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In th is  cont inuat ion  of a prev ious  report  i t  is  shown how the Vol ter ra  
populat ion dynamics ,  which under l i es  the s t a t i s t i c a l  theory,  can be ba sed  
on a va r i a t iona l  pr inc ip le ;  how the dynamics  can be gene ra l i zed  a s  re-  
gards both the behavior  of to ta l  popula t ions  and migrat ion phenomena;  
and how many d i rec t ly  obse rvab le  data ,  such  as  ampl i tudes  and fre- 
quenc ie s  of o sc i l l a t i on  of a popula t ion,  fit  into the s t a t i s t i c a l  theory and 
can t e s t  it.  Such a t e s t  i s  carr ied  out in some de ta i l  us ing the fox-ca tch  
data  of El ton ,  with a c lear  ind ica t ion  that  the theory is  capab le  of com- 
prehending the major s t a t i s t i c a l  proper t ies  of populat ion- t ime curves .  A 
final  s e c t i o n  s k e t c h e s  an e x t e n s i o n  of the theory to cover  s ecu la r  va r ia -  
t ions  of ex terna l  condi t ions  such  as  temperature  of the environment .  

1. Introduction. In a previous report (Kerner, 1957) it was shown 
that the classical  Volterra equations, which provide a general, if 
somewhat oversimplified, dynamics of interacting species, lend 
themselves to a statistical,  or thermodynamic, type of analysis 
comparable to that used for physical systems having a great many 
degrees of freedom (when the number of species is too large to 
allow any detailed description of the individual population varia- 
tions). The analysis led to a number of experimentally verifiable 
or deniable consequences and contained an unforced statement of 
an important proposition in mathematical ecology, founded on ob- 
servation in the field, due to Corbet, Fisher, and Williams. 

The present note aims to amplify the prior one. First, some 
general remarks on the Volterra equations will be made, and a pro- 
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posal advanced to remedy the serious omission, in the Volterra 
theory and in other demographic theories, of an account of popula- 
tion variations in space  as well as time. Then it will be shown 
how the numerical parameters entering the Volterra equat ions--  
w:hich play the role of "microscopic" parameters in the thermo- 
dynamic view, much as atomic masses are the microscopic con- 
stants of gas theory--may be fairly directly observed within the 
large biological ensemble and not through the practically impos- 
sible observation of isolated pairs of interacting species. Next 
comes a demonstration of how some types of statistical data on 
selected populations, principally amplitudes and frequencies of 
oscillation of populations, fit into the thermodynamic scheme and 
constitute tests for it. 

Following this is an actual, if somewhat rough, test of several 
theoretical conclusions against ecological field data. 

Throughout, our tool will be the Gibbs canonical ensemble to- 
gether with the assumption of ergodicity: t ime averages  ~ ensemble  

averages .  The main viewpoint is that the oscillating populations 
of some few out of a great many interlocking species are among the 
primary ecologic observables that must be fitted into a general 
scheme. The question is, What do such population data mean? 
What elements in the data are not simply of empirical interest but 
are predictable and co-related? What, after all, is there to be 
learned from a population-time curve looking like an overblown 
picture of random noise? The statistical Volterra mechanics gives 
some clear and comprehensive set of answers a priori. If the an- 
swers are not correct, one has at least something definite to rebut 
and perhaps a point of departure for better theorizing. 

In the concluding section there will be discussed briefly the 
non-stationary ensembles suited to the study of quasi-static alter- 
ations of external variables (such as physical temperature) affect- 
ing biological associations. 

2. General i t i es  on the Volterra mechan ic s .  Volterra's (1931, 
1937) theory of interacting populations is essentially constituted 
by the system of differential equations, 

1 
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for the population numbers N of the coupled species ,  with 0r = 
- c c r .  Introducing the stationary state dNe/dt = 0 as in the earlier 
report and again calling qr the stat ionary population levels sat isfy-  
ing 

, ~ ,  + ~ cr N = O, (2) 
$ 

we have shown that equation (I) may be cas t  in the form 

with 

,gG 

$ S 

v - log Nr a~r ; Ysr ~ - Yrs ; 

G - x ~ (e r _ % ) ;  (~- _=- q~ t~)" 

As previously, it will be assumed that equations (2) have unique, 
positive solutions and hence that there is a n  even number of spe- 
c ies  in associat ion and that not all e are of like sign. T h e  quantity 
G is a constant  of the motion holding the cardinal position in the 
present  thermodynamic development that the Hamiltonian holds in 
the analogous physical  problem. 

We should like to show that equations (3) are comprehended 
under a variational principle similar to Hamilton's principle in 
mechanics.  This should not be confused with Volterra 's  (1937) 
variational principle for equations (1), which hinges on the clumsy 
artifice of wri t ing these equati:ons a s  second-order equations in the 
variables X r = j Ntat. 

Consider the function 

1 
A= ~ E E F~iv~i- G' 
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where the matrix of Fq  is antisymmetric and non-singular (there- 
fore, of even order) but otherwise unspecified for the moment. The 
vanishing of the variation of the time-integral of A, with fixed end- 
points, i .e. ,  

ftl  t2 A d t  - O, (4) 

occurs just when the v ' s  satisfy the Euler-Lagrange equations 

d dA OA 

dt  O~ k Ov k 

or, explicitly, 

1 . 1 OG 

i ] 

=0 .  

Replacing rik by -I~ki, and then the dummy index i by the equally 
dummy ], this says 

OG 

i 

Let us invert this sot of equations, solving for vr : 

OG 
Z cr-'),s 
$ 

Now if F is antisymmetric, so also is F - l ;  for (P -1 ),s ~ (s, rminor 
of F), and if rows and columns of this minor are interchanged, one 
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gets a determinant, D, identical with the r, s minor, A, except that 
its elements have indices the reverse of those of A; hence, if these 
indices in D are indeed reversed, one gets (-1)D coming to be the 
same as A, since the order of D is odd. 

Thus equations (5), which are equations (3) with Y~r disguised 
as (F -1)~s, are summarized in the " leas t -ac t ion"  type of varia- 
tional principle of equation (4). Not only is f Adt stationary about 
(5) for first-order variations in the ~'s; it is also stationary to the 
second order of varied ~'s. We have, in fact, calculating the varia- 
tion of the "ac t ion"  to the second order, 

f aG 

1 02G 

The first integral on the right vanishes, as above, just if (5) holds. 
The second similarly vanishes upon writing the first member of the 
integrand as 

1 1 32G 

i ] k l 

- - 8  v l ~ v i = 

1 a2G 1 02G 

which cancels the second member identically. 

Following formally for a moment a classic pattern, the "momen- 
tum" conjugate to the "coordinate"  v k is 

aA 1 
Pk = O~ k - ~ ~ .  l-'ik vi ,  

i 
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and the "Eami l ton ian"  is 

1 1 

While in a purely formal sense  G may therefore be looked upon as a 
Hamiltonian, i t  must be recognised that the whole Hamiltonian 
procedure of dynamics is here nugatory, owing to  the  fact  that, to 
begin with, the "Lagrang ian"  equations ibk = OA/0v k are of the 
first  order. 

Turning now to a different matter, it  will have boon observed 
that no use has been made of any particular form for the primary 
integral, G, of the system (3). This invites some comments on 
generalizations of the Volterra scheme.  

Let  us hold to the aim of preserving a bas ic  conservation law, 
which i n  any subsequent  s ta t i s t i ca l  mechanics would be of funda- 
mental importance. Voltorra, in his 1931 monograph, had already 
extended his original equat ions (1) to embrace the wider type of 
conservation,  E ~hi(Ni) -- c o n s t ,  for nearly arbitrary 0 ,  of which 

(referring just  to the original equations) is but a particular ex- 
ample. 

It is clear,  however, from the standpoint of equations (3) that an 
appreciably more general type of conservation than Volterra 's  is at 
hand. Thus,  adhering only to the antisymmetry of the y r s - - en -  
gondered init ially by the idea of reciprocal  binary interactions be- 
tween spec ies  but now not necessa r i ly  limited in meaning by this 
c o n c e p t - - i t  is seen that G(v l ,  ~v2, . , , ,  vn) = c o n s t a n t ,  i r respect ive 
of both the functional dependence of G on the v and, of course,  of 
the dependence of the v on the population numbers N. Folterra 
conservation,  in this view, is simply the special  choice G :~ 

Gi(v i )  , v~ = v i (Ni ) .  The Yrs here, of course ,  need not be constants  
but may be functions of the dependent  var iables  v. 

We may note in passing a character is t ic  t ime-reversal  symmetry 
of equations (3), namely, that if t-~ ( - t ) ,  the equations are un- 
changed if a lso  the signs of all Yrs are reversed,  meaning in the 
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original usage (Yrs ~ % s / f i r f i s )  a reversal  of the roles of predator 
and prey, thus a kind of biologic analog to the principle of dynamic 
reversibi l i ty .  The exis tence  of the integral G ref lects  this sym- 
metry in a manner akin to energy-conservat ion 's  mirroring the time- 
symmetry of Newton's  mechanics.  

It is well  to remember at this point the original purpose of hav- 
ing transferred from N-space to the more abstract  v-space:  it was 
to make v-space a sa t i s fac tory  phase space in which Liouvi l le ' s  
theorem holds and Gibbs ensembles  may be studied.  Sufficient and 
necessa ry  for the Gibbs s ta t i s t i ca l  mechanics are a mechanics,  
equations (3), admitting a Liouvil le theorem and a sui table  con- 
stant  of the motion, plus great ignorance otherwise.  Let  us see  
about Liouvi l le ' s  theorem in the context of the generalization of 
V olterra, the other requirements having been met. For a Gibbs 
ensemble of phase points in v-space,  the equation of continuity is 

Op 
- - +  div pV = 0, 
at  

o being the densi ty,  V the veloci ty  of phase points,  reckoned as 
point-functions in the s p a c e .  Expanding the divergence,  

ap Dp 
- - + V . V p + p  d i v V  • - - + g d i v V  •O. 
Ot - - D t  - 

We can have Liouvi l le ' s  theorem, DO~Dr = 0, just  if div V .. 0: 

a~, a• aG a~G 

Ov r Ovs 

This may be counted as a condition on the y or G or both. It is 
seen to be not strongly restr ict ive;  for example, it suff ices  that, 

with arbitrary G, Yrs ( v l ,  v2, " ' "  , Vn) be independent of v r and v s .  



224 EDWARD H. KERNER 

The posit ion al together is that the Volterra scheme may be sub- 
s tant ia l ly  broadened, and without harm to s ta t i s t i ca l  mechaniza- 
tion. In i l lustration of the poss ib le  utility of the extra breadth, 

note that the canonical distribution retains the form 

r  
p = e  8 �9 

Previously ,  G was fixed as in equation (6) and so  gave us a den- 
si ty-in-phase,  in which the components Gr(V) were s t r ic t ly  separa-  
ted, so that the probability dens i t ies  for the separate  spec ie s  were 
independent and of the form (returning to N-space) 

Xr- ' "r"r (7) P (n r ) d n r ~ n r e-  d n r 

( n  r = N J q r ;  x r - re/0; 0 = " t empera tu re"  of the associa t ion) .  Now, 
however, we may reiect  the independence by writing, for instance,  
O = ~ E gr(Vr) h s (q)s) and v s = v s ( N  s ) ~  or G = E Oi(Vio ) and v i = 

v i ( N 1 ,  . . .  , N n ) ;  or we may keep the independence (very convenient  
mathematically), O = E Oi(q)i) and v i = q)i(Ni), such as to give any 
desired form to the probabili ty law of type (7), according to what 
may be dictated by observat ional  experience.  This is to s a y - -  
under the ci rcumstances of observat ion in the field, where it is 
pract ical ly out of the question to discern directly whatever micro- 
mechanics is actuating the population fluctuations but rather where 
probabili ty s ta tements  like (7) are in the o f f ing - - tha t  one may 
poss ib ly  glean a clue to the mechanics from just  such s ta tements ,  
and having the mechanics is to have a bas is  for suggest ions  as to 
further observat ions and otherwise unforeseen connections among 
them. Naturally, it cannot be expected that the whole mechanics 
is inferrable from the s t a t i s t i c s  alone; and it is certainly arguable, 
to begin with, that a differential  mechanics can hold in any str ict  
sense ,  though differential equations have had a value in the pas t  
and are apt to be useful  for some time to come. The point is that 
the sense  need not be so s t r ic t  in the light of the coa r seness  of 
the observat ions;  a s t a t i s t i ca l  mechanics stemming from a crude 
mechanics may well be suff icient  for the data  and for the predic- 
tion of data.  " A  tous ces  devoloppements thdoriques, quel les  con- 
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firmation l'exp~rience va-t-elle? Les v~rifications e~p~rimentales 
sont ~ peine commencdes"; this holds nearly as t~uly now as  it 
did in 1931. 

For the present we shall keep to the original Volterra scheme 
because it contains the result (7) having observational basis; be- 
cause it proceeds from reasonable, if simplified, a priori considera- 
tions; and because it is relatively tractable mathematically. 

3. Hint to a theory of migration: migration as a generalised dif- 
fusion process. Many demographic theories eschew a space-time 
description of populations, confining their attention principally to 
time-variations of population numbers. We should like here to 
sketch a few ideas which may give some account in general terms 
of migrational, as well as temporal, behavior; the ideas are not all 
novel qualitatively, but perhaps their quantitative exposition here 
may be. This stands as something of a digression from the statis- 
tical-mechanical discussion (as yet) but seems close enough to our 
previous general ecological considerations to warrant presentation 
in this place. 

The basic assumption is that, looking at a number of species 
distributed over a large region of space, it is possible to select  
much smaller regions hr ~ h x h y h z  containing AN~ individuals of 
species i such that s may be sensibly reckoned on an ap- 
propriate scale of length as a scalar point function, the population 
density pt(r, t) of the ith species (r denotes generic position x,y,z  
in space). Since the organisms comprising each species are gener- 
ally in motion of one sort or another, we also introduce the current den- 

sity, ii(r, t), ,such that the net number of i 's per unit time crossing 
the small area AS, having unit normal vector ~, is i �9 n AS. In other 
words, the view is that of the bacteriologist  looking at a broth by 
eye or through the low-power microscope or of the aviator scanning 
in some perspective the field life below from his high perch. 

It is barely more than a truism now to write an equation of con- 
tinuity: let V be a large enough volume bounded by the surface S, 
and R~ the net rate of increase, per unit volume and per unit time, 
of species i due to its self-propagation and interaction with other 
species.  Then (~ denoting the outward normal to ~) 

O--t Pi dr = ji.(-r~) dS + R~dr, (8) 



226 EDWARD H. KERNER 

o r  

(net rate of increase in I (net rate of 
V of species  i) immigration 

into V through 
S) 

+ (natural rate of 
increase  within 
V, exclusive of 
immigration). 

Upon using Gauss ' s  law for the surface integral, one has 

OPt 
- -  + div it ~ Rt" 
Ot 

This equation is devoid of real contents until R and i are speci-  
fied. For this, explici t ly biological hypotheses must be intro- 
duced. As regards Rt, to within the validity of the Volterra mech- 
anics,  equations (1), we may, for example, place 

1 
Ri -- et Pt + ~ ~ c~it Pi Pi, (9) 

after recognizing that, properly speaking, the N's in (1) are really 
densi t ies  (spatial ly uniform in the case  of (1)) rather than total 
population numbers. 

Regarding i, the question is, What may be the nature of the 
motions of different organisms? We call  to mind here the remark- 
able quantitative observations of Przibram (1913) on the motions of 
infusorians. Przibram's verification of the Einstein  l a w - - m e a n  
square displacement  ~ t ime- - and  his diagram of a paramecium 
track, so strikingly comparable to that of a Brownian particle,  con- 
vince one that the motions of individuals are effect ively  random 
walks; whence the immediate conclusion that a host of the organ- 
isms will behave as does a host of molecules in solution: the motion on 
the whole will be a diffusion (Chandrasekhar,  1934), with a current den- 
sity proportional to the gradient of the population densi ty,  i = - / ) V p .  
Here D stands for a diffusion constant  character is t ic  of the partic~ 
ular type of organism in a specif ied physical  environment and has 
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the meaning, from the theory of r_aandom motion, D ~ n r 2 / 6  (n  .~ mean 
number of d i sp l acemen t s / s ec ,  r ~ = expected squared displacement  
at any step).  We are omitting, of course,  consideration of any 
induced or sys temat ic  motion due, for instance,  to mass motions of 
the medium containing the organisms. 

To what extent  is the random walk bas ica l ly  prevalent among 

other spec ies ,  including higher animal spec i e s?  It appears that in 
a quali tat ive way it may be so  common as to be the rule rather than 
the except ion .  Witness Elton (1930): 

" I t  puzzled at l eas t  one naturalist  working in Siberia to find out 
how the squirrels all seemed to know where the r ichest  food sup- 
ply was to be found in any particular year,  and how they managed 
to concentrate so  succes s fu l ly  upon the good t rees .  The reason is 
simply that each individual is constant ly  going to and fro, reacting 
by migration to the conditions that it meets ,  and that these  move- 
ments automatically resul t  in a readjustment of the densi ty  of 
numbers in different p l a c e s . "  It is interesting to compare this re- 
mark with one of Schr6dinger's (1946) relat ive to molecular dif- 
fusion: 

" T h a t  this random walk of the permanganate molecules ,  the 
same for all of them~ should yet  produce a regular flow . . .  i s  at 
first  sight perplexing . . . .  If you contemplate [in a schematic of 
a solution of varying concentration] thin s l i ces  of approximately 
constant  concentration, the permanganate molecules which in a 
given moment are contained in a given s l ice ,  will,  by their random 
walk, it is true, be carried with equal probabili ty to the right or to 
the left. But precise ly  in consequence of this,  a plane separating 
two neighboring s l i ces  will be crossed  by more molecules coming 
from the left  [higher concentration] than in the opposi te  direction, 
simply because  to the left  there are more molecules engaged in 
random walk than there are to the r ight ."  

One does not h a v e  to look far in even offhand observat ions  of 
field life to receive the clear impression that the random walk or 
swim or flight, in a colloquial ,  if not a s tr ict ly technical ,  sense ,  is 
at bottom a dominant theme, though conditioned certainly by many 
factors .  To  the aerial observer,  the squirrel in a homogeneous 
milieu may be reasonably  expected to be like the paramecium to 
the inquiring microscopist .  

We propose,  then, the preliminary working hypothesis  that self-  
diffusion owing to random-type motions of individuals is a bas ic  
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driving force for the phenomenon of migration; mathematically,  that 
a principal connection between population currents and densi t ies  
is 

i~ = - P, V p, .  (10) 

While self-diffusion has been invest igated to some extent,  for 
example, by Skellam (1951), it covers only the case  where the dif- 
fusional motions of different species  are mutually non-interfering. 
Apart from the "poin t - in te rac t ions"  between species  described in 
equation (9), we must expect  a motional type of interaction as well, 
that recognizes  the possible bias, say,  of the motion of predator 
toward prey and of prey away from predator. The currents and not 
only the densi t ies  must, in general ,  be coupled. Here one is re- 
minded of the analogous situation in many-component diffusion 
theory (Kirkaldy, 1958), which gives us the suggestion that a suit- 
able type of generalization of equation (10) is 

i~ = - ~ PuVp i ,  (11) 
i 

where general ly the diffusion coefficients  Dii are p-dependent and 
may be explici t ly  time, and space-dependent  as well.  The contents 
of equation (11) must be understood, however, in quite a different 
sense  from the physical  one, where the coeff icients  Dq are con- 
strained by reciprocity laws of a very particular sort. For a prey 
species ,  1, and a predator spec ies ,  2, for instance,  one would 
write 

ii =- o1 Vpl - dl Vp2, 

i2 " -/)2 VP2 + d~ Vpl, 

or in terms of a diffusional-type drift veloci ty ~ i, 
(net drift veloci ty of 1) = (self-diffusion velocity of 1) + 

(an escape veloci ty of 1 ~ local gradient 
of 9) 
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(net drift veloci ty  of 2) ~ (self-diffusion veloci ty  of 2) + 
(a chase  veloci ty  of 2 ~ local gradient 

of 1). 

Thus a kind of diffusional race be tween  the spec ies  in which, su- 
perposed on the self-diffusion of each spec ies ,  are drifts experi- 
enced via the local  gradients of the o t h e r s - - s o  to speak,  each 
recognizing which way the population breeze of some of the others 
is blowing. 

In this way is introduced an element counter to the purely homo- 
genizing effect  of simple diffusion, a necessa ry  element in a sa t i s -  
factory theory of migration. 

The proposals  above have some appearance of multicomponent 
hydrodynamics, quite mechanist ic  in character.  Conspicuously  
absent  is any reckoning of fluctuations of populations in a pre- 
scribed region. The strength of diffusion laws comes from the 
random motions of immense numbers of individuals;  when the num- 
bers are less  than immense, the fluctuations of numbers, incom- 
prehensible in a diffusion approximation supplying only more or 
l e ss  sharp averages,  are of primary signif icance.  One may per- 
haps regard the present suggest ions  as the tentat ive mechanical 
scheme that hides,  or awaits ,  a thoroughly s tochas t ic  description 
of individual organism self-production, of organism encounters and 
interactions,  and of organism motility. 

We mention briefly some simple examples.  For a single spec ies  
under uniform physical  conditions (bacteria or Protozoa in l iqu id  
culture) we have, by equations (8), (9), and (10), 

Op 
- D V 2 p  + e p .  

3t 

The same equation governs the neutron densi ty  in a nuclear reactor 
(in the well-known diffusion approximation for the neutron motion); 
it will be seen,  in fact,  that reactor and culture are the same in es-  
sential  aspec ts ,  with the exception of the boundary conditions: 
V p .~  ~ 0 at culture boundary, p ,~ 0 (approximately) at reactor 
boundary. If, indeed, at the culture boundary there were e scape  or 
absorption of organisms (and e > 0) ,  we should have a "cr i t ica l  ra- 
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d ius , "  just  as for a reactor,  which, if exceeded~ would give ex- 
ponential growth and in the contrary case  exponential decay.  

By well-known methods, solut ions to the differential  equation 
suited to a given geometry and initial conditions may be con- 
structed.  Unde r  spherical  symmetry, for instance (florence flask 
seeded isotropically),  one gets  the superposit ion of diffusion 
modes, 

p ( r , t ) = e  et o + C e ~ s i n  , 

, ( : ) j  

where x are the roots 4.49, 7.85, . . .  , of x = tan x,, and a denotes 
flask radius, the C's  being fixed by the initial distribution p (r, 0). 
The first mode entirely controls the total population, 

So ~ (') Ntot~ (t) = 4=r  2 p,(r, t)dr.~ C O ~ a  e e'. 

Sighting along a thin diametral cylinder of length 2a and cross-  
sect ion AS, as in a turbidity measurement, the enclosed population 
is 

~a 

A N  =9,&S Jo p(r , t )  dr, 

which can reveal  something of what are the dominant modes and 
what is the value of the diffusion constant  D. 

A premonition of ser ious mathematical trouble is to be seen if 
the se l f - increase  ep is traded for the Verhulst  ep - 0Cp 2, 

aP_DV2p +Ep-~p2. 
at 
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The last  term presents  a diff iculty that is only sl ightly amelio- 
rated by the use of a l inearization procedure allowing a discussion 
of iust  near-equilibrium. 

As a second example, consider the extension of the Volterra 
periodic predator-prey relationship for two species ,  taking in equa- 
tion (12) constant  diffusion coeff ic ients ,  

aPl pl V 2 -dlV2P~ = EIPI- or 

~ v2 v2 
ot - l)2 P~ + du Pl = - E2p2 + ~ pl # u .  

T h e  non-l ineari ty is awkward even in the cases  of spati:al homo- 
geneity (all V 2 terms zero) or time s ta t ionar i ty  (all O/Ot terms:zero).  
Hence  we limit ourse lves  for the present  to small deviations from 
the temporal and spatial  equilibrium state (#1 = % / ~ ,  P~ = r 1), 
writing Pl = eu/(x2 + Q1, P2 ffi el/cr + Q2, and thence neglect ing 
QIQ2, 

0Q 1 
Jt D1 V2 Q1 - d l  Vu Q2 + )'1 Q2 = 0 (X, = ~ , e2/~ 2 ) 

aQ2 V2 V2 3--t- - / ) 2  Q2 + d2 Qt - X2 Q1 = 0 ()t2 = r162 el/cot )" 

Decoupling these,  it is found that QI or Q2 sa t is f ies  

a 2 Q V2 3Q v* 
c)t 2 (D 1 + D2 ) ~-~§ (OlD 2 + did 2 ) Q - (Xld 2 + i~2d 1 )Q = 0, 

wherein is seen a certain similarity to the wave equation or, more 
particularly, the equation of vibrations in e las t ic  solids.  The 
mixed term V2aQ/3t,  involving self-diffusion, in general will make 
for damping. 
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It is interesting to observe,  in the case  of negligible self-dif- 
fusion (O1~ 02 ~ 0), when the sole driving forces for migration are 
chase  and escape of predator and prey, that there are purely propa- 
gating plane-wave solutions,  without dissipation, 

Q = el(k- r-a~t) 

The frequency, wave-number spectrum follows the dispersion law, 

As all wave numbers k are possible,  a wave-packet of limited 
spatial  extent  may be Fourier-synthesized from wave numbers in 
the vicinity of some given one, ko, and the packet will advance 
with the group velocity 

We have a hint of how literally a group of organisms can move 
about as a unit. 

Including, now, the self-diffusion, we find damped propagation, 
co = (x - i f l  , 

1 
- ( ~  + o2 ) k 

(hence strong damping of just  the larger wave numbers), and 



BIOLOGICAL ASSOCIATIONS 233 

If, then, D 1 = D2, the dispersion is as previously,  and if did 2 > 
(D I - D 2 ) 2 / 4 ,  every wave number is st i l l  poss ib le ;  but if dld 2 < 
(D I - D 2 ) 2 / 4 ,  the coeff ic ient  of k 4 is negative, and only a finite 
range of wave numbers and frequencies is poss ib le .  

4. Applicat ions of the canonical ensemble.  We return now to the 
context of s ta t is t ica l -mechanical  analys is  of population based on 
the original Volterra scheme. The principal aim is to exhibit  the 
power of the analys is  in s ta t i s t i ca l  quest ions relating to the time 
fluctuations of one spec ies  singled for s tudy out of a great many. 
In using the canonical  ensemble,  we are assuming "thermody- 
namic"  equilibrium, as previously descr ibed,  in the large as .  
sociat ion encompassing the single spec ie s ,  that is,  t ha t  the as- 
sociat ion has been let  run a long time compared with any time of 
osci l la t ion of any s p e c i e s .  In particular, the use  of a stat ionary 
ensemble is to signify that the single population-time curve is of 
the nature of a stat ionary time ser ies ,  two long strips of the curve 
having the same s ta t i s t i ca l  properties.  As previously mentioned, 
the Gibbs averages are to be counted as time averages.  

Let  us notice first  the earlier resul ts ,  that, with G as in equa- 

tion (6), N r ffi q~, and that, from the canonical  average of (OGr/OVr) 2 
and of  vr(OGr/JVr) , 

-----= '--. = - IogN--* 

r r X r N 2 , \q,. / qr 

which gave the fundamental meaning of the associati t)n " tempera-  
ture"  0 as well  as ,  in the l a s t  equali ty,  a tes table  relat ionship.  

Thus % is to b e  construed as directly avai lable observat ional ly .  
The temperature i tself ,  together with G, naturally is defined in the 
Gibbs distribution only to within a sca le  factor, as in ordinary 
physical  thermometry; for its numerical determination any suitable 
reference s ta te  of equilibrium must first be ass igned arbitrarily a 
numerical temperature 0o, which, together with the total ly station- 
ary s ta te ,  0 ffi 0, of minimal entropy, e s t ab l i shes  the s ize  of the 
" d e g r e e "  of temperature. This  means that the parameter r r =Nrfir 
must a l so  be of arbitrary sca le ,  and so  i t  i s ,  upon recal l ing that 
the Volterra "equ iva len t  numbers"  ~ - 1  have no individual sigaif-  

icance but rather that only the composite f i71/[3~ 1 has direct  
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meaning (number of s 's  lost  or gained per number of r 's  gained or 
lost, per binary (r, s) encounter).  

The quantity 

D r , . a v  r = r r (e v r -  ].),,  r r N r _  

is plainly of primary importance, so we record its moments (drop- 
ping the r): 

D~=ee ~ \Or/ e e d v  

m O O  

Ov a 

or, s ince 02G/Ov 2 = 0G/0~ + r, 

D" = ( n -  1)0  D " - l  + ( n -  1 )r0  P n - 2 ,  

D2 =re, 

D s ~ 2 r O  2, D 4 6 r 0  ~ + 3 r  202 

(14) 

The moments of v = log (N /q )  may also be computed from the mo- 
ment-generating function, 

e ~'' F ( ,~+x)  _;~ 
1-" (~)  
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so that 

/ X  =o  

v 2 = qo'(~)  + [ c ? ( z )  - l o g  x ]  2 ,  . . .  , 
(ts) 

where q) denotes the digamma, T" the trigamma function. 
As a second stop we consider averages involving derivatives of 

the v 's .  We have 

~b G 

=- _ f - - -  "Or = eO Z Ysr 3 D  e o d v  1 . . .  d v  = O, 
$ 

since each /7  by (14) vanishes;  also 

~b G 

since each bs is independent of v s and each ~)s -- O. The combina- 
tion Vp~ r must be expected to tell something of the interaction of 
species  p and r, 

vp;  4 = e 0 v Ysr e--O d v  1 d 
,' a v s /  " ' "  % 

= y, , ,  , , ,  afi_  y,,r o .  
Ov = 

P 

Only the pth term in the Z survives, due to D-= O. In similar 
$ 
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EDWARD H. KERNER 

,~ OGp 
r 0"0 

p 
q)r r p ( e  vp - 1)  = 0 rp Ypr o 

These give us the means of observing the "microscopic"  para- 
meters Ypr of the Volterra theory, 

yp, --- ~ ~ -  log N-2-.- (16) 

or, in terms of the original configuration of parameters entering the 
Volterra equations (1), 

Ctpr = ~ -  log ~ - log - - ,  
t ip , qp  r qr  

where the numerator may be replaced by the alternatives in (16) and 
the denominator by the alternative for O/r in (13). 

A basic meaning for the Volterra antisymmetry on the level of 
observable time averages now is 

d 

Several other out of many interesting averages may be mentioned 
without proof: 
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T 
Vr2 = 0 Z yir2 ri ' 
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(e v r - 1 )  = -  0 ~ y i r  2 ~ ,  

"b r (e v, - 1) 2 .... 2 O= 
r r ~ )lit 2 r i , 

�9 OIO__~.p ) " D '~ 'Or ~r Ypr p ~ 

~3~ ~ (e vp - I)-- 2 ypr ~ 0 ~ . 

We turn now to the basic  problems of gauging something of the 
horizontal spreads of population-time curves.  

The fraction T_/T of a long time interval T spent  by a popula- 
tion below the average population level ~-r = qr is the time average 
of 

h (v) = I, ~, < 0 

= 0 , ~ > 0 .  

Using the canonical ensemble,  this is (dropping the subscript)  

~o G 0 G / F o e  _ G 
T_ = e-O f h(~) ) ;O d~) ffi f e - -~  d~) e 0 dv /J_ 

T BOO - -  - - 0 0  .1_ 

So /So x 8 x - 1  e - s  d8 8 x - I  e - s  d8j 
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after introducing s = xe  v as variable of integration. 
Pearson 's  (1951) incomplete gamma-function, 

In terms of 

1 [ ,  u%/p + 1 
l ( u , p )  

r (p + 1) Jo 

the mean below-average time is 

e - s  8 p d s j  

T_ 
= I ( ~ / ~ ,  �9 - 1 ) ,  

which varies between 0.5 and 1. It may be emphasized again that 
x is to be considered access ible  to observation via equation (12). 

In Figure 1 is plotted T . / T  and its complement, the mean above- 
average time T + / T  = 1_ - T _ / T .  At very low associat ion temp- 
eratures,  0 < < r, i .e . ,  when the associat ion is not far from the sta- 

1.0 

0.9 

G8 

0.7 

0.5 

0.4. 

0.3 

0.2 

0.1 

0 

x 

FIGURE 1. Mean b e l o w - a v e r a g e  ( T _ / T )  and  a b o v e - a v e r a g e  ( T + / T )  
t i m e s  a s  f u n c t i o n s  of We 
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tionary state N r = qr (all r), the  populations spend as much time 
above as below their average levels,  oscil lating very roughly 
sinusoidally about these levels .  For very high temperatures, far 
from the stationary state,  the populations spend most of their time 
at below-average levels,  osci l la t ing below in long shallow troughs 
and above in short, high peaks.  

To make more precise these views of the amplitudes of oscil- 
lation, we  may append to the evaluation of T+/T, T_/T the cal- 
culation of the separate mean amplitudes A+, A_ of oscil lation 
below and above average, averaging separately over the time seg- 

ments when N > q and when N < q: 

�9 (1 - h) (e" - 1 )  r 

G 

1 e 6 (e v - 1 )  e o d v  

1 X x e - x  

(~ )  e! ' 

and similarly for A_ if (T+/T) is replaced by (T_/T). The + on the 
integrals signifies times during which N > q. Figure 2 gives the 
amplitudes as functions of x, bearing out the approach to equality 
(and also over all decrease of amplitudes) for descending 0 and the 
sharp increase of A+ over A_ for ascending 0. 

A key datum of g r e a t  practical interest to be comprehended 
within a demographic theory is ~the frequency of oscillation of a 
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FIGURE 2, Mean ampl i tudes  of o sc i l l a t i on  above (A+) and below (A_) 
average. 

population. It is surprisingly difficult  to bring forth this informa- 
tion explici t ly ,  even in the simple ca se  of the periodic two-species  
V olterru interaction,  but it turns out to be fairly amenable to treat- 
ment by the canonical  ensemble.  

Consider an osci l la tory  function F(t). The integral 

fo r 8 (F(t) ) dr, 

where ~ des ignates  the delta-function, will give a contribution 

f (F'(t~ (t -t.)) dr= 
I F'(to)l 

near a zero t = to of F, but not otherwise.  Therefore,  t h e  mean 
frequency of zeroes ,  ~ ,  of F(t) is* 

= ~ [ F ' ( t ) [  3 (F(t)) dr. 

*I am indebted to  P r o f e s s o r  M. Kao for point ing out to me th is  r e s u l t  
and i ts  u t i l i ty  in the s t a t i s t i c a l  mechan ics .  
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F o r  the mean  f r equency  of z e r o e s  of  a popu la t ion  about  the l eve l  

N r = q ro r  e q u i v a l e n t l y  abou t  v r - log Nr/qr = 0, we then  h a v e ,  us ing  
a G i b b s : a v e r a g e  for the time a v e r a g e ,  

v c - s  %'e-6Jl~',l ~(q)r) r @ dq)x';" 'dVn~ 

Since  vr is  i ndependen t  of vr, th i s  b r eaks  up into a s imple  in t eg ra l  
ove r  v r and a more d i f f i cu l t  one over  the r e s t  of p h a s e  s p a c e  dr. 

qJr Gr(O) f G - G r 

Xl .  - -  

= e e e  I~,1- r(~) (17) 

s o  the computa t ion  r e d u c e s  to tha t  of  I ~1 �9 
By a s l i gh t  e x t e n s i o n  of the foregoing we a l so  find the mean 

f r equency lo f  z e r o e s  of N/q about  an a rb i t ra ry  l ine N/q = v to be 

L G 

~r 
e-- 6- e -~ ,v  = v "  I'~1 . 

Oomparing with the previous rosu. . .or .  0 we h ve 

%~,1 (v) = ~ e ~' (v e -  v) ~'r 

N N 
= f r equency  about  - -=  v r e l a t i v e  to f r equency  a b o u t - - =  1. 

q q 

Since  ~ e l ( v ) <  :t if  v >11 or v < 1, we find t ha t  N,/q c r o s s e s  the  
ax i s  N,/q = 1 more f r equen t ly  than any  o ther  ax i s  N/q--v. How 
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much less  is the frequency of osci l la t ion about axes other than 
N ffi q is to be seen in Figure 3, where contours of %el • c o n s t  in 
the x, v plane are shown. It is evident that the frequency of zeroes 
fails off with extreme rapidity about increasingly elevated axes for 
the lower associat ion temperatures (higher x) and that only if 
0 > > r is the fall-off slow. This is to say ,  looking also at v < 1, 
that at low temperatures small excursions away from N = q occur 
appreciably more frequently than larger ones (with more small up- 
ward excursions than downward), and contrariwise for high tempera- 
tures.  

The variable v : log N/q is of as much interest as N, and for its 
zeroes-frequency about v = v (v now any positive or negative value) 
is found 

X x 

The rigorous computation of l~;r[ unfortunately seems to be out 
of the question, though satisfactory approximations are to be had. 
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l /  

FIGURE 3. Contours of (-Ore I = coftst in the x, p plane, 
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The magnitude of the difficulty may be seen by writing 

243 

and then 

primes denoting the absence of the variable v,. Performing the 
integration over phase space, after placing vr ffi Z Yirri(e '~i- 1), 
gives 

-1 f_ - : , . ,  . ~ - [ i - R e O ( ~ ) ] ,  

where 

- is ~ Tir 
�9 - - x  i e . ~i i~: ~ H ( 1  - ~ : 0 y , ~ )  f~ ffi ;;17( = e 

is the characteristic function of v'r, and by equation (2), Z r i Y i r  ffi - 

%. Plainly, ~r has a complicated distribution, and to find [v-~r is 
to seek the Fourier transform of a difficultly transformable func- 
tion. From 0 are visible the semi,invariants of ~,  

K~ 0, K2 1! 0y2 -2! ys I= ' ~  , K s 0 , 

where y2 =Xriyir2, y8 -Xr/y/rs, .,,, etc,, so that the moments 
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of ~ come to be 

EDWARD H. KERNER 

v •O, vr ~ff iOy2,  

2 
~r8 ffi 2 02 y3,  ~Or4" ffi 8 02 y2 + 60ay4, 

~5 ffi20 0 a y2ya  +24  04 y S , . . . ,  
r 

from which may be determined approximate distribution functions of 
Gram-Charlier or Pearson type.  The appearance of the moments 

y2, ya . . . . .  ra ises  the in teres t ing side quest ion whether there may 
not be another order of s t a t i s t i c s  connected with the  considerable  
ignorance surrounding the numerous microscopic parameters; 
whether,  so  to speak,  equation 2, (e) ffi y(r), does not define in some 
way a kind of algebraic s t a t i s t i c s  on all vectors  (e) and trans- 
formations y, admitt ing only posi t ive vectors  (r), ove r  which ca- 
nonical  averages would be further averaged. 

For suff ic ient ly  small 0 we have 

ffi exp - ~ [i~rlylr + X i log (1 - i~Oyir)] 

1 2 
~_ e x p  - E i S r  i Y~r + Xi [--iSOY~r -- ~ ( i S O y ~ , )  ] 

~_exp - :~  0y ~ 

and for I ,l 

I t l  = (e z) /~ | _ _  1 

= ~ ( 4 2 ) r .  (18) 

We are using here ef fec t ively  the fact  that at suff ic ient ly  small 0 

the distribution of n i ffi e "~ , 

X i - . n  i x i - 1  
P ( ~ )  dn i f f i ~  e x n i  
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is sensibly normal, so that 

~r = Z Yir ri (hi- 1) - Z Yir rin~ + er 

245 

is also essentially normally distributed. 
One has the suggestion here to appeal to the central limit theo- 

rem and to say that, in general, ~r, being a superposition of a great 
many independent variates, tends to be normally distributed with- 
out restriction on 0. This may in fact be made quite plausible (if 
not conclusive) in spite of the awkward characteristics of P(n) for 
larger 0. Adopting this suggestion, equation (18) holds generally, 
giving, for the zeroes-frequency of v, 

(19) 

Hence % is slowly and monotonically varying with x (Fig. 4). 
While at 0 •0 (where the association is completely quiet, all 
Nr(t) ffi qr) the oscillation frequency is zero, a s  soon as the as- 
sociation is the least  bit excited, the frequency jumps to its 
largest value, decreasing thereafter uniformly as 0 is raised. The 
discontinuity in co at zero temperature is, of course, to be expected 

,4 

.3 
tO / 
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.I 

I P I 

o ', 3 ,, s ,o 

FIGURE 4. Mean f r e q u e n c y  of o s c i l l a t i o n  co a b o u t  N = q. O r d i n a t e  ~" i s  
ed of e q u a t i o n  (19) w i t h  the  c o n s t a n t  f a c t o r s  o m i t t e d .  
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insofar as the perturbation of an initially quiet oscillatory system 
must result at once in a finite frequency: if only an infinitesimal 
amplitude. 

It may be that, hiding behind the smoothness of (19) and covered 
over by the use of the central limit theorem, there is some more or 

less fine structure, a slight waviness, in the variation of co with 0. 

It is interesting to compare the frequency of oscillation found 

above with that which would occur if v(t) were random (Gaussian) 
noise. To this:end we first generalize (19) to give the frequency 

of oscillation of v about its average, Y (eq. (15)), 

co , ( , , , - -4 ; ) -  .. I,;,I 
- -  x +  i 

- ( ~  - l o g  z ) ] .  

Now, if U(t)=.v-.~ were a random noise,  the mean frequency of 
zeroes would be (Rice, 1944) 

1 l 
f = - ( -  v ~  I V 2 )  r. 

IT 

Using canonical averages, 

V/) ffi ( v -  D ~  = v~ = -  Oy 2, 

V 2 = ( v  - ~-)2 , .  ,D~ _ ~ 2  = ~ ' ( z ) ;  

whereupon 

?., (~ y 2 ) r  _ [z ~, ( x )  ] ' 
iT 

In Figure 5 are plotted f and co(v --~), omitting the common fac- 

tor (ry2)~ - .  The two results are altogether comparable; the intima- 
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F I G U R E  5. Mean f r e q u e n c y  of  o s c i l l a t i o n  of v a b o u t  v ffi ~ - ( c u r v e  
C - C )  c o m p a r e d  to  s i m i l a r  r e s u l t  if  v were  r andom n o i s e  ( cu rve  N - N ) ;  

1 

f ac to r  ( r y 2 )  2 h a s  b e e n  d r o p p e d  in bo th  c u r v e s .  

tion is that U(t) is poss ib ly  not far different from random noise in 
a general way. 

In passing,  i t  may be mentioned that one may make over the 
population fluctuations into something very apt to be like random 
noise by introducing, instead of v, the function Q(v), defined by 

Q 2  

I _ _  x" 1 -~,~2 dQ, (20) e - x ( e v - v )  d v  m -  e 

that is, by making over the v-distribution into a normal one; this is 
only necessa ry  and not suff icient  for Q(t) to be a random noise.  
For large �9 (0 < < r) the v-distribution is already normal, 

Z x O~ x e - X  
e - X ( e v -  v) _ N - -  

r ( z )  r ( z )  

1 
1 2 / ,~ 1 

e - ~ X  v x, F - F x v  2 

(using the Stirling approximation in the las t  step),  so  we are guided 
1 

to a .~ x-~. Integrating (20) on the left  from 0 to v, and on the right 
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from Q0 to Q, Q(v) is then completely defined by 

(0 I ( 4 ~  e ~ ,  �9 - 1 )  - I ( 4 ~ ,  ~ - 1 )  - E - E ,  0 , 

E denoting the error function, 

1/0z E(z) ffi - ~  e -t2 dt. 

]?he constant Q0 is chosen so that Q ranges from (-o~,oo)when v 
does, or 

5. Comparison with observation. If we settle for a treatment 
grosso mode for ecological field data, some test  of a number of 
theoretical conclusions is possible. For the meaningful evalua- 
tion of time-averages, population data extending over a sufficiently 
long time are needed. One of the longest unbroken records, Figure 
6, seems to be the catch of foxes by the Moravian missions in 
Labrador from 1834 to 1925. Elton (1942) has compiled (chap. 13, 
Table 17) and discussed the data. We shall assume simply that 
the fox-catch accurately samples the population, a n  assumption 
that is not unreasonable, judging from Elton's elaborate discus- 
sion (chaps. 14 and 15). The catches represen t  intra-annual 
averages and so, desirably for our purposes~ t h e y  average over 
seasonal and other smaller-scale fluctuations outside the present 
theoretical framework. Rather than attempt to smooth the data, 
which would be at best somewhat ambiguous and could unduly bias 
the computation of time-averages, we leave them entirely un- 
processed, taking the polygonal line in the upper part of Figure 6 
as the population-time curve. 
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FIGURE 6. Labrador fox-catches for the first 40 years  of a 91-year 
period, after Elton (1942). Upper curve gives the catch directly (left- 
hand scale);  right-hand sca le  gives the reduced variable n = N/q. Lower 
curve shows v(t). 

In T a b l e  1 we record  the d i r ec t l y  computed  t i m e - a v e r a g e s  of 
s e v e r a l  q u a n t i t i e s ,  the t h e o r e t i c a l l y  c o n s e q u e n t  v a l u e s  of x, and 

the e x c u r s i o n s  in the l a t t e r  due to a + 10 per c e n t  a l t e r a t i o n  of the 
former.  

As ide  from the a s s u m p t i o n  tha t  c a t ch  ~ popu la t ion ,  errors  in the 

reduc t ion  of  the d a t a  are:  s t a t i s t i c a l  e r rors  due to the ra ther  smal l  
t ime in t e rva l  of 91 y e a r s  c o v e r i n g  the da ta ;  and the errors  of the 
a s s u m e d  p o l y g o n a l  s h a p e  of the popu la t ion  cu rve .  Over a l l ,  an 

error of 10 per cen t  in any t ime a v e r a g e  would s e e m  to be a modes t  

e s t i m a t e .  The  un i formi ty  of  x - v a l u e s ,  which is  the t e s t  of the 

theory ,  i s  in th is  l ight  even  a l i t t le  su rp r i s i ng .  

TABLE 1 

Time Average x Excursion 

T_/T 0.595 1.90 0.70-15.0 
A .445 2 .I0 1.00-2.75 
,4+ .729 1.71 1.42-2.05 
( n -  1) 2 .536 1.87 1.69-2.07 
( n -  I) log n .489 2.04 1.86-2.27 
log n -0.258 9.08 2.31-1.91 
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In Figure 7 is shown ~ol(v) observationally and theoretically. 
Here the statistical errors are very appreciable, on the order of 
perhaps 50 per cent, .since each datum involves the ratio of the 

count of zeroes on two axes, each count having itself a large error 
(maximum count = 43, on axis n = I). The shape of %el(v) must 
be considered to be satisfactorily accounted for. 

The testing of absolute and not relative zeroes-frequencies 

would be desirable but, as this involves a reckoning of a time 
derivative (~)', is scarcely feasible under the "polygonal" as- 

sumption. However, even with this assumption, it is found that 

l~]  =, 1.152 yr - t ,  ,~ (n - 1) = 4 3 / 9 1 y r  -1,  giving,  according to equa-  
tion (17), x = 1.25,  and an excurs ion  induced by a 20 per cent  
error in co/I v l of 1 . 7 0 -  0.84.  The polygonal  assumpt ion ,  of 

cou r se ,  g rea t ly  f a l s i f i e s  I v l ,  g iv ing  an overes t ima te ;  any reason-  

able  smoothing d e c r e a s e s  { ~{ no t i ceab ly .  For  example ,  a s suming  
that  ~ var ies  l inear ly  over one-year  in tervals  t, .t + 1 be tween  the 

limits [vt+l) _v~_.l)]and[~ It+~)-v(t+~)], where  

t h e s e  v ' s  a r e  taken right from the data ,  one  ge t s  { ~) { = 0.841 yr - I ,  

giving x = 2.16.  
The  compar i son  of  theory and obse rva t ion  out l ined here is ,  on 

the whole ,  more a t e s t  of the probabi l i ty  law 7 than of the under- 

' I X--' .5 

0 8 16 24 ~2 

FIGURE 7. Comparison of theoretical and o b s e r v e d  (.Orel(l~). Abscissa  
is v in units of 0.16, which correspond to intervals of 50 fox-catches in 
Figure 1. 
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lying Volterra mechanics; a significant exception is the testing of 
core I and co, which relies on the basic property of the mechanics, 
that q~i is independent of v i. 

One test does not, in general, make (or unmake) a theory; but we 
have at least the intimation of validity of the Volterra statistical 
mechanics. It is difficult to escape an impression in the present 
case that a Volterra oscillation is effectively, if not literally, at 
hand and that the statistical theory can be a useful tool in the 
interpretation and correlation of ecological field data. Further 
tests would be highly desirable: particularly, for instance, the test- 
ing of d/dt(~)iq~)-0 for two strongly interacting species, that 
hinges so evidently on the basic premise of antisymmetry of Vii" 

6. Non-stationary ensembZes. There is one case  in which ther- 
modynamically non-equilibrium configurations of macroscopic sys- 
tems can at present be profitably t reated within the Gibbs metho- 
dology, that of a suff ic ient ly  slow alteration of external variables 
or of the system temperature. We shall adapt the discussion of 
Cox (1950) to a sketch of this case  for the macroscopic Volterra 
systems.  

Representat ive types of external variables of importance in 
biological associat ions  are the physical  temperature or radiation 
intensi ty or oxygen tension in the environment, and the question to 
be answered is, What Gibbs ensemble is appropriate for the de- 
scription of the associat ion when such variables vary and induce 
changes in the microscopic parameters ~, f~, 0~ (eq. (1))? Addi- 
t ionally,  the associat ion temperature 0 may be subject  to change 
through contacts  with a second associat ion at different tempera- 
ture. 

A slight revision of the " c a n o n i c a l "  demographic equations (3) 
is first cal led for so as to make the meaning of phase space inde- 
pendent of changes of the external variables,  X. Let  ~, fl, c~ be 
e(X), ~(X), (x(X), with X = X(t), and let X 0 be some fixed reference 
values of the X. Calling q, = qs(X) and qs0 = qs(Xo) the solutions 
to equations (2) for the indicated values of X, and redefining the 
v's as *r - log (N/qro), the Volterra equations become 

aG 

$ $ $ 
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where y = y(X) and G, no longer a constant  of the motion, is 

o = X (t~, q,o e "  - ~r q~ 5)" 

Imagine, now, that one or more of the Xi,  or 0, changes so  s lowly 
that a glance at the associa t ion  shows it to be nearly in thermo- 
dynamic equilibrium with the momentarily prevailing G(X), giving, 
in the canonical distribution, a c lose  approximation to the true 
densi ty- in-phase.  "Momentari ly" means a suff ic ient ly  long moment 
for a good time-average of some population variable to be taken, 
but so short on the t ime-scale  of the changes in X or :0 that G(X) 
varies only sl ightly in most parts of phase space .  In short, the 
changes envisioned are quas i -s ta t ic ,  the system being gently 
propelled through a success ion  of near-equilibrium s ta tes ;  it is 
only in this case  that it makes sense  sti l l  to speak of a system- 
temperature at all. In seemingly sharp contrast  to the physical  
case ,  the "moment"  biological ly must be on the order of months or 
years ,  and the secular  changes measured as increments per decade 
or century. 

Following Cox, we suppose  that the corrections to the instan- 
taneous canonical  distribution are proportional to the adequate ly  
small veloci t ies  of change of the drifting X and 0, 

r  

o ( I + A b + B I ~ I + B 2 ~ 2 +  .) p - - e  . .  

= t~o (1 + A 0  + B 1X1 + B~/Y2 + ' " ) "  (91) 

The A, B are taken to be  functions of 0, X, v, but not of 0, )(. 
They are fixed by Liouvi l le ' s  equation, 

3p . Op 
Ot = - Z  vr Ov ' 

r 

which now reads,  after dropping a factor Po throughout, 

-~ - ~  ~ ~ (I + A O + Ba J( , + . . ~ + 
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AO+B1X 1 + , . .  

253 

�9 ( l a G \  

1" 

+AO+BI,~ I + . . . ) -  

aB, k, + . . . ) .  
p T 

On the left, products and der ivat ives  of 0, X may be dropped; on 
the right, the first term van i shes ,  owing to Z Jr 3G/Ovr "= O. In 
what  remains we may equate coeff ic ients  of the small but arbitrary 
0, Jf~,, giving 

�9 OA 

1 ( 0 ~  O__~i) .OB~ (22) 

r 

Thes e  are partial  differential  equat ions for A, B. Since in equation 
(21) both p and P0 represent  normalized probabili ty dens i t i e s ,  A 
and B i have the restr ict ion .4-- 0, B~ = 0, where the bar des igna tes  
an average over the unperturbed densi ty  P0" 

We note a character is t ic  lack of reciproci ty of the 0nsager  type. 
Define, for convenience,  

~B dB OB OB . =- dt 
P 

and take the p-average of (22), denoted by the double bar, 

OG 
~1 " average " f o r c e "  conjugate  to X i 

- _ 0X 1 
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O0 0 ( 6B1 
OX x \ 6t 
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OA ~B1 8B1 X2 B~. ~BI .) 

~ ,, 0~9 ~{BB 2 BB 2 + 3B 2 ) 

Also  

4 , -0  
0 

S = - log p = system entropy 

0 A - ~ + 2 ,  B,'~-~+22 B 2 ~ +  . . . .  

We now find the further  r e s t r i c t i o n s  on Bi, ~ Bj$t = 0, and 

= - O A  ~ _ _  = - O B I - - ,  
O0 6t OX~ 6t 

0F 1 3B 1 0 F  2 3B 2 
- O B~ = -- - 0 B 1 

whe rea s  for p h y s i c a l  s y s t e m s  the  i nequa l i t y  is  an equa l i t y .  
The  d i f f e r en t i a l  equa t ions  (29) have  been  so lved  in some re-  

s t r i c t ed  c a s e s ,  but the fur ther  e l a b o r a t i o n  of non-equi l ibr ium awa i t s  
the i r  more gene ra l  a n a l y s i s .  

I am indebted  to the  Na t i ona l  I n s t i t u t e s  of H e a l t h  for a g ran t  
which  suppor ted  a s egm en t  of th i s  work. 
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