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It is shown on the basis of (1) conservation of mass, (2) positive concentrations, and (3) 
the principle of detail balancing that periodic reactions cannot occur in a closed system de- 
scribed by linear differential equations. The matrix, A, of the rate equations must be such that 
[A [ = 0, a~i > 0 for i # j,  aii < 0, and VA V -1 = B, where V is diagonal and B is symmetric. 
These properties of A imply that the latent roots are real and non-positive and that neither 
catalysis nor inhibition can be described by linear equations. It is further shown that periodic 
reactions cannot occur in an open system for which the matrix associated with the chemical 
reactions has the above properties and in which the simple law of diffusion is obeyed. The rela- 
tion of these results to Onsager's reciprocal relations and to previous work on periodic and cyclic 
chemical reactions is discussed. The utility of certain of these results for the treatment of iso- 
tope kinetics is indicated. 

1. Introduction. The biological occurrence of periodic phenomena is 
well known. It is of interest to consider whether certain cases may be 
explained on the basis of periodic chemical reactions. It may be said that no 
case has yet been so explained, in a satisfactory manner, and that the 
formal problem of periodic chemical reaction is not highly developed. It is 
reasonable to assume that the development of the formal chemical 
kinetics of periodic chemical reactions must precede the solution of the 
associated diffusion problems. 

The possibility of periodic reactions was early considered (Lotka, 1910; 
I~irniak, 1911; Lotka, 1920) and an experimental case was shortly re- 
ported (Bray, 1921),. A. J. Lotka considered a set of consecutive, auto- 
catalytic reactions in which the concentration of the first species is con- 
stant and showed that such a system exhibits undamped oscillations, i.e., 
the concentrations oscillate about a "central" value. This treatment has 
been generalized and extended by M:J,  Moore (1949). In particular it was 
shown that the removal of the restriction that the concentration of the 
first reactant be constant leads to damping of the oscillations but in no 

* A portion of this work was performed whil e the author was in the Department of Physiol- 
ogy, University of Chicago, and was supported by a grant from the Dr. Wallace C. and Clara 
A. Abbott Memorial Fund. 
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case, as Lotka (1920) had shown, are the oscillations simple harmonic. 
The treatment was extended to systems which are open but otherwise of 
a simplified nature. The principal, theoretical content of the Moore (1949) 
paper was anticipated by K. F. Bonhoeffer (1948) who, however, con- 
sidered systems in which only two chemical species are involved. 

In all of the above cases, except that of Hirniak (loc. cit.), the differ- 
ential equations which describe the system are non-linear, whether or not 
the system is open. In fact the open nature of the system contributes 
no non-linear terms when the usual flux laws are considered. M. F. 
Morales (1944) has discussed periodicity in pure di~usion syster,~s in which 
chemical reaction plays no part. The flux law, based upon an extended 
form of the chemical potential, assumed by Morales is non-linear and re- 
suits in non-linear differential equations. In the following paragraph we 
refer to cases based upon linear equations. 

N. Rashevsky (1938, 1948c) discussed a case of an open system for 
which the chemical rate laws are the linear equations 

dxl } 
dt - anxl + a~x2 

(1) 
dx~ 
dt - a2~x~ + a22x~ , 

where x~, x2 are the concentrations of the first and second chemical species 
and the aii are constants.jA. M. Weinberg (1938) generalized the dif- 
fusion problem associated with this case and discussed solutions possessing 
certain symmetry properties. Rashevsky (1948a) has discussed more gen- 
eral solutions as well as the conditions under which the steady state con- 
centration configuration exhibits spatial periodicity. The solutions dis- 
cussed by Weinberg (1938) and Rashevsky (1948a) depend upon certain 
restrictions on the diffusion and permeability coefficients but the solution 
of the diffusion Problem is otherwise exact. By forfeiting exactness in the 
geometric description of the system and in the formulation of the diffusion 
problem, an approximation method (Rashevsky 1948c, 1940) allows the 
restrictive condition among the diffusion and permeability coefficients to 
be removed. Weinberg (1939) has solved the problem in this manner with 
the result that the frequency of oscillation is that of the fundamental 
mode whereas actually, in the exact solution (Rashevsky, 1948a), the 
oscillations are the superposition of a countably infinite number of fre- 
quencies. Rashevsky (1948b) has discussed the method by which this 
defect of the approximation method is to be removed. Finally, Rashevsky 
(1949) has discussed the possibility of centrally asymmetric concentration 



KINETICS OF LINEAR SYSTEMS 123 

configurations, which are subject to damped oscillation, leading to the 
division of a spherical cell and accounting for the damped pulsations which 
immediately precede cell division. 

In the cases discussed in the above paragraph the existence of periodic 
solution depends directly (Rashevsky, 1938; Weinberg, 1939; Rashevsky, 
1948b, c) or in an important manner (Weinberg, 1938; Rashevsky, 1948a, 
1949) upon the properties of the coefficients in the linear equations, (1), 
for the chemical rate law. 

2. Purpose of the paper. It  is the purpose of this paper to inquire for the 
restrictions set, by general chemical and thermodynamic principles, upon 
the coefficients of the rate equations for a general linear chemical system. 
The implications of these restrictions for the existence of periodic solu- 
tions are examined and discussed for closed and open systems. 

In particular it is the purpose here to show that if A is the matrix of the 
chemical rate equations [of which (1) is the second order case] the prin- 
ciple of conservation of mass and the requirement that the concentration 
be non-negative are sufficient to determine the signs of the elements ali. 
These signs are such that in no second order case can the latent roots of A 
be imaginary. In the general, nth order case, the principle of detail balanc- 
ing (the law of entire equilibrium of G. N. Lewis) or the thermodynamic 
theorem that the (Gibbs) free energy is a perfect differentia] imposes ad- 
ditional restrictions upon the ai~ such that A can be transformed, by a 
similarity transformation, into a real, symmetric matrix. With these 
properties of A established the reality and non-negativeness of the roots 
follow at once. The relations of these results to similar, special theorems 
proved by I. Qpatowski (1945, 1946) and to the general linear problem in 
chemical kinetics are discussed. 

3. The closed, uniform, homogeneous system. By a linear chemical system 
we will mean a system consisting, in general, of n chemical species, X~, 
i = I, 2 , . . . ,  n, for which the formal chemical kinetic rate equations are 

~i(t) = ~ a ~ i x i ( t )  , i = ~ , 2 ,  . . . ,  n,  (2) 
i=1 

where x, is the concentration of the ith species, Xi, the a~r are constants, 
and x~ denotes the time derivative dx~/dt. This terminology, of course, 
bears no relation to the "physical" linearity of the system; for a straight- 
chain, branched or cyclic system may equally well obey (2). We require 
only that (2) be linear. I f  the species, X~ ,are converted one into another 
this assumption of linearity means that the chemical reactions are first 
order. They are not necessarily unimolecular. 
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We assume, initially, that the species interact in any way whatever. 
Then, if one species, X k ,  is to influence the rate of change of another, X~, 
it  must do so by virtue of contributing a linear term, a~kxk, to the equation 
for ~ .  I~wi l l  then be shown that  the only real, physical inter.~retation of 
(1) is that the X~ are converted chemically one into another.~ 

The most obvious restriction which the assumption of a closed system 
implies is that  of the conservation of mass. This evidently requires, if the 
volume V of the system is constant, that there exist posi t ive  numbers, a~, 
such that 

ai2~ = e~x~ = 0. (3) 
i ~ l  = 

In particular, if the x~ be expressed as mass per unit volume, rather than 
moles per unit volume, the value of every a~ may be taken as unity. 
The fact that a~ > 0, for all i, follows from simple chemical principles: 
The a~ can always be chosen as multiples of molecular weights of the X~ 
when the x~ arein moles per unit volume. In cases of simple stoichiometry, 
which are most likely to obtain when (2) is valid, the a~ can be chosen as 
small integers which are ratios of the molecular weights. 

I t  is worth noting here that V cannot, in principle, remain constant 
unless the partial molal volumes of the X~ are identical. The formal laws 
of chemical kinetics are, however, based upon the assumption of dilute 

solutions in which case V is essentially the volume of solvent and for most 
purposes, including those of this paper, V may be regarded as constant. 
We are clearly assuming here that, in addition to being dilute, the solutes 
are perfect .  

From (2) and (3) it follows that 

~ a ~ a , i x ~ =  ~ i  J . (4) 

Since (4) must be valid for all  values of the x j, we have proved 
S t a t e m e n t  1:  The conservation of mass requires that the matrix, A, of 

the set (2) be singular 

[A[ = l a , j l  = 0 .  (5) 

The linear dependence of the rows of A, or of the determinant [ali], is 
expressible in terms of posi t ive  constants: 

Z a ia i i  = 0 , j 1 , 2 , . . . , n 

(6) 

a l > O ,  i = l ,  2 , . . . , n .  
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From (6) it is evidently impossible that all of the a~j be of like sign. A 
more restrictive statement regarding the signs of the a~. can be derived as 
follows. The concentrations x~ are, of necessity, non-negative. Further, 
their initial values are otherwise arbitrary. Let the initial conditions be 

xj(0) =#jmx ~ j =  1 , 2 , . . . , n ,  (7) 

where ~j~ is the Kronecker delta. Then, from (2), the initial rates are 

Jci(O) =aimx ~  i=  1, 2, . . . ,  n .  (8) 

The implication of (7) and (8) is that if ar < 0, i # m, then x~(t) < 0 
for some t > 0. The time, t, is of course to be reckoned non-negative. Thus 
(6), (7), and (8) lead to 

Statement I I :  The requirement that  the xr be non-negative demands 
that the off-diagonal elements of A be non-negative 

ar i # j ;  i , j = l ,  2 . . . .  , n .  (9) 

This requirement, with that of the conservation of mass (Statement 1), 
implies that the diagonal elements of A are non-positive: 

a,= i= 1, 2,..., n. (IO) 
a i  i # l  

In particular, if any a ,  vanishes the column vector, in A, in which that 
element stands is the null-vector and the ith species is an inert solute with 
respect to the others. 

Statements I and I I  severely restrict the possible physical interpreta- 
tions of the set (2). A simple argument supports 

Statement I l l :  If (2) describes a chemical system in which mass is con- 
served, the only physical interpretation of (2) is that each of the chemical 
species, X~, is stoichiometrically converted to, and formed from, the others. 

For (2), (9), and (10) state that the rate of change of the ith species is 
the sum of one negative term and several positive terms. The negative 
term expresses that X~ disappears at a rate proportional to xi. By (10) 
and (2), this rate of disappearance is, on a mass basis, numerically equal 
to the sum of the terms contributed by X~ to the rates of appearance of the 
other species Xi, (j # i). The situation is most transparent when the 
special initial conditions (7) and initial rates (8) are considered. I t  is then 
evident that under the conditions that every x~ is zero except one, viz., 
x~, the ith species (i # m) appears, (9), at a rate proportional to x~ and 
the ruth species disappears, (10), at a rate proportional to x~. Moreover, 
by (8) and (3), the rate at which X~ disappears is, on a mass basis, the 
same as the sum of the rates at which the Xs, (j # m), appear. 
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The term "stoichiometrical ly ,"  in Statement I I I ,  is used to imply the 
absence of catalysis. I t  has been previously noted (Morales, 1944) that  
the interpretation of (1), as employed by Rashevsky and by Weinberg 
(references in introduction), is that of catalysis without combination. 
This interpretation is, as Morales noted, plainly unrealistic and has been 
here excluded. Further, it has been shown that negative catalysis (inhibi- 
tion) cannot be expressed by the linear set (2) ; for a negative, off-diagonal 
element in A implies the existence of negative concentrations (Statement 
H). 

I t  is well known from the theory of ordinary differential equations that 
the nature of the solutions of (2) is determined in general by the nature 
of the latent roots of A. Specifically, if the roots of A are distinct, the solu- 
tions are 

Xk ~ x i =  qlke , i =  1, 2 , . . . ,  n , (11) 
k=l 

where the q~k depend upon the initial conditions and upon the Xk which 
are the roots of the equation 

[ A - X / ]  = 0 .  (12) 

Here I denotes the unit matrix of order n. If one or more pairs of the ),s 
are complex, (11) can be written as a real, periodic function of t. It  is to 
be anticipated, on the basis of physical intuition, that for a closed system 
the real roots and the real parts of the complex roots will be non-positive, 
for the xdt )  must be bounded for all t. According to (3), Y,a~xi(t) = 
F, aix~ = constant is finite if the mass of the system is finite, and since 
every a; > 0, every x~(t) is bounded. But this is impossible unless the real 
parts of the roots of A are non-positive.* Moreover, we are insured by 
(5) and (12) as a direct consequence of the conservation of mass of a t  
least one zero root.t I t  is to be noted that condition (5) could have been 
secured by insisting upon the existence of non-trivial, steady state solu- 
tions of (2). This, however, would not furnish the restrictions a~ >0 ,  
i = 1, 2, . . . , n, of (6). Consequently, while (9) could be deduced, (10) 
would not follow. The conservation of mass insures, by virtue of (5), non- 

* Although this  reasoning is sufficient it  should be noted t ha t  f rom a known theorem 
[Brauer, 1946; theorem (1) p. 389] it  can be shown tha t  the  real par t s  of all roots are non-  
positive. 

t The  case of an r-fold zero root requires special at tent ion,  for such a root contr ibutes to 
each x~(t) a polynomial  of degree r -- 1. Unless  these polynomials are constants ,  the  xdt) 
cannot  be bounded.  I t  is shown later in this  paper  t h a t  A can be diagonalized. Therefore if 
zero is an  r-fold root the  polynomials  result ing therefrom are (positive) constants .  
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trivial solutions of the equations 

~ = ~ a ~ i x ~ - O  , i = 1 , 2  . . . .  , n ,  (13) 
i 

and in addition, by furnishing (6), affords restrictions (10). I n  general 

the relations (5), (6), (9), and (10) are not sufficient to completely de- 
termine the nature of the roots,* kj, of (12). 

By a well-known theorem (Aitken, 1948; Ferrar, 1941) the roots of a 
real, symmetric matrix are real. By another standard theorem (Aitken, 
1948; Ferrar, 1951) the roots of a matrix B are the same as those of A if 

V A  V -1 = B ,  (14) 

where V is non-singular but otherwise arbitrary. We therefore seek a 
matrix V such that B is real and symmetric. If Y is the diagonal matrix 

V =  [~jv~], (15) 
then, from (14), 

B = - [  a'~vi] (16) 
L Vj J 

and if B is to be symmetric it is required that 

b~i= a i s v~_  a~,v~_ bi , .  (17) 
v i vr 

If vk, k -- 1, 2, . . . , n, can be chosen such that (17) is satisfied and every 
b~. is real it will be established that the roots of A are real and that the 
solutions, xi( t) ,  of (2) are non-periodic.  

Equations (17), n(n -- 1)/2 in number, may be considered as a set, 
linear and homogeneous in the n variables uk = v~. We require solutions 
such that every uk < 0. The simplest manner in which to exhibit the re- 
strictions imposed upon the a~i by (17) is as follows. I t  is assumed, f o r  the 

present, that no aii vanishes. If a variable, u,, is arbitrarily chosen then 
there can be selected, from (17), n -- 1 equations 

a r j Y  r --~ ajrYj , j = 1, 2, . . , , n 
( i s )  

~ r  

in which ~r appears. If ~r is assigned the value unity, then the entire 
set of uj is given by 

at1 u j = - - ,  j =  1, 2 , . . . ,  n .  (19) 
a i r  

* If n = 2, it  follows a t  once t ha t  the  non-zero root, X = al, -]- a,~, is real and negative.  In  
the  case treated by  Opatowski (1945, 1946), A is a cont inuant  matr ix ,  every a~ = 1, and  (6), 
(9), and (10) are enough to determine t h a t  every  k~ is real and  non-posit ive.  
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If the vi from (19) are substituted into the remaining equations of (17), 

a~v~=a~iv3,, . j > i = l ,  2 . . . .  , r - l ,  r + l , . , . , n ,  (20) 

there results the set of relations 

a,~a~a~r = a~,aj~arj (2 1) 

which are identically satisfied if any two of the subscripts, i, j ,  r, are 
identical. 

For reasons immediately to become obvious we will refer to relations 
of the type (21) as cyclic relations. For brevity, (21) will be denoted by 
(r i j )  and a single member of the set will be called a 3-cycle. In general, a 
set of relations of the type (21) each of which involves a distinct sub- 
scripts, or a pairs of elements of A,  a ~ j . . ,  a . t a ,  = a j ~ . . ,  at, a , ,  will be 
denoted by (i j . . . .  s t), and a single member called a ~-cycle. I t  is clear 
that, in (18), r can have any value except j and hence in-(21), r can have 
any value distinct from i andj .  In fact it is simple to show* that  relations 

(21),,(n--�9 1) (n -- 2)/2 = ( n  - 1 )  in number where ( N )  is the 

of combinations of N things taken s at a time, imply the set ( i j  k), 

[i, j ,  k # r], which has 3 members. Therefore, of the total num- 

ber, ( 3 ) '  of 3-cycles, ( n - 1 )  2 are independent. I t  can further be 

shown that  the 3-cycles ( i j  k) imply the ~-cycles ( i j .  . . s t) , ,  ~ = 3, 4, 

Therefore of the total number, 2 ~ _ - ( n  -- ~ 1) - _ 1, of cycles n .  
/ 

there a r e -  ( n - 1 ) -  which are independent and this is the number of 
2 % 

3-cycles containing a selected subscript. 
Provided that  (21) can be satisfied, the problem of finding a matrix 

V such that  B, given by (14), is real and symmetric is mathematically 
solved. The elements of V are chosen as v~ = v ~ ,  with the v~ from (19). 
The elements b~s are then 

_ t/ar~ai,.'~ 112 
bii = aiit,~;-~.~] = (aljajl)  1/2 -;-- bjl .  (22) 

\ ~ r  r $ /  

That  they are real follows at once from (9). We now consider the physical 

necessity of (21). 
If the system is in the steady state, equations (13) apply and serve to 

fix the ratios of the steady-state values of the x~. But for a closed system 
the steady-state is the equilibrium state (cf. discussion in Hearon, 1950a, b) 
and in addition to the requirement that  every ~ ~ = 0 it is required that  

* This  is discussed in detail in a for thcoming paper. 
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every process be balanced by its inverse. This is the familiar principle 
of detail balancing (e.g., Mayer and Mayer, 1947; Onsager, 1931). This 
additional requirement leads at once to (21). For, select from the system 
any  three species Xr, X~, and X~, denote explicitly in the usual way their 
mutual interconversion, 

X ~ + - - + X ~  

t ~ X j + ~  (23) 

and consider these transformations to be unimolecular (ak = 1 for all k). 
It  is required that the rate of the process Xr --~ X~ be equal to that of 
the process X~ --~ Xr. According to Statement  H I  and the argument which 
immediately follows it these rates are a ~x~ and a~x~ respectively. Similar 
considerations apply to the other two distinct pairs Xr, Xj and X~, Xj. 
We therefore have as the conditions imposed by the principle of detail 
balancing, 

a i r x r  = a r i X  i 

arix~= aj~x~ I (2 4) 
a i i x l  = a i j x j  �9 

The product of the three relations (24) is precisely (21). Stated otherwise, 
the first two equations of (24) give a relation between xi and x~. But this 
relation must be the same as the third relation of (24) and this is im- 
possible unless (21) holds. It obviously must be true, and it is not difficult 
to show, that if equations (24) hold for all r, i, and j, the xk so determined 
must satisfy (13). We will show this for the general case. If (13) is written 
as 

a , x i +  ~ aijx~= O, i =  1, 2, . . . , n (25) 

then (10) and (25) give 

- - - - - a i a j i x  ~ = 0 ,  i = 1 , 2  . . . .  n .  (26) 

Clearly; (26) is satisfied if 

alai~x s=  ajaj~x~ , i, j = 1, 2, . . . .  n . (27) 

But (27) can hold only if the relations (i j k) hold. For (27) gives 

xj---- a i  a j i  a i  aik - - -  x l -  xk  ( 2 8 )  
ai  a i i  ak  aki  
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and also 

X i  a i  a lk  - x k .  ( 2 9 )  
~k  ak l  

I t  is manifestly true that  (28) and (29) cannot  hold simultaneously unless 
the 3-cycles ( i j  k) are valid. From (27), e-cycles, e > 3, can be derived 
in the same way. 

The presence in the system of cyclic chemical reactions, such as shown 
in (23), demands according to the pr inciple  of detail balancing, cyclic 
relations, such as (21). In general, if it is possible to begin with Xi,  con- 
vert  the species successively to e - 1 other species, and return to X~- 

X~< ~ Xk 

I 
there must  exist a e-cycle ( j  k . . . .  s),. If  every a~  is different from zero 
every species can be converted to and formed from every other. The 
system is then said to be completely cyclic, for every e-cycle, e ) 3, then 
exists. If  some of the a~j are zero the exact manner  in which (17) are to be 
solved will be different in each case. I t  will now be shown that  if zero ele- 
ments  occur symmetrically about  the main diagonal of A, (17) can be 
satisfied if certain e-cycles are satisfied. This is in contrast  to the com- 
pletely cyclic case in which all 3-membered chemical cycles containing a 
selected species, X,, exist and (17) can be satisfied by  (19) if all 3-cycles 
(r i j )  are satisfied. 

Let  (i7) be writ ten as 

a l j l ,  i = a i iV  i , i = l ,  2 , . . . , n  

i< j<n .  
(30) 

I t  is assumed that  if a~j = 0, then a~.~ = 0. Certain members  of (30) will 
then be identically satisfied. For definiteness, assume that  al~. = a i l  = 0 
for j = m, s, t. We exclude the trivial case (see Statement I I )  in which 
ao~, a , ,  and a,-, are zero for every i # m, s, t. Accordingly if vl is assigned 
the value unity, (30) with i -- 1 gives 

v~. = al--2 j # m, s, t (3 1) 
a j  I ' 

and there are, among the remaining equations of (30), three which de- 
termine vi, j -- m, s, t. Assume that  there is an r < m, s, t such that  the 
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members of (30) with i = r,  j = m ,  s,  t are not  indentically satisfied. Then 
(32), 

alrarj 
v j =  ~ = m ,  s , t ,  (32) 

arlajr  

and (31) comprise a complete set of vi. The remaining members of (30) 
with i = r determine the 3-cycles (1 r j ) ,  j ~ m ,  s,  t.  Now for all k such 
tha t  vk is given by (31) and ak j  ~ O, j = m ,  s,  t,  the members of (30) 
w i t h j  = k, i = m, s, t, together with (32), determine the 4-cycles (1 r i k), 
i = m, s, t. The members of (30) with j ~ m, s, t, together with (31), 
determine the 3-cycles (1 i j ) ,  j ~ m ,  s ,  t. The extension to the general 
case is simple: In general, (31) may  fail to determine any  number of vs. 
The condition on (31) is t h e n j  ~ m ,  s ,  t , . . . ,  p .  If  there is an r such tha t  
(32) determines ~j, j = m ,  s ,  t, . . . , p ,  the above argument  goes through 
with the triple of indices, m ,  s,  t, replaced everywhere by the arbitrary 
number (~< n - 2) of indices m ,  s,  t, . . . , p .  

If there is no s i n g l e  value of r such tha t  the members of (30) with i -- r, 
j = m ,  s ,  t, . . . ,  p are not  identically satisfied there are two major possi- 
bilities: 

(i) If  values of i, (say i = Rj, j = m, s, t, . . . ,  p) can be found such 
tha t  the members of (30) with i = Rj  and j = m, s, t, . . . ,  p determine 
vi, j = m, s, t, . . . , p where Ri may  be different for e a c h j  and i s  n o t  o n e  

o f  the  se t  m ,  s,  t,  . . , p the argument  is as above, with obvious modifica- 
tions. In particular, in (32) j = m ,  s ,  t , . . . ,  p and r is replaced by Rs. 
Then (30), w i t h j  = k ,  i = w ,  s,  t, . . . , p ,  together with (32), determines 
the 4-cycles (1 R~.] k ) ,  j = m ,  s ,  t, . . . , p for all k such that  ~k is de- 
termined by (31). 

(ii) There is always an r such tha t  one of the vi, j = m, s, t, . . . , p, 
is determined by (32). I t  is no restriction to suppose tha t  pm is so de- 
termined. Now it may  be tha t  the members of (30), w h e n j  has one or more 
of the values s, t, . . . ,  p, are identically satisfied unless i belongs to the 
set m, s, t, . . . , p. For example it may  be tha t  the only member of (30) 
which serves to determine va is tha t  with i = m, j = s. Then 

alrarmams 
v ,  - . ( 3 3 )  

($rlamrasm 

The remaining v~, j = t . . .  p may  or may  not be determined by (30) 
when i does not  belong to the set m ,  s ,  t , . ,  . ,  p .  If they  are, these re- 
maining ~. are determined as in (i) above. If they are not, these remaining 
~ are determined by formulae which are extensions of (33). For example, 



132 JOEN z. BEARON 

if gt is determined by (30) with i = s, j -- t, then 

vt = al ,  a , . , .a~ .a , t  (3 4) 
a r l a m r a s m a t s  

and if this situation repeatedly occurs, then finally 

al ,a  . . . . .  all, (35) 
pp == a r l a m r  . . . a p t  ' 

where the products such as a1~a . . . . .  a ~  can contain no more than n -- 1 
elements of A. The equations, if a n y  remaining of (30), together with 
(31), (32), or its modification in (i), (33), , . . ,  (35) determine various 
~-cycles where certain values of a may not be represented. 

Evidently, if there are no equations remaining in (30) there are no 
conditions (in the form of cyclic relations) upon the a~. and this will occur 
when there are n ,  I equations of (30) which are not identically satisfied. 
This implies that when no chemical cycles occur in the system there are 
2(n -- 1) non-zero elements aii (this result is easy to  prove direct ly*) .  

Further, these elements are independent, for the principle of detail balanc- 
ing imposes no relations among them. A notable special case of this kind 
is that in which A is a continuant matrix: In (30), i = 1, 2, . . . ,  n - 1, 
and j = i -b 1. The system is a s traight  c h a i n  of consecutive reactions: 
X1 -~ X2 -~ . . . ~ X ,  (cf. discussion, Section 7 of this paper). 

The above assumption, that if a~. = 0 then aj~ = 0, can be justified 
on physical grounds: From (27), if the assumption were not  valid the 
equilibrium values of certain of the x~ would be zero. This is contrary to 
experience and implies that  certain equilibrium constants are infinite. 
Stated otherwise, it cannot be admitted that any chemical reaction is 
absolutely irreversible, in the k ine t ic  sense (cf. discussion Hearon, 1950a), 
for by well known thermodynamic principles (see discussion, Section 7, 
this paper) this implies that the standard free energy change of the re- 
action is infinite. Of course, the assumption a,, = a,~ = 0 amounts to 
the physical assumption that the transitions X~ --~ X, and X, --+ X~ do not 
occur. This is a familiar assumption which for practical purposes can be 
justified on the basis of experience although (Mayer and Mayer, 1947) in 
rigorous principle it is never valid and, by the same argument, no system 
has ever been observed to come to complete equilibrium. 

* Denote  by  N(u)  the  number  of non-zero aii  for  a non-cyclic sys tem of n species. Then ,  
since each addit ional  species contr ibutes  two addit ional a~i, N ( n  -k  1) --  N ( n )  = 2. The  
solution of this  difference equat ion is N(n)  = 2u "Jr o~(n),  where ~(u) is periodic with period 
one. Evident ly  N(2) == 2. Therefore ~(2) = r -- - -2  and N(n)  = 2(n --  1), which was to 
be proved. 
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The important features of the above arguments may now be sum- 
marized as 

Statement IV:  The roots of the matrix A are real and the solutions x~(t) 
of (2) cannot be periodic functions of time. The requirement of finite 
equilibrium constants, or standard free energy changes, for the allowed 
individual reactions of the system implies that zero elements, a~i, if any, 
occur symmetrically about the main diagonal of A. Then, the set (30) 
can always be solved in such a way that  a matrix V, given by (15) with 
vi = x /~ ,  converts A, by a similarity transformation, into a real, sym- 
metric matrix. For, if there are only n -- 1 equations the us are given by 
equations such as (31) through (35) and are, by (9), necessarily positive. 
If there are more than n -- 1 equations the set (30) is consistent and 
equations such as (31) through (35) represent acceptable solutions if cer- 
tain cyclic relations are satisfied. That  these relations be satisfied is de- 
manded by the principle of detail balancing. 

I t  is now simple to prove that the roots of A are non-negative. In order 
to achieve this, and for later purposes, we prove the following 

Theorem: Consider the real, symmetric matrix C. Let there be real 
quantities yk and o, such that 

"~kr 0 ,  k = 1, 2 , . . .  , n (36) 

Then if 

and 

~'rc,.= p,, s = 1, 2 , . . .  , n .  (37) 
r 

c,j >.0, i # j ;  i , j = l ,  2 , . . . , n  (38) 
"Yi'~j 

o~< 0, i =  1, 2 , . . . ,  n ,  (39) .y~ 

where at least one inequality in (39) holds, the matrix C is negative definite 
and, if the inequalities in (38) and (39) are reversed, C is positive definite. 
If the equality in (39) holds for every i, C is semi-definite. 

Proof: Evidently, if the equality in (38) holds for all distinct i and j ,  
the theorem is trivial, for C is then diagonal and the ratios p~/~/r are, by 
(37), the diagonal elements c,.  We exclude this case. 

The quadratic form Q(y, y) associated with C can be written as 

i i ~ i  i 
(40) 
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From (36) and (37), the diagonal elements of C are 

Ckk---- - - l ~ T r C r ~ ' + ' P k ,  k = l ,  2 , . . . , n .  (41) 
"Yk r # k  "Yk 

If (41) is substituted in (40) and the symmetry of C is explicitly invoked, 
there results 

2 (TiYl -- 71Yi) 2 
2Q(y, y) = 2 ~  myl Z ~ c~i (42) 

�9 "Yi  i i " Y i ' Y ]  

Under the conditions of the theorem the double summation is non-nega- 
tive and the single summation is non-positive for all real sets of values 
of the yi. If not every pi is zero Q(y, y) is negative definite. Otherwise it is 
negative semi-definite. The situation is equally obvious when the in- 
equalities in (38) and (39) are reversed. 

As discussed above, the matrix B determined by (41) is real and sym- 
metric if V is properly chosen. Further, by (17) and (9), b~j > 0, i # j. 
There exist real quantities/3~, all different from zero and of like sign, such 
that 

/~ib~--0, j = l ,  2 , . . . , n  (43) 
i 

since, by (6) and (17), the choices /~, = a~/vi meet these conditions. 
Applying the theorem to the matrix B, condition (38) is satisfied, the 
equality of (39) holds for all i, and B is negative semi-definite. Thus we 
have 

Statement V: The latent roots of the matrix A are non:negative. We 
will refer to a matrix which possesses the properties described in State- 
ments I through V as an admissible rate matrix, or simply an admissible 
matrix. 

4. The open, uniform system. I t  will be realized that if the rates of pro- 
duction (per unit volume) of the chemical species of an open system are 
linear combinations of the concentrations, the matrix of the coefficients 
of these linear combinations must be an admissible matrix. For the sys- 
tem becomes closed if it is required that the flux of every species vanishes 
at the surface of the system. I t  is easily seen that the equations of con- 
tinuity then reduce to (2), if in (2) every xi is replaced by the (spatially) 
mean value of the concentration of the ith species. The arguments neces- 
sary to establish the properties of an admissible matrix can be carried 
through without further change. The operation of closing the system (e.g., 
by surrounding it by an impermeable envelope) cannot effect the elements 
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of the matrix if we make the usual restriction that  only isothermal sys- 
tems are considered. 

Consider an open system for which the spatially uniform internal con- 
centrations are x~(l) and the external concentrations, Spatially uniform 
and constant with respect to time, are C~. Then the set (2) is replaced by 

4,= ~ (ai i - -p , i )  x i +  ~p,~C~o, (44) 
i i 

where the plj are the products of the generalized permeability coefficients 
(Hearon, 1950b) and the surface-volume ratio of the system. If the simple 
laws of diffusion are assumed to apply, then P is the diagonal matrix 
[ ~ p ~ ]  and if A is an admissible matrix the roots of the matrix A - P are 
real and non-positive. A matrix V can be found, precisely as discussed in 
Section 2, such that  V(A -- P ) V  -I = B -- P is real and symmetric. The 
permeability coefficients are non-negative. Therefore P is positive definite 
or semi-definite and B - P is negative definite. 

The time course of the approach of the xl to their steady-state values is 
governed by the solutions of the homogeneous equations associated with 
(44) and we have shown that  these solutions cannot be periodic if P is 
diagonal and A is admissible. 

5. The open, non-uniform system: approximate methods. If the simple 
laws of diffusion are assumed and the diffusion equation is approximated 
in t h e  manner suggested by Rashevsky (1940, 1948c), then (44) is re- 
placed by 

d ijA~ ) ~?i+A~ Co, (45) d-t ~ ? ~ = ~  (a i i - -~  -1 -1 i 
i 

where s is the mean concentration of X~, A~ is a constant, and Cg is the 
unperturbed external concentration. The argument of Section 4 applies: 
P is replaced by the diagonal matrix [~iffM] and A~ > 0. 

Therefore accepting the approximation method of Rashevsky, we 
have only to insist that  A be admissible to insure that  the s are non- 
periodic functions. 

A refinement of the standard approximation method has been suggested 
(Rashevsky, 1948b). The system is divided into regions and the diffusion 
equation for each species is approximated in the manner of the House- 
holder tri-axial cell (Householder, 1942). If by C~ is denoted the mean 
concentration of the i th  species in t h e j t h  region, the differential equations 
are 

(Cr - C~) (4 6) C; = ,_~ ~ ;  + ~ m~r , 
k=l  r~O 
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where it is understood that  there are p regions and n species and (46) is 
a set of n p =  N equations. Here, m~) is a parameter characteristic of 
regionsj and r and of the substance X~. The zeroth region is the environ- 
ment and M~0 will depend also upon the permeability of the surface of the 
system. The quantities C~ are the unperturbed external concentrations 
and are to be regarded as constant. Clearly, if regionsj and k are not con- 
tiguous then m ~ ik = m~i = 0 for all i. I t  is not difficult to see that if new 
variables yk are defined by C~ = y(j-1)+r i = 1, 2, . . . ,  n , j  ~ 1, 2, . . .  , p ,  

then the differential equations for the yk, k = 1, 2, . . . ,  N ,  can be 
written as* 

fj = R y +  Y .  (47) 

Here, R is the partitioned matrix 

E1 M12 Mla �9 �9 �9 Mll, 

M21 E2 M23 �9 �9 �9 M~, 
R =  (48) 

M~I M~ . . . .  

where the sub-matrices, square and of order n,  are 

E~ = A -- [~-m~], (49) 

M~j= [~sm~j], (50) 

the quantities m~ being defined as 

ms = msr. (51) 
r~0 

By y is denoted the column vector of the yk and the constant column 
vector Y is 

Y = Mj0Co, (52) 

where Co is the column vector of the C~. Now it is possible to construct a 
partitioned matrix T = [~iT,] such that T R T  - I  is real and symmetric, 
provided that A is admissible. The sub-matrices on the diagonal of T R T  -~ 

are T , E , T - ~  I and, by (49), they are symmetric and real if T i  = f W ,  where 
f~ is any real, scalar factor and V is the matrix discussed in Section 2. The 
sub-matrices in the off-diagonal positions of T R T  -1 are V ~ M ~ V ~  ~. Since 
the M~j are diagonal, the product T R T  -1 is symmetric if T ~ M ~ T 7  ~ 

* It  is to be noted that  in equation (3) of Rashevsky (1948b) the signs of the flow terms are 
incorrect and that  in his equation (5), which is equivalent to our (47), the  constant terms have 
been omitted. 
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= T j M ~ , T ;  1, or, since diagonal matrices are commufitive, if 

~M f i  i~ = f~M~i �9 (53) 

If the volume of the ith region is r ~, it is clearly a physical necessity that 
r~m~j = r~m~, for all i, j,  and k, and hence from (50) 

r i M i j = r ~ M j ~ ,  i , j = l ,  2 . . . .  , p ;  i # j .  (54) 

According to (54), if f~ = V'~,  k = 1, 2, . . . , p, then (53) is satisfied. 
Thus it has been proved that the roots of R are real. The vector y can- 

not be a periodic vector. Straightforward application of the theorem of 
Section 2, with due respect for (49), (50), and (51), shows at once that the 
roots of R are negative. 

6. The open non-uni form system; general case. If the general case 

i 2 OC~ k - l ,  2, . n (55) Dk~V C~+ ~ ak~C~= Ot ' "" ' 
i i 

is considered, a definite answer to the question of the periodicity of the Ck 
can be supplied only if the matrix, [D~], of the diffusion coefficients is 
diagonal. I t  can then be shown that i] [ali] is an  admissible matrix  the 
eigen-values of the set of Sturm-Liouville equations to which the Laplace 
transform of the set (55) gives rise are all real. This implies that the C; 
cannot be periodic functions. While this demonstration depends directly 
upon the properties of an admissible matrix as defined here, it otherwise 
involves considerations very different from the subject matter  of this 
paper. These results, which in no way depend upon the geometry of the 
system, will be included in a forthcoming apper (Hearon and Sangren, 
1953). It  may be noted in passing that it would indeed be a severe indict- 
ment of the approximate method (Rashevsky, 1940), and the refinement 
thereof (Rashevsky, 1948b), if (55), with D~i = 0, k # j, gave rise to re- 
sults basically different from those of Section 5. 

The nature of the steady-state solutions of (55) is easily seen in the 
case of spherical symmetry when D/ki = 0, k ~ j .  For the steady state, 
(55) becomes 

D V 2 C +  A C  = 0 ,  (56) 

where D is the diagonal matrix of the diffusion coefficients and C the 
column vector of the Ci. The transformation 

C = a t  (57) 
G = V-1S  , 
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where V is the matrix discussed in Section 2 and S is the matrix which 
diagonalizes the symmetric matrix VA V -1, gives 

D V ~ + A ~  = 0 ,  (58) 

where A = [~,),j] and the ),i, the roots of A, are non-positive. The solu- 
tions of (58) are 

sinh ai r 
~ = K ~ - -  i =  2 ,  3 . . . .  , n 

r (59) 
~1 = K1  , 

where ~s = v ' -  ki/D~ and the roots are labeled so that kl - O. Therefore, 

C~ = ~ g ,~j  

(60) 
= KI+  ~ gijK~ sinh ~j.r. 

T 

The special solution, ~1, of (59) could have been anticipated. For if A is 
singular, some linear combination of the Ci is a harmonic function. If A 
is an admissible rate matrix this linear combination is aDC where a is the 
row vector of the ak of (6). This statement, of course, does not depend 
upon D being diagonal. 

7. Discussion and summary. From the standpoint of conventional 
chemical kinetics the arguments upon which Statements I a n d / / a r e  based 
are unnecessarily involved, for if the rate matrix for a set of chemical reac- 
tions be written down the contents of these statements can be verified by  
inspection. The arguments are such, however, as summarized in Statement 
H I  and the discussion thereof, that if a formal description is attempted in 
terms of linear equations then the only possible interpretation is the 
stoichiometrie conversion of the X~ one into another. 

The physically simple condition of the conservation of mass is mathe- 
matically a far-reaching one, for this condition alone is sufficient to estab- 
lish that IAI = 0, that for any g ivenj  the a~. cannot all have the same 
sign, that the real parts of the roots are non-positive (see first footnote) 
and that there are no pure imaginary roots (see below). The fact that con- 
centrations are positive is sufficient to fix the signs of the a~j, i # i. These 
two conditions are sufficient to insure the reality of the roots for the case 
n = 2 or for any case in which there are only 2(n -- 1) off-diagonal non- 
zero a~s. In fact, if n = 2, the conservation of mass completely deter- 
mines the character of the roots for one root is zero and complex roots 
must occur as conjugate pairs. 

In general, the principle of detail balancing must be invoked in order to 
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prove the reality of the roots. That  they are non-positive then follows 
from the conservation of mass by physical reasoning, by the theorem of 
A. Brauer (1946) or by the theorem of Section 2. A necessary condition 
for applying the principle of detail balancing is that there exist non-trivial 
solutions of equations (13). As noted, this is insured by the conservation 
of mass. It  might be questioned that these solutions actually correspond 
to stationary values for the x~, i.e., if pure imaginary roots occur the 
x~(t) might oscillate in such a way that solutions of (13) exist although 
the system is not actually time independent. If the units of x~ are chosen 
such that every ar = 1, the theorem of Brauer (lot. cir.) may be stated as 
follows: Every root of A lies in one of the circles in the complex plane 

with centers at a ,  and radii ~ ]  aii. Equations (10) then show that these 
i#1 

circles lie in the left half-plane and are tangent to the axis of the imagi- 
naries at the origin. There are, therefore, no pure imaginary roots, the real 
parts of the roots are non-positive, and the xi(t) approach true steady 
state values as t --~ ~o. 

From the practical point of view the argument leading from (30) to 
(31)-(35) perhaps requires additional comment. The hypothesis upon 
which the argument is based means physically that if the transition 
xr--*x,  occurs (i.e., a,r > 0) then the reverse transition occurs also 
(at, > 0). The value of ars may be extremely small and for certain prac- 
tical purposes it may be permissible to neglect ars with respect to a** or 
with respect to any other element of A. Mathematically, the hypothesis 
requires only that a,r/ar, be finite; the actual numerical value is irrele- 
vant. I t  is well known that for practical purposes certain reactions may be 
considered kinetically irreversible. I t  cannot, however, on this basis be 
asserted that the hypothesis is invalid. 

The history of the cyclic relations of Section 2 is of interest. Over fifty 
years ago R. Wegscheider (1901) published a remarkable paper in which 
it was pointed out ~hat in certain cases the mass-action expression as ob- 
tained from chemical kinetics does not agree with the classical law of 
mass-action as derived from thermodynamics unless a certain relation 
among the rate constants can be assumed. This relation corresponds pre- 
cisely to a 3-cycle as defined in Section 2. This situation was long known 
as "Wegscheider's Paradox." Nearly a quarter of a century later G. N. 
Lewis (1925) showed that this "paradox" could be resolved at once by 
the principle of detail balancing. This seems to be the first instance of the 
application of the principle, well known in statistical mechanics, to purely 
chemical considerations or to physicochemical processes such as phase 
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changes. Six years after the appearance of the Lewis paper, L. Onsager 
(1931) discussed the 3-cycle as an example of the now famous Onsager 
reciprocal relations. He stated that  such relations are not a thermody- 
namic necessity. However, the free energy chanage for conducting a 
chemical reaction around a closed cycle is of necessity zero. Further, this 
free energy change is equal to the standard free energy change for the 
process. If this quantity is taken to be --RTlnK, where K is the equi- 
librium constant for the cyclic reaction, it is clearly necessary that K -- 1. 
But K is the product of the equilibrium constants for the individual steps 
in the cycle and K -- 1 is just a ~-cycle, as defined in Section 2, if there 
are ~ steps in the cyclic reaction. The cyclic relations could have been 
derived in this manner. This argument requires however the usual as- 
sumptions regarding the relation between an equilibrium constant and 
certain linear combinations of the standard chemical potentials as well as 
the relation between the equilibrium constant and the forward and re- 
verse rate constants. While these assumptions are universally granted, the 
latter may be said to lie outside the framework of classical thermody- 
namics. 

The relation between the present work and certain previous investiga- 
tions of periodic reactions requires little discussion. The case of Section 4 
is a generalization of that treated by Rashevsky (1938, 1948c). The first 
case of Section 5 is a generalization of that treated by Weinberg (1939), 
the Second case a generalization of that treated by Rashevsky (1948b). In  
the more general case treated by Weinberg (1938) the characteristic equa- 
tion is I A - XD[ = 0, where D is the diagonal matrix of the diffusion 
coefficients and A and D are of order 2. It  follows at once that if I A I -- 0 
one root is zero. The other is necessarily real, it is X = an/Dn + a22/D22 
and therefore negative. In this case, then, the conservation of mass is 
definitive as regards the reality of the roots. 

I t  is worth noting here that  although the assumption of linear differ- 
ential equations is very restrictive for general chemical systems there is a 
large class of cases in which this is valid. The concentrations of isotopical- 
ly tagged species will obey linear equations provided that they are present 
at tracer level. If the system is stationary with respect to the normal 
species the coefficients in these equations are constant. The formalism of 
this paper then is applicable to isotope kinetics. In particular the second 
case of Section 5 corresponds to the diffusion of n species between p com- 
partments with general chemical reaction in each compartment. 
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