them direct ly .  

An ex tens ion  of the re la t ional  pr inc ip les ,  such as ment ioned 
above,  will a lso  include many a spec t s  of  soc ia l  re la t ions ,  both in 
man and animals .  

The author is indebted to Mr. Rober t  Rosen for checking the 

manuscr ipt .  

T h i s  work was aided in part by a grant from the Dr. Wallace C. 
and Clara  A. Abbott  Memorial Fund of The  Univers i ty  of Chicago 
and in part  by United Sta tes  Health Service Grant RG-5181.  
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