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The general Theory of Categories is applied to the study of the (At, R)- 
systems previously defined. A set of axioms is provided which character- 
ize "abstract (M, R)-systems," defined in terms of the Theory of Categories. 
It is shown that the replication of the repair components of these systems 
may be accounted for in a natural way within this framework, thereby 
obviating the need for an ad hov postulation of a replication mechanism. 

A time-lag structure is introduced into these abstract (M, R)-systems. 
In order to apply this structure to a discussion of the "morphology" of 
these systems, it is necessary to make certain assumptions which relate 
the morphology to the time lags. By so doing, a system of abstract biol- 
ogy is in effect constructed. In particular, a formulation of a general 
Principle of Optimal Design is proposed for these systems. It is shown 
under what conditions the repair mechanism of the system will be local- 
ized into a spherical region, suggestive of the nuclear arrangements in 
cells.  The  possibil i ty of placing an abstract (hl, R)-system into optimal 
form in more than one way is then investigated, and a necessary  and 
sufficient condition for this occurrence is obtained. Some further impli- 
cations of the above assumptions are then discussed,  

In a p rev ious  paper  ( R o s e n ,  1958b, he re ina f t e r  re fe r red  to a s  (II)) 
we ou t l ined  a p o s s i b l e  approach to the theory  of genera l  sy s t em s ,  
b a s e d  on the  not ion  o f  a category. T h e  p r e s e n t  work i s  an a t tempt  
to i nd i c a t e  how such an approach may,  through the theory of (bl, R)- 
s y s t e m s  in t roduced  by us (Rosen ,  1958a, he rea f t e r  re fe r red  to as  
(I)), be made to bear  more d i r ec t ly  on a number of  impor tan t  bio- 

log ica l  problems.  We shal l  a s sume  tha t  the reader  i s  famil iar  with 

the  mater ia l  con t a ined  in (I) and (II), and we sha l l  use  the no ta t ion  
and te rminology  of t hose  paper s  wi thout  fur ther  comment.  

I. Abstract (M, R)-systems. Ourf f i r s t  t a sk  i s  to fo rmal ize  the  no- 
t ion of  (t t ,  R ) - sy s t em as  d e s c r i b e d  in (I), in  te rms of  the  more ab- 
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st ract  theory which we developed in (H). We recal l  that an (~4, R)- 
system consis ts  essent ia l ly  of a system M, together with certain 
auxiliary systems,  de s igna t ed  by Rs, such that each component 
M s of M has assoc ia ted  with i t  exact ly one of the R~, such that the 
output of R i is  a replica of the component M s with which i t  i s  as- 
sociated. The  inputs to each R~ cons is t  of a subset  of the se t  of  
environmental outputs of M. We also imposed certain other struc- 
ture on the (hi, R)-systems in (I), in connection with the  lags of the 
system; we shall deal wi th  these  properties in the  next section.  
For the moment, however, we shall ignore the time lag structure,  
and consider  an (M, R)-system as an assembly of components M~ 
with their assoc ia ted  sys tems R~ as described above. 

It  may be useful to have a concrete example before our eyes ,  on 
which we may explici t ly i l lustrate  the techniques which we shall  
develop below. To this end s le t  us consider the spec i f ic  (hi, R)- 
system which is  labeled Figure 1 below (this is t h e  same diagram 
as the one displayed on p. 254 of (I)); this figure represgnts  the 
ordinary block diagram of the given system. By our d iscuss ion in 
the Introduction of (II), we know that this diagram is  inherently 
ambiguous, in the sense  that, when two arrows are shown as origi- 
nating from a component (such as M z of the figure) we cannot tell  
whether these  arrows represent  different outputs of the component, 
or merely the same output being supplied to two different compo- 
nents. We shall  henceforth assume that each component in this 
diagram which emits two arrows actually produces two dis t inct  
outputs. 

E E 

E EM 

FIGURE I 
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Le t  us now return to the general d iscuss ion.  By Theorem 2 of 
(II) we know that we can find an abstract block diagram consis t ing 
of a collection of se t s  and mappings from a su i tab le  subcategory 
of the category S of se t s ,  which will represent  a given system M. 
Further, we may suppose  that this abs t rac t  block diagram is  in the 
canonical form descr ibed by Theorem 4 of (II); in this case ,  each 
component of the system M under consideration is  represented by a 
single mapping, the domain of which is  contained in a car tes ian  
product of se t s  of S. It will be found that this particular canonical 
representat ion will be most convenient  both for the construction of 
our representation of abst ract  (M, R)-systems and for our subse-  
quent d i scuss ion  of the time-lag structure of these  sys tems.  

To see  explici t ly how to construct  such canonical abst ract  block 
diagrams, we carry out this construction in detail  for the special  
example mentioned above. Firs t ,  we observe  that, once the am- 
biguity concerning multiple outputs i s  resolved,  we may apply 
Theorem 4 of (II) directly to ordinary block diagrams; we thereby 
obtain from a given ordinary block diagram a new ordinary block 
diagram in which each component emits a single output. Figure 2 
below shows the diagram which resul t s  when this process  is  ap- 
plied to the set  of components M i of Figure 1; the notation i s  
chosen in the obvious manner. The emission of two arrows from a 
single component in this canonical diagram will now be seen  to 
always have an unambiguous meaning; namely, the same output i s  
to be provided to two components. 
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In Figure 3 below, we show the abstract block diagram obtained 
from the diagram of Figure 2 above by the procedure developed in 
(21). The notation is chosen so that the mapping f k corresponds to 
the component M~ k of the ordinary diagram; the set Am," represents 
the output of the component M m which serves as an input to the 
component M n (regardless of the superscripts of these components). 
Sets with only a single subscript represent environmental inputs 
and outputs. It will be seen that this abstract diagram is already 
in the canonical form of Theorem 4 of (II). 

A4 A s 

FIGURE 3 

We must now find a means of representing the systems R~ in 
terms of the Theory of Categories. From our previous discussions 
in (I) and (II), i t  follows that the R~ must be represented by map- 
pings of some type. An inspection of the definition of (h4,R)- 
system shows that the domain of these mappings must be repre- 
sented by a cartesian product of sets which are elements of the 
set ~ of environmental outputs of the system A4 (it will be shown 
below that O is a set  of sets), and the ranges of these mappings 
must contain the mappings which represent the related component M s. 

In greater detail~ let us suppose that A4 is represented by an ab- 
stract block diagram in the manner previously described. We ob- 
serve at the outset that certain sets in the abstract block diagram 
of A4 are expressible as cartesian products of other sets in the 
diagram; such sets will be referred to as decomposable. Sets of 
the diagram which cannot be expressed as a cartesian product of 
other sets in the diagram will be called indecomposable. For ex- 
ample, the set  which is the domain of the mapping f4 in Figure 3 
above is decomposable; all other sets in this diagram are inde- 
composable. In particular, the canonical form which we have ira- 
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posed on the diagram of M implies that  the range of every mapping 
of the diagram is  indecomposable (although the domains of these 
mappings are in general decomposable). In fact, i t  is not difficult  
to prove that this las t  is  a necessa ry  and sufficient  condition for 
an abstract  block diagram to be in the canonical  form under 
discussion.  

Let  the indecomposable se ts  in the abstract  block diagram of M 
be enumerated in some fashion; say as 2~1, A 2 , ' " ,  ~ "  Then 
every other set  in the diagram will, according to Pos tu la te  A.B.D. 
2 of (II), necessar i ly  be of the form J ' /  Atk, where k runs through 

k eK 
some finite index set  K, and ~ k  i s  indecomposable for each keK. 
If now f is  a mapping in the abstract  block diagram of M, the do- 
main and range of which we shall denote respect ive ly  as d(f) and 
r(f), then by Postula te  A.B,D. 1 of (II) there exis ts  a se t  A = 
/ 7  "4fk such that  d ( f )  c A, and also an indecomposable se t  Aio 
keK 
such that  r(f) CAso. We shall find i t  convenient  in the sequel to 

regard f as a mapping in the set  of mappings H(A, Aio) (cf. (II), 
p. 321), even though f is not defined on a l l  of A in general; we may 
accompUsh this in a rigorous manner if we adopt the following 
artif ice (which will be more thoroughly d iscussed in the next  sec- 
tion): let  f ' b e  a mapping in H(A, Ale ) with the property that  on the 

set  d(f), f -- f'. We shall  require that  for each such mapping f" the 
following condition shall  be fulfilled: if  x is  any element of the set  
A -d ( f ) ,  then f'(z) has an infinite operation lag. The usefulness  
of this art if ice will become apparent as we proceed with our repre- 
sentation. 

In (I), we denoted the collect ion of environmental outputs of the 
system M as O. According to the representation theory developed 
in (II), ~} will be represented by a collection of (indecomposable) 
sets  in the abstract  block diagram of M. Thus in Figure 3 above, 
0 cons is t s  of the se ts  A 1, A 2, Aa, A4, A 5, A e, A 7, A s �9 Let  the 
se ts  which comprise e be enumerated in some fashion as  B1, 
Bu, . . . ,  Bm. Then the totali ty of possible  inputs to the mappings 
which are to represent  the components R~ of an (M, R)-system con- 
s is t  of the elements of the se t s  of the form H Bit, where J is  a 

suitable index set ,  and Biie8 for each jeJ. To make this clear, le t  

us consider once again the (M, R)-system shown in Figure 1. The  
input to the component Ri, i = 1, 2, . . . ,  8, of this system is there 
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denoted by @~; according to our representation theory, we find for 
example that the set @s = {P2, Ps, Ps } is to be represented in the 
corresponding abstract block diagram by the cartesian product 
A 2 x A 5 x A s of Figure 3 above; likewise the other sets @~ are 
similarly represented by cartesian products in the more abstract 
situation. 

We may now undertake the definition of the representatives of 
the R i components. If Mf is a component of a system M such that, 
in the abstract block diagram of M the component Mi corresponds to 
a mapping f, where f: A ---, A~o, then we assign to the associated 
Rf-system a mapping 

0f :  i ~  Bii ---" H(A, Air). 

In Figure 3 above, for example, this means that corresponding to 
the mapping fs,2 say, we have a mapping 

r xA5 xA s --* H(AT,s, AT) 

and corresponding to the mapping f4 we have a mapping 

r ~ H(A1, 4 • A6,4, A4,5). 

The reader may find it helpful to construct explicitly the mappings 
Cf corresponding to the remaining mappings f of Figure 3 above, 
and even to construct similar examples of his own, in order to 
better familiarize himself with the mechanics of this construction. 

We thus find that we may construct an abstract representation of 
an (M, R)-system in the following manner: we construct the abstract 
block diagram (in the sense of (II)) of the system M; this abstract 
block diagram is then placed in the canonical form described in 
Theorem (4) of (II). We then adjoin to this abstract block diagram 
a family of mappings Cr, such that the following conditions are 
satisfied: 
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M.R. I: The correspondence f ~ dpf between the mappings in 
the abstract  block diagram of A4 and the members of the 
family {(bf} is  1-1 onto. 

M.R. H: If, in the block diagram of hi, we have feH(A, A~o), 
then the associated mapping r  is  an element of the set  

H(i~EIB,i , H(A, A , o ~ ,  where the sets B,j represent 

the appropriate sets  in the family (} of environmental 
outputs of M. 

M.R. IH: If Cf is  the mapping corresponding to f, then fer(r 
The first of these conditions merely states that there is a mapping 
Cf for every mapping f in the abstract block diagram of the system 
•. The second and third conditions assure that (bf actually be- 
haves so as to produce a replica of f from the appropriate outputs 
of M. 

We now proceed to discuss  some of the general implications of 
the formalization developed above. 

A mapping f such that r(f) consis ts  of a single element will be 
called a constant map. It is  not hard to see that an arbitrary sys- 
tem M, all the mappings of which are constant  maps, can display 
no fluctuation of outputs in a changing environment; i .e. are com- 
pletely invariant in their behavior. Therefore, the more closely 
the mappings of a system ht approximate constant  maps, the more 
invariant will i ts  behavior appear over a wide range of environ- 
ments. It seems to be precisely the non-constancy of many of the 
mappings which occur in biological systems which accounts for 
their characteristic flexibility in dealing with environmental changes. 
Of particular interest  in this connection is  the possible non-constancy 
of the mappings which we have denoted by e l ,  and which may be 
considered as representing a portion of the "gene t i c "  material of 
the abstract biological system under consideration. A non-constant 
mapping Cf may under certain circumstances produce as output a 
mapping different from the mapping f with which i t  is associated,  
thereby perh'aps altering the structure of the entire system. The 
implications of this type of situation, which is  of obvious interest  
and importance, will be more thoroughly explored in another place. 

Thus far, our d i scuss ions  of (M, R)-systems have not included 
any mention of the possibil i ty of the replication of the components 
we have labeled R~ in (I), and denoted by mappings Cf above (cf. 
however, Rashevsky, 1958, in this connection). Nevertheless,  such 
replication is one of the fundamental characteristics of living sys- 
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terns, and must certainly be incorporated, in not too violently ad 
hoe a fashion, into any theory which makes a claim to general bio- 
logical s i gn i f i c ance .  The representat ion theory which we have out- 
lined above enables  us to make a number of remarks which may be 
pertinent to this problem. 

Quite generally,  le t  X, Y be arbitrary se ts ,  and let  H(X, Y) de- 
note (for the moment) the full se t  of mappings f :X --* Y. If we 
now fix an element xeX, and allow f to vary through H(X, Y), we 
find that we have an induced mapping 

~/'. : H (X, Y) --+ Y 

defined by writing 0x (f)  = f(z)  for all /ell(X, Y). In this manner, 
we may make correspond to each xeX a mapping ~b x eH [H (X, Y), Y]. 
It i s  immediately verified that for any two elements x l,  x2 eX, ~hxt -- 
Cx if and only if  x~ = ~2; thus in effect  we have constructed 
an~embedding of the arbitrary se t  X into the se t  of mappings 
H[H(X, Y), Y]. It may be not iced that this procedure is  a generali- 
zation of the standard embedding of a vector space  in i ts  second 
conjugate (or dual) space.  

Once again quite generally,  le t  S, T be arbitrary se t s ,  and le t  
f :S  --) T be a mapping in H(S, T). The mapping f then induces  an 
equivalence relation Rf in S, defined by writing x 1Rfx  ~ in S if  and 
only i f  f (x l )= f(x2). If we define the quotient space S/R I of  S 
under f to be the se t  of equivalence c l a s se s  of S obtained in this 
manner, we can form the diagram of mappings 

T 

where f i s  the given mapping, u i s  the natural mapping which maps 
each element of S on i ts  equivalence c l a s s  in S/Rf, and 7 is  the 
(uniquely determined) mapping which makes the diagram commuta- 
tive. It  follows from our construction that f i s  a 1-1 mapping, and 
hence i t  has an inverse,  ~-i : T --, S/_Rf. In particular, if  / was 
originally 1-1, then S/Rf-- S a n d  f = f .  Likewise ,  i f  the equiva- 
lence c lass  of an element x leS  cons i s t s  of x I alone, then we may 
write T-1 ( f (xl ) )  = x I in S i tself .  
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Let us now apply these general considerations to the abstract 
block diagrams we have defined above. Suppose that as before we 
enumerate the environmental outputs of the abstract block diagram 
of a system kl as B1, B2, . . . ,  Bm. As we pointed out above, the 
domains of the mappings Cf consist  of the various cartesian prod- 
ucts ~lBif Suppose that f:A --~B is a mapping in the abstract 

block diagram of hi, and that / 7  Bi] is the domain of the associ- 

ated mapping el .  If we now write X=  /TBi . ,  and Y =H(A B), 
j e J  J 

then from the above general considerations, we obtain an embed- 

ding of / ' / B i j  into the set of mappings 
it1 

Now wr i t ingS= H(IT.B~i , H(A, B)), T=  x H(A, B), we see that for 
\je$ / 

each mapping Fe(H), we obtain an induced mapping ~ ,1 ,  which 
maps the elements of H(A, B) into equivalence c lasses  of map- 

pings in the set H(~I Bi/, H(A, B))/R F. In case the equivalence 
$ 

\ J - .  / 

class of a particular mapping consists of a single element, we have 
observed that the image of such a mapping under ~-1 may be con- 
sidered as an element of H ( ~  B,i , H(A, B)). 

Let us now recall the significance of the various constructions 

we have performed above. Our embedding of the set /~  BfI into 
]el 

the set of mappings (1) shows that a particular family of outputs of 

a system M ( i . e .  an element in the set  /~  B,, I may sometimes it- 
\ it] J] 

self be considered as a mapping. The domain of this mapping is 

the set  H ( ~ B i j  , H(A, B)), which consists of mappings of the 
/ 

type we have designated as el ;  the range of this mapping is the set 
H(A, B), (which in particular contains the mapping f:A --* B 
which represents a component of M). This ma_pping, called F in the 
above discussion, then induces a mapping F - I ,  which maps each 
element of H(A, B) onto an equivalence class of mappings of the 
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form (I)f. The above discuss ion shows when this c lass  of mappings 
is  reduced to a single element. 

We have shown that, in the presence  of suitable outputs of the 
system M, the mappings f of an abstract  (M, R)-system may act  in 
such a manner as to generate their assoc ia ted  mappings @f. Thus 
we see  that  a means of replication of the components Ri of an 
(M, R)-system, very similar i n  nature to the one postulated sepa- 
rately by N. Rashevsky (1958) is  already contained within the 
formalism we have developed above, and requires the introduction 
of no new assumptions.  It  should be emphasized,  however, that 
the above discussion of replication was introduced primarily to 
demonstrate the scope of our abstract  formulation, and not neces-  
sarily as  a definitive presentation of the ideas  outlined therein. 

II. The Time Lags. We recal l  from our earlier d iscuss ions  in (I) 
and (II) that every system inherently posses ses  two different types 
of time lags; namely, the operation lags, caused by the actual  func- 
tioning of the components, and the transport lags, which arise from 
the delays occas ioned by the moving of materials or other stimuli 
from the neighborhood of the components which produce them to the 
neighborhood of the components to which they serve  as inputs. We 
have already noticed in (I) that  both types  of lag depend on both 
the structure of the given system and the nature of the environment 
in which the system is  operating. The formalization we have de- 
veloped above makes i t  possible  for us to define these  lags (in an 
(M, R)-system) in a more precise  fashion, and faci l i ta tes  our in- 
vest igat ion of the possible  relation of the time lag structure to the 
behavior of actual biological systems.  

We shall be concerned below with abstract  (M, R)-systems satis-  
fying the conditions laid down in Section I above. Le t  us suppose that  
f represents  a mapping in a certain abstract  (M, R)-system; we have 
observed that the time lag of the component represented by f de- 
pends on the particular input on which f is acting. That is, each 
object in the domain of f (i.e. each possible input to the component 
which f represents) will be associated with some positive real num- 
ber, which corresponds to the operation lag of the component in 
question when the given object is the input to that component, in 
more formal terminology, we see that the time lag associated with 
the operation of a component is a mapping, the domain of which 
coincides with the domain of the mapping f which represents the 
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component, and the range of which is  contained in the s e t  R + of  
non-negative real numbers. If we denote this mapping by rf, we 
have 

r f : d ( t )  --~ R +. 

Naturally, similar considerat ions apply to the operation lags of the 
systems Rt, and represented by the mappings apr. We shall allow 
the value ~ as an admissible operation lag; as mentioned in Sec- 
tion I, a useful art if ice for formally extending the domain of a map- 
ping f to a larger set  A ~ d( f )  is  to replace f by a mapping f" such 
that  d( f , )  = A, with  the property that  f(x)  -- f ' (x )  for xed( f ) ,  and to 
write rf(x) -- rf.(~) for ~ d ( f ) ,  rf.  (x) = oo otherwise. 

The transport  lags are somewhat  more complicated to represent ,  
owing to the fact  that, speaking roughly, they depend in general 
both on the component of origin and the component of destination,  
as well as on the particular material  or stimulus involved. The 
most natural  way of dealing with this problem seems to be the fol- 
lowing: let  F be the car tes ian product of the se t  of mappings of the 
system bl of an abstract  (hi, R)-system with i tself .  For each inde- 
composable se t  A eb4, we consider the car tes ian  product F x A (i.e. 
the se t  of all tr iples of the form (f, g, a), where f, geM, a~A). Vie 
define the transport lag aAf'g of the elements of A between the com- 
ponents of bl represented by the mappings f, g respect ively  to be a 
mapping 

aAf, g :F  •  ~ R + 

subjec t  to the following conditions: 
1. aAf.g - oo if A is  not  a factor of d(g). 
2. v Aa f.g oo if A is  not contained in r ( f ) .  
3. aA f ' f  0 if  (1) or (2) does not hold. 

The first  two conditions express the fact that if  the elements of the 
set  A ~ hi fail to be either inputs of the component represented by g 
or outputs of  the component represented by f, then the transport lag 
between f and g of the elements of A is  not defined (i.e. is  infinite,  
for formal purposes); the third condition expresses  the fact  that the 
transport lag of the output of a component to the component i t se l f  
is zero. With these  conventions,  we obtain a general definition of 
the transport lag structure of abstract  sys tems which is  consonant  



120 ROBERT ROSEN 

with physical intuition, and which will be flexible enough for later 
applications. 

Let us now attempt to investigate in what manner the study of 
the time lag structure of an abstract (M, R)-system may throw light 
on other aspects of the system's behavior. In particular, we desire 
to extend our discussion of the relations between the time lag 
structure and the "morphology" of abstract systems which was un- 
dertaken in (I). In order to do this, we must first make some as- 
sumption which serves to connect the two aspects of the structure 
of these systems. There is, naturally, a wide variety of possible 
assumptions which can be made in this context, each one corre- 
sponding to what N. Rashevsky (1956) has called a "system of ab- 
stract biology." Hence it should be recognized that the tentative 
assumptions we put forward below are meant primarily to illustrate 
the type of results which may be obtained from these lines of thought, 
and therefore should not be considered as final. 

We make the following assumptions: 
LI: The transport lag aA f'g is directly proportional to the physi- 

cal distance between the components represented by the 
mappings f and g; the constant of proportionality may vary 
with the particular a eA involved. 

In symbols, if we write p(f, g) for the distance between the com- 
ponents represented by f and g, this hypothesis becomes 

oAf, g(a) -- k ( a ) . p ( f ,  g). 

Of course, this hypothesis is meaningful only if the transport lag 
aAf, e is defined (i.e. finite). 

L2: If aAf'el and aAf.g~ are both finite, then the elements of A 
(which are outputs of the component represented by f) always 
go to the component, the representative mapping of which 
(either gl or go) gives the smaller of aA f'gl, aAf'g~. 

Physically, the assumption (L2)may be expressed as follows: the 
finiteness of aA f~ and aAf'e~ means, by definition, that the set  A 
serves as a factor of both d(gl)  and d(g2). By Assumption (L1), 
these lags are measures of the distances p(f, gl), P (f, g2), since 
in this case the same output a is being delivered by f to both gl 
and g2" Therefore, Assumption ( L 2 ) i n  its widest form requires 
that the output of a component of an abstract system is delivered in 
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full to the nearest component which is capable of accepting it as 
an input. 

L3: ("Principle of Optimal Design") If f, gl ,  g2, " " ,  gn are 
mappings of an abstract system such that the sets r(g~) are 
contained in the factors of d(f) ,  and each factor of d( f )  con- 
tains one of the r(gi) , then the components represented by 
these mappings are spatially distributed in such a fashion 
that 

g t , f  : O g a ' f  g n ' f  
ar(g t) rCg 2) ---- . . .  ---- Or(gn) " 

This principle specifies that if the mappings of a system are non- 
contractible (as we always assume; see (I)), then there are no ex- 
traneous "waiting lags"  caused by the failure of inputs to arrive 
"on time." 

Assumption (L3) is a precise formulation of the notion of op- 
timality which was discussed in a more intuitive fashion in (I), 
Moreover, it seems to be a natural extension to cellular systems of 
the ideas of optimality developed by N. Rashevsky ("Principle of 
Maximum Simplicity") in his discussions of morphology (1948), and 
considerably extended by D. L. Cohn (1954, 1955). 

The assumptions (L2) and (L3) are no doubt excessively restric- 
tive, but we remind the reader that they have been introduced pri- 
marily for illustrative purposes. Thus, for example, a more realis- 
tic assumption along the lines of (L2) would be to assume that, if 
a component represented by a mapping f has the property that r ( f )  
is a factor of the domains d(gl)  and d(g2) , where gz, g~ represent 
other components of the system, then there is a distribution of the 
output of f proportionately between gl and g2 depending on their 
relative distances from f. Likewise, a less stringent condition of 
type (L3) would require, instead of equality between the transport 
lags a,~'f) ,  that arbitrary differences of these lags should be 

�9 ~ * �9 �9 

smaller ~n absolute value than some preassigned positive number, 
which depends in general on the mapping f; i.e. 

u r ( g i )  - ar(gj ) 

for each i and j. For the present discussion, however, we shall re- 
tain (L2) and (L3) in their present form. 



122 ROBERT ROSEN 

Let us now investigate in what manner the assumptions (L1)- 
(L3) affect the structure of an abstract (M, R)-system. Lot us 
therefore suppose that a definite such system, which we may de- 
note by A, has been given. Then according to our previous discus- 
sions, we can find an abstract block diagram for A, which we shall 
denote by the same symbol A, and which consists of a certain num- 
ber n of mappings of type f, and hence also n associated mappings 
of type r Since the range of each mapping (of either type) is an 
indecomposable set of the category (see (II)) in which our repre- 
sentation of A is carried out, there must be at least  n indecom- 
posable sets in the category (excluding the indecomposable sets 
which represent the purely environmental inputs to the system, and 
which are assumed to have zero transport lag). 

We observe that if there exists an indecomposable set  Ate ~ r(/) 

(for some leA), such that Ate is a factor of the domain of two dis- 

tinct mappings gl ,  g2 cA, then (L1) and (L2) imply that, for the 
system to function properly, we must have 

p(f, gl)  -- p(/, 

Otherwise, the total output of f will go to the "nearer"  of g , ,  g2; 
thus the "farther" of gl,  g2 will by non-contractibility produce no 
output, and ultimately the entire dependent set of this mapping 
(see (I)) will fail to be produced. 

As a simple example of the type of conclusions which may be 
drawn from this last  argument, let us suppose that Ate represents 
an environmental output of M such that A~o is a fac_tor of the do- 

main of each mapping r  fEM. Suppose that A~o D_ r(f), say. Then 
by the above, we must have 

p (~ (I)f) -- constant 

for each feM. Recalling the physical significance of the objects 
involved, this condition signifies, roughly speaking, that the com- 
ponents corresponding to the mappings r  to the " s y n t h e t i c "  
or "repair"  structure of the system A) is spatially distributed in a 
spherical fashion about the component represented by the mapping 
~. If we were to attempt to regard a free-living single cell as be- 
ing, to a first approximation, a system of (M, R)-type, then it  would 
be natural to associate the mappings fe M with biological functions 



RELATIONAL THEORY OF BIOLOGICAL SYSTEMS 123 

carried out by what is normally called the cytoplasm, while the 
mappings r  would be associated with nuclear biological func- 
tions. If the cellular system also obeyed the laws (L1)-(L3), then 
the structural implication for the cell would be that the nuclear ma- 
terial (as observed cytologically) is distributed spherically around 
what would ordinarily be regarded as a purely cytoplasmic com- 
ponent. Hence this model implies an intimate relation between 
what we habitually caI1 "nuc leus"  and "cytoplasm"; in terms of 
relative biological activity, our model suggests the presence of 
certain biological activities which would usually be associated 
with cytoplasm, lying within the cytologically observed region as- 
signed to the nucleus. It is in fact well known (cf. for example 
Allfrey, Mirsky & Osawa, 1957) that isolated nuclei do carry out 
such cytoplasmic activities as the synthesis of proteins and the 
generation of high-energy phosphate bonds. 

Let us now carry the above construction one step further. Sup- 
pose as above that A~o represents an environmental output of M 
which factors the domain of each mapping dP I of the system A. 
Suppose in addition that there exist environmental outputs A~I , 
A ( 2 , . . . ,  A~ r of M such that, for each mapping aPfeA, exactly one 
of the sets Ail ,  Ai2, . . . ,  A~r factors d((bf). This process in ef- 
fect decomposes the set of mappings l(I)ilf~ M into r c lasses ,  the 
mappings in the k th class being such that At k is a factor of their 
domains. From what we have already said above, it follows that 
the mappings in the k th class must lie on a sphere Sk, such that 
the component which produces the output of /d represented by the 
set Ai k lies at the center of S k. But we have soon that  every 
mapping e l ,  regardless of its class relative to the sets Ail ,  Aiu, 
�9 . . ,  Air, must already He on the sphere S o the center of which is 
the component which produces the output A~o (since by hypothesis 
the set A~o factors the domain of every mapping el) .  Hence the 
mappings Cf in the k th class are restricted to lie on the intersec- 
tion of the sphere S k with the sphere S o. This intersection is a 
circle; the important thing to notic% however, is that the circle is 
a one-dimensional manifold. The fact that this model requires the 
"gene t ic"  material of the system A to lie along one-dimensional 
manifolds is suggestive of the linear arrangement of the hereditary 
material found uniformly in all types of organisms. Our model al-" 
ready incorporates the feature that the mappings dpf are not ran- 
domly distributed along the sphere So, but are organized linearly 
according to their inputs and outputs according to the rules (L1)- 
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(L3); this structure may be related to a conjecture of M. Demerec 
and Z. E. Demerec (1956). These  authors sugges t  that the linear 
arrangement of the genetic  material of ce i ls  may be connected with 
the exis tence  of a sequence of  coupled chemical react ions,  each 
of which is  mediated by an enzyme controlled in turn by a particu- 
lar gene in the linear array. The reaction sequence  is  arranged in 
such a manner that the ith reaction of the sequence  is mediated by 
the enzyme controlled by the ith gene in the linear array. We shall 
not, however~ pursue this point any farther at this time. 

It should finally be noticed that the bas ic  character is t ics  of the 
above model are not greatly affected by a weakening of conditions 
(L2) and (L3) along the lines mentioned previously on p. 121, The 
reader may readily convince himself that the principal e f fec t  of 
such a weakening will be to introduce a " s p r e a d "  about  the inter- 
sec t ions  of the various spheres  which we have designated by SG, 
S~k above; within reasonable limits~ this spreading of circles  into 
tori does not affect  the conclus ions  we have drawn from the model. 

These  simple resul ts  already indicate the directions in which a 
theory of the type developed above may lead. As remarked in (I)~ 
the segregation of the synthet ic  material into nuclei by living ce l l s  
is one of the most commonplace observat ions of biologyj and ye t  i s  
one for which no theoret ical  just i f icat ion of any kind has been pro- 
vided. We emphasize once more that the above very simple con- 
siderations should not be taken too ser iously in this regard; they 
were presented primarily for their heurist ic  value~ in pointing out 
the poss ib le  usefulness  of some of the methods developed above.  
However~ the fact  that our resul ts  are for the most part invariant 
under a loosening of some of our hypotheses  may indicate  that by 
imposing more real is t ic  conditions on the time-lag structure of 
(M,R)-systems,  we may obtain resul ts  in closer  accord with ob- 
servation.  

Let  us now turn our attention to certain other a spec t s  of the 
physical  structure of (M,R)-systems~ which may be inferred from 
the hypotheses  (L1)-(L3).  We propose to invest igate  the relations 
between the abs t rac t  block diagram of the (M, R)-system A and the 
number of i ts  poss ib le  different optimal real izat ions.  To  begin 
with, let  us consider a s ingle mapping of type CfcA and let  us 
suppose that 

d ( r  xA~ 2 x. . .xA~ 
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and A~ k ~- r(f~ k) for k = 1, . . . ,  s, where the fi k are terminal map- 
pings of M. If the entire system A begins to operate at time t = 0, 
we shall denote the time at which the first element of the set Ai k 
produced by the system appears as T~ k (thus Ti k is, roughly speak- 
ing, the time elapsed between environment and output). Each Tik 
is readily seen to be a sum of operation and transport lags in M. 
The non-contractibility of the mapping Cf implies that the com- 
ponent which corresponds to Cf cannot begin to operate (to produce 
a replica of the component corresponding to the mapping f, or some 
related structure) until the time 

f i l '  ~ f  
m a x  ( T i  ! + a A i l  , 

fi2' ~f a f i s '  
Ti2 + aAi2 , . . . .  , T i s+  A i s  ~f). 

If we now assume that the system A is optimal (i.e. that the condi- 
tion (L3)is  satisfied), we must have 

= a A f i2'~f  a f ls ,  ~ f  T i l  + a A f i l ' ~ f  T. + ffi ,= Tis  + 
tl" t~ i2 " * ~ A i s  

This is a set  of s -  i conditions on the operation and transport 
lags of A. 

Thus we see that, using the hypothesis (L3), the abstract struc- 
ture of the block diagram of an (M, R)-system, we impose condi- 
tions upon the time lag structure of the system. Let r represent 
an arbitrary mapping of an (M, R)-system (i.e. of type f or of type 
e l ) .  We shall denote by q(~0) the number of factors of the domain 
of cp, which do no t  represen t  purely  environmental  inpu ts  (i.e. fac- 
tors which contain the ranges of other mappings of the system; 
those are the only typos of set  which impose conditions on the time 
lag structure). Then we observe immediately that precisely the 
same argument as given above implies that for each mapping f eM,  
the mapping r implicitly imposes a total of q ( e l ) -  1 conditions on 

A, and hence there are ~ ( q ( r  1) ffi ~ .  q ( r  conditions 

feM feM 

on the lags of A, due to the mappings e l  alone, (where n is the 
number of mappings in M). To enumerate the number of conditions 
placed upon A by the mappings feM, we observe that for the map- 
pings f, a s  for the mappings Cf, q ( f )  non-environmental factors in 



176 ROBERT ROSEN 

d( f )  implies a total of q(f )  - 1 conditions on the lags of M. Hence 
the assumption of hypothesis  (L3) imposes a total of 

2 .  (q (r - 1) + 2. .  (q (/) - 1) -- _ ~ (~ ( r  + q (f)) 2 n 

IcM feM feM 

conditions. 
In a somewhat similar fashion, the hypothesis (L2) also imposes 

a number of further conditions on A. More precisely,  let A be a se t  
in A which represents a non-environmental input to some component 
(i.e. A ~ r(~b) for some mapping ~b ~A). ,Let us denote by p(A) the 
number of mappings c~eA such that  A is a factor of d(c~). Then the 
same line of reasoning which we have employed above shows that  
there must be a total of p (A) - I conditions imposed on A by each 
such se t  A, and hence there will be 

] .  (p(A) - 1) 
AeA 

conditions on the lags of A by the hypothesis  (L2). Since there 
must be n such sots ,  we find that  this number can be written 

A ~A 

Final ly ,  there are n further conditions to be imposed on the lags of 
A i f  we make our usual  assumption concerning the finite life-time 
of the components of A (see (1) for the details) .  Combining all of 
these conditions, we find that we have a total of 

~ .  [q ( / )  + q(r + ~ .  p(A) - ~ n  
fez A eA 

separate conditions on the time lags of A. 

It  is clear that  i f  n :is the number of mappings in the system lit of 
A, then there are a total of 3n lags in A, of which n are transport 
lags, and 2n are operation lags due to the action of the compo- 
nents represented by the mappings f and q)f. Combining this in- 
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formation with what we have previously obtained, we find that we 
are confronted with two possibilities: 

1. Z [q ( f )+  q(r + E p ( A ) - 2 n < 3 n ;  
I~A A ~h 

2. E [ q ( / ) +  q(r  E P ( A ) - 2 n > 3 n "  
[~A A~A 

If the first possibility is realized, then we have too few conditions 
to completely determine the lag structure, and hence there are 
many (in fact, infinitely many) different optimal forms which the ab- 
stract (M,R)-system A can assume. Furthermore, since the given 
conditions only tell us ho~e many of the lags we may solve for, but 
not which ones, it is entirely arbitrary which lags we choose to 
solve for, and which ones we choose to select  at random. Hence 
we discover a great latitude in constructing different optimal forms 
of the same abstract system; we may choose to completely fix the 
operation lags of the system (if we have a sufficient number of 
conditions), thereby obtaining systems which differ in the relative 
distances between components, or we may choose to leave certain 
operation lags undetermined, thereby opening up the possibility of 
choosing different physical realizations for the same component 
(cf. our discussion of "amplif ier" in (I), p. 247). Thus, a study of 
what we may call the "morphology" of abstract (M, R).systems of 
this type is of a degree of complication approaching what we have 
become accustomed to in the study of actual biological systems. 

If the second possibility holds, we face the existence of two 
further sub-possibilities; namely, either all the conditions imposed 
on the system are all independent, or else they are not indepen- 
dent. If the conditions are independent and the equality sign holds, 
then there is exactly one optimal form for the system in question. 
If the conditions are independent and the inequality holds, then the 
system in question cannot be put into an optimal form. If the con- 
ditions are not independent, then the total number of independent 
conditions among them must total less than 3 n in order for optimal 
systems to exist in great numbers. In systems of the type dis- 
cussed above, it  is immaterial whether the imposed conditions are 
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independent  or not, s ince the total i ty of conditions is  already less  
than the number of lags of the sys tem.  

Thus we see  how the principles which we have advanced above 
may enable us to make inferences concerning the structure of 
physical  real izat ions of abs t rac t  sys tems,  using the abs t rac t  struc- 
ture alone. As we have emphasized above,  i t  is  not the spec i f i c  
form of the principles which we have labeled (L1)-(L3) above 
which is of primary interes t ;  i t  is  the fact that such principles can 
lead to useful  results  that  is  of s ignif icance.  We emphasize again 
that the above d iscuss ion  is  presented primarily as an example, to 
i l lustrate in what manner similar, but more real is t ic ,  principles can 
be used to obtain resul ts  of a theoret ical  nature which may have 
general biological  importance. 

The author is  indebted to Professor  N. Rashevsky  for a thorough 
d iscuss ion  of the manuscript. 
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