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Communica ted  by John J. Benedetto 

ABSTRACT. Gibbs' phenomenon occurs for most orthogonal wavelet expansions. It is also shown to 
occur with many wavelet interpolating series, and a characterization is given. By introducing modifi- 
cations in such a series, it can be avoided. However, some series that exhibit Gibbs' phenomenon for 
orthogonal series do not for the associated sampling series. 

1. Introduction 

Gibbs '  phenomenon, which involves overshoot of  the partial sums of a series approximation 
to a function with a jump discontinuity, has been recognized for about a century. It was originally 
formulated by Gibbs for Fourier series [6], but also exists for other orthogonal expansions as well 
as for integral transforms [3, 12]. It was shown by Kelly [9] to occur under certain conditions for 
orthogonal wavelet approximations. Shim and Volkmer [14] then showed that these conditions for 
Gibbs '  phenomenon to exist are satisfied for all reasonable wavelets. 

When we turn to sampling (interpolating) series rather than orthogonal series, few results are 
known. Recently, Helmsberg [8] has shown Gibbs'  phenomenon occurs for Fourier interpolation. 
One of us [ 13] has shown it also exists for interpolating series in some wavelet subspaces for functions 
continuous on the right. Also, Gomes and Cortina [7] have some results related to convolution 
integrals. But to our knowledge no other results involving interpolating series are known. 

In this work we extend these results to other wavelet interpolating series. We shall show that 
it occurs for many of the standard wavelets, but not for all. We shall characterize it by a condition 
for interpolating series similar to that in [9] for orthogonal series. 

We calculate an approximation to the amount of  overshoot in certain cases. We then show 
that Gibbs '  phenomenon can be avoided by using an alternate interpolating series. For certain 
cases, notably for Franklin wavelets and Daubechies wavelets with four taps, it does not occur for 
interpolating series even though it does for orthogonal series. 
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2. Background 

The prototype of an interpolating or sampling series is the Shannon series 

s in  ~r(t - n )  
fo(t) = ~ f (n )  

zr(t - n) 
n ~ - - o o  

It interpolates exactly a function f e L2(~) which is ~r bandlimited. Such functions belong to the 
Paley-Wiener space Br of entire functions of exponential type < ~r. The function ~ (t) = sin 7r t/Jr t 
may also be considered the scaling function for a wavelet system, i.e., 

(i) {~(t - n)} is an orthonormal sequence 

(ii) ~(t)  = )-'~-~=-oo ck~(2t - k) for some ck E l 2 

(iii) the closed linear span of {~(2mt - n)}n,m~Z is L2(R) 

Most wavelet systems lead to similar sampling series [ 15]. However, in such cases a distinction 
must be made between the sampling function S(t) and the scaling function ~(t) .  In the Shannon 
case above, they are the same. Each wavelet system has an associate "multiresolution analysis" 
consisting of a nested sequence {Vm} of subspaces of LE(R) where the space Vm is the closed linear 
span of {4~(2mt - n)}n~z. A continuous function in L2(R) may be approximated by its projection 
onto Vm or by its sampling (i.e., interpolating) series in Vm. These are not the same even for the 
Shannon system. The former may exhibit Gibbs' phenomenon while the other may not. We shall be 
concerned only with the latter, whose properties are not, however, so well known. 

We shall assume throughout that ~(t)  is a continuous orthonormal scaling function such that 

(i) q~(t) = 0(Itl -#)  as t ----+ -boo, fl > 5/2, 

(ii) ~*(~o) = E q~(n)e-iWn ~ O, w E R .  (2.1) 
n 

Then it was shown in [15] that there is a sampling function S(t)EVo such that for each fEVo 

0;2 

f ( t )  = ~ f ( n ) S ( t - n ) ,  tER.  
n ~ - - ( X 2  

These sampling series can be used to obtain an approximation in Vm for each continuous f~L2(R). 
It is given by 

OO 

:m t) = : (2-ran) S(2 t- n). (S) 
/ 1 ~ - - O O  

It was shown in [13] that fro(t) -+ f ( t )  uniformly for f E H  ~ (the Sobolev space) for o~ > �89 This 
required an additional hypotheses on r that it belong to Zx, which can be shown to be true for 
which satisfies (i) and (ii) above [15]. 

In order to study the Gibbs' phenomenon, we require that f be piecewise continuous and in 
L2(R). We shall also suppose that a jump discontinuity be at a dyadic rational number, so that by 
translation we can take it to zero, which we do. The spaces Vm are not translation invariant for 
irrational translations in general. We shall also assume the jump is in the positive direction, i.e., that 
f(O +) > f (O-) .  If there is a sequence t,,, $ 0 such that 

fin (t,n) -+ 7/+ > f (0 +) (2.2) 

then the sampling series exhibi~ Gibbs' phenomenon on the right-hand side of O for the function 
f (and similarly on the left-hand side). We shall simply say "Gibbs right" and "Gibbs left" for 
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these two cases if they hold for any function with such a jump at 0. We shall see later that these are 
independent of the particular function. 

There is a possible source of ambiguity in our series (S) at points of discontinuity. By changing 
the value of f (0) ,  we could change Gibbs fight to Gibbs left and vice versa. This was avoided in [13] 
by assuming that f ( t )  = f ( t  +) for all t~N. However, this assumption is unnecessarily restrictive 
and by eliminating it, we can sometimes avoid Gibbs left or right. We shall, however, always suppose 
that 

f ( O - )  < f(O) < f ( O  +) 

to avoid pathological behavior. 
The sampling function S( t )  is related to the scaling function $(t)  by 

$(w) wER (2.3) 
s(w) = F.~ ~(w + 2Jrk)' 

where fdenotes  the Fourier transform of f .  The denominator in (2.3) is assumed not to vanish. All 
such S( t )  have the properties [16]: 

(i) f2~176 S(t)dt = I 

(ii) Y~=_~  S(t  - n) = 1 

(iii) Y'~k'S(w + 2zrk) = I 
1 oo 

(iv) ~- f2~'~(w)dw = 1 

(v) S( t )  = O(Itl -z) 

The last property is obtained from the fact that the second derivative of 

E ~ ' ( w  + 2rrk) = E c D ( n ) e - i W "  

k n 

is in L2(0, 2Jr) N C and so is its reciprocal. Hence, 

S(t)  = Z anq~(t - n) 

has coefficients such that {n2an}Ee 2 [15]. 

2.1 The  S h a n n o n  Case Revis i ted 

The Shannon system, although it serves as a prototype, does not satisfy the hypotheses of the 
theorems about Gibbs' phenomenon in [13] and [14]. The formulae, however, are rather simple 
and may be used to show directly that Gibbs occurs for both sampling series and orthogonal series. 
In this particular case the sampling function S( t )  = ( s i m r t ) / : r t  = ~(t), the orthonormal scaling 
function. However, the sampling approximation to a continuous function is not the same as the 
orthogonal projection since the coefficients need not be the same. Nonetheless, both cases can lead 
to Gibbs' phenomenon for functions with jump discontinuities at 0 and the overshoot calculated. 
Indeed in [14] it was shown that the overshoot is exactly the same as for Fourier series in the case of 
orthogonal approximations. We can also calculate it for sampling series. 

Sampl ing  Overshoot  
We shall use the function h given by 

s g n t - - t  , 0 < l t l < l  
h( t )  = oe , 0  = t 

0 ,1 < Itl 
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to investigate Gibbs at t -- 0. Its sampling approximation is given by 

2 m -- | 

hSm(t)=~ + Z ( 1 - n 2 - r n ) [ s ( 2 m t - n )  - S(2mt + n ) ] .  
n = l  

(2.4) 

IfhSm(tm) --+ y+ > h(0 +) (or hSm(-tm) --+ y -  < h(0-)) where tm$ 0, we have Gibbs fight 
(or Gibbs left). By taking tm= 2 -m-l ,  we find that 

hSm (2 - m - l )  = o ~ S ( 1 ) + 2 ~ 1 ( 1 - n 2  -m) [ S ( ~ - n ) - S ( ~ q - n ) ]  

n=l 

= ~--  + Z (1 --n2-m) __(--1) n 1 1 
Jr rr - -n l + n  

n = l  

2~ + 2 ~ ( -1)  n 1 2n 1 + 2n + ~ n 2 1 7l' ~ - -  - - -  
n = l  n = l  4 

[ ] [ 1  2o~ + 2 -1  ( -1)  2''-1 2 -1  + 
7r Jr 1- -2  1 +2m+l --2 +2m:n " 

2 
--+ - - (o r+ l )  as m--->c~. 

Similarly we have 

:m m 
71" 

Thus, we have Gibbs fight whenever ~ > -~ - 1 and in particular for h continuous on the fight (~ = 1). 
4 In this case the overshoot is ~- - 1, which is greater than that for the orthogonal approximation. 

7l" This does not however imply that Gibbs' phenomenon fails to exist on the right for ~ < i- - 1. 
In order to show that it does, we consider other sequences of the form tm = a2 -m for some a > 0. 
Then by calculations similar to (2.5) we find that 

2 - - t  1 �88 
Z n 2 _  
n ~ |  

(2.5) 

h S (a2 -m) 
(x) 

c~S(a) + y~.[S(a - n) - S(a + n)] 
n = l  

= orS(a) - S(a) + 1 - 2 Z S(a + n) 
n=l 

(2.6) 

Thus, we have Gibbs fight if the last expression in (2.6) > 1, i.e., if 

oo 

(or - 1)S(a) > 2 Z S(a + n) .  
n = l  

For intervals in which S(a) is positive we find that 

oo S(a + n) 
or> 1 + 2 Z  S(a) - -  = ~ ( a )  ( 2 . 7 )  

is sufficient for Gibbs fight, with the opposite inequality giving it for negative S(a). If S(a) = O, 
then a is a positive integer, and (2.6) is equal to 1, so that Gibbs fight does not occur. The fight-hand 
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side of  (2.7) may be expressed for S(a) ~ 0 as 

~(a)  = 
c~ sin z r a ( -  1)" rra 

E 1 + 2 zr(a + n) sin ~ra 
n=l 

oo (_1 )  n ~ (_1 )  n 
= l + 2 a E ~ =  l + 2 a  E 

n=l a W n  ,=0 a + n  

oo (__1) n 

= - 1  + 2 a  Z 
,=0 a + n  

= - 1  + 2aft(a) 

2a 

(2.8) 

where f l(a)  = Y~=0 (-1)" = f01 t . - '  -oo e . . . .  f a+, T-i? d t =  Jo l-f~7 =-~dw or a > 0. We use this to find (2.7) 

~(a) fo ~176 e -aw = - l + 2 a  l + e _ w d w  

e -aw 1 .i ~ _ 2 a f o  ~176 e -aw e - W ( - d w )  = - 1  + 2 a - -  - -  
- a  l + e -w 0 - a  ( l + e - W )  2 

2a 2 a [ =  e-aWdw 
= - l + ~ a a  + a Jo (e-W~ 2 + e w / 2 )  2 

fo e~ e -aw 
= 2 4 c o s h Z w / 2 d w  > O. 

(2.9) 

From this expression it is also clear that se(a) converges to zero monotonically as a > o<~. 
From (2.8) we see that ~(0) = 1 and ~(1) = 2 log2  - 1. 

Now S(a) is positive when aE(2n, 2n + 1), n = 0, 1 . . . . .  and for each ~ > 0 we can find an 
a such that S(a) > 0 and ot > ~(a).  Similarly for each ot < 2 log 2 - 1, we can find an a such that 
S(a) < 0 and ot < ~e(a). Hence, for all values o f ~ ,  Gibbs right exists and by a symmetric argument 

so does Gibbs left. 
We can use these results to obtain similar ones for other functions with a jump discontinuity 

at 0. Indeed let f be such a function such that f ~ c l [ ( - ~ ,  0) t.J (0, ~ ) ]  and suppose both f and 
f '  can be extended to L2(R) by assigning some value at zero. Then g given by 

g(t) = f ( t ) - f ( O + ) h ( t ) - t h ( t ) [ f ' ( O + ) +  f ( O + ) ] ,  t > O  

g(t) = f ( t ) + f ( O - ) h ( t ) + t h ( t ) [ f ( O - ) - f ( O - ) ] ,  t < 0  

g(O) = 0 ,  

is continuous on all of  R and geL2(R)  while g' is continuous near zero and g'EL2(R).  Thus, 
g~H 1 (R), the Sobolev space. 

L e m m a  1. 
Let gEHI(R) ,  then the Shannon sampling expansion of  g, 

gin(t)= Eg(n2-m) s(2mt-n), 
n 

mEZ, t ~ R ,  

converges uniformly to g(t)  on R as m > oo. 

P r o o f .  The error is given by 

i F - -  [g'm (w) -- ~'(w)] eiWtdw 
gm(t) - g(t)  = 2zr oo 
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= 1 [ 2tort [~m(m) ~.(w)A.~.(m)_g(to)]eitOtdt 
2re d_2mrt 

1 {fT"~ f ~} 2or + g(w)eiWt dw 

where ~* (w) = )--~o=_eo ~'(w -4- 2m2rrk) is the periodic extension of~'(w). Note that g'm has support 
in [-2m~r, 2m:r] and 

o o  

~ffm(W) = E g(2-mn) e-iw2-mns(w2-m) 2-ra 
n ..~- - -  o o  

= ~ " ( w ) ~ ( w 2  -m) = ~ ' (w) ,  i,ol < 2m,~, 

by the Poisson summation formula. Hence, we have 

1/"+s:/ Igm(t) -g( t ) l  < ~-~ a--2mrr o--eo "~r 

= i2zrl a--2m~r[ 2mn k~kOEg(to + 2 m 2 o r k ) d w + l ~  {f-eo2m'r+_ L eO [~'(W)I dw 

11:..+:1 = - I$(w)l dw,  (2.10) 
o - - c o  m ~  

and since ~'~L 1 (N) 

(s,.<<..,.,..<_{i,.,<..,,.(..+,),..i(...+,)-l,..19 
the last expression in (2.10)--+ 0 a s m  --+ oo. [ ]  

Corollary 1. 
Let f be as above; then the Shannon expansion of f exhibits Gibbs' phenomenon on both the 

right and the left. 

3 .  G e n e r a l  W a v e l e t  S a m p l i n g  S e r i e s  

In the last section we saw that for the Shannon system, the existence of Gibbs' phenomenon 
for a function with a jump discontinuity at zero holds whatever the value of the function at 0. In 
this section we attempt to get similar results for other wavelet sampling series. In [13], Gibbs' 
phenomenon for these sampling series was studied under the hypothesis that f ( 0 )  = f (0+) .  As 
was seen by the example in the last section, this is much too restrictive since Gibbs can occur for all 
choices of f (0) .  

We shall require that the sampling function S(t) satisfies the conditions (i) to (v) following (2.3). 
These conditions are implied by the conditions (2.1) on the scaling function ~b(t), from which S(t) 
may be constructed. Because of these conditions on S(t), which are not satisfied by the Shannon 
function of Section 2.1, we are able to get local convergence results without the assumption of 
differentiality. 

These results should be compared to those for orthogonal series. The conditions in Theorem 1 
will be analogous to the conditions found in [9] for the orthogonal case, except that the integral in 
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the latter case is replaced by a series in the former. In [14] it was shown that the integral condition 
for orthogonal wavelets is satisfied for all standard wavelets, in fact for all wavelets with continuous 
scaling functions that satisfy 

4,(x) = O (Ixl -/3) Ixl -+ oo 

for some/~ > 1. We have been unable to obtain such a result for the interpolating series. If there 
is such a result it would have to be more restrictive because, as we shall see, the interpolating series 
for 2~(t) does not exhibit Gibbs while its orthogonal series does. 

Theorem 1. 
Let qb be a scaling function satisfying (2.1) and let S be the associated sampling function given 

by (2.3); let fEL2(~) be continuous except for a jump discontinuity at zero where f (O- ) < f (O) < 
f(0+). Then the sampling series (S) exhibits Gibbs' phenomenon on the right of O (respectively, 
left of O) if and only if 

OO 

[ f ( 0 ) -  f (0+)] S(a) > [ f  (0 +) - f (0-)] E S(a + n) (3.1) 
n : l  

for some a > 0 (respectively, 

O0 

[: (o-)- f(0)] S(a)> If (0+)- f (0-)] Z S(a- n) 
n = l  

for some a < 0). 

The proof involves two lemmas. 

Lemma 2. 
Let fELC~(R) be locally BV and continuous on ( -a ,  a), a > O; let frn be thg sum of the 

sampling series (S). Then for each [ -b ,  b] c_ ( - a ,  a), fm --+ f uniformly in [-b,  b]. 

Proof.  The sampling approximation fm is given by 

fro(x) = ~ f (n2-m) S (2mx - n) 
n 

/: = y ~ s ( 2 m x - n )  a ( t - n 2 - m ) f ( t ) d t  
tl 

/: = rm(X, t ) f ( t ) d t .  

We find that the measure rm (x, t) satisfies 

/? z (i) rm(X, t)dt = S (2rex  - n) = 1, x e R, m �9 Z 
O0 n 

f: z (ii) I rm(x , t ) ld t< IS(2mx-n)l<_C<~, x e e ,  m � 9  
O0 n 

(iii) Foreach y > O, ~ lrm(X, t) ldt---+Oasm >, uniformly for x �9 R 
JIx - t l > y  

It is clear that (i) and (ii) hold since S(x) = O(Ixl-2). To obtain (iii), we observe that 

[rm(x,t)ldt <  ls(2mx-n)l 
- - t l - > Y  n - -  
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< 

Z I s ( 2 m x - n ) [  = Z I S (  2 m x - n ) l  
Ix-n2 -ra I>__y 12m x--nl>_2ny 

I 

12reX -- n[ 2 + 1 12reX-hi>y2 'n 

1 

< n ~ [2mx- -n l  2 + 1  

< C ( 2 - m y - l )  2/3 

These three properties are all that is needed to prove the convergence since 

f; fro(x) - f ( x )  = rm(x, t )[ f ( t )  - f (x)]dt  
O0 

= fix + f X  = l l + I 2 -  -tl<y -tl>y 

Since f is continuous on ( - a ,  a),  it is uniformly continuous on closed subintervals. For y < a - b, 
we have 

/ I  

Iltl < [ Irm(x, t)l I f ( x )  - f ( t ) ld t  
JIx - t l<y 

Now given E > 0, choose y such that I f ( x )  - f ( t ) l  < E for Ix - tl < y < a - b and xE[--b, b]. 
Then I1 satisfies 

f; Illl < Irml (x, t)[dtE < CE 
o ~  

while Iz satisfies, by (iii) 

1121 < f Ir,,(x, t)[ 2 II f Iloo dt < ~ for m > mo .  
-tl>_y 

Hence, by first choosing y and then mo we see 

for m > m0, and xE[-b,  b]. [] 

I fro(x) - f ( x ) l  ~ CE + e 

We now can use a simpler standard function because of this lemma. We take ha to be 

sgnt,  0 < Itl ~ 1 
ha(t) : or, t = 0 

0 1 ~ l t l  

We use ha to get rid of  the jump discontinuity of  f at O. 

Lemma 3. 
Let g be given by 

(3.2) 

f ( t ) - -  f (0 + ) h a ( t ) ,  t > 0 
g(t) :=  0, t = 0 

f ( t )  + f (0-) ha(t), t < 0 

then gin(t) ~ g(t) uniformly fortE[--I/2,  1/2] as m ~ oo. 

The proof  of  this lemma follows directly from Lemma 2 if we observe that g(t) is continuous 
on ( - 1 ,  1). 
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The value of ha(t) at t = 0 did not enter into the definition of g(t) in this lemma. However, 
since it will turn out to the important, we define ha(0) = t~ to be the proportional value 

f ( O ) -  f(~ 
= 2 (3.3) :(o+)-:(o-) 

2 

Proof of the theorem. Let tm be a positive sequence such that tm "-+ 0 as m --+ ~. Then, since 
gm (tin) -'> 0, we need only consider hm (tin) in studying Gibbs right. (Gibbs left is analogous.) 

I f  Gibbs right exists at 0, then there is such a sequence {t,n } such that hm (tm) -'> y + > 1, and 
hence 

1 <hm(tm)= s(zm,m-n)+ s(amtm)- s(amtm +n 
[ n = l  n = l  

for m _> toO. We now take a = 2m~ and obtain 

2m0 2m0 

1 < hmo (2-re~ = ~ S(a - n) q- c t S ( a ) -  y ~  S(a + n ) .  
n----1 n----I 

Moreover, by taking m0 even larger if necessary we can deduce that 

1 < y~. S(a - n) + orS(a) - Z S(a + n) .  (3.4) 
n----I n = l  

This condition is also sufficient for Gibbs right since the right-hand side is equal to li mm--+oa hm (a2 -m ). 
This inequality may be expressed by using the fact that Y~.n~z S(a - n) = 1, as 

oo 

1 < 1 - S ( a ) - 2 Z S ( a + n ) + t ~ S ( a )  
n = l  

o r  
OG 

(or - 1)S(a) > 2 Z S(a + n) .  (3.5) 
n = l  

By replacing c~ in (3.5) by the expression in (3.3), we obtain the first conclusion (3.1). The second 
is obtained by using the corresponding inequality for Gibbs left, 

oo 

(or + 1)S(a) < - 2  Z S(a - n ) .  [] (3.6) 
n----I 

Corollary 2. 
Let S and f be as in the theorem and let S(t) > O; then the sampling series (S) does not 

exhibit Gibbs' phenomenon whatever the choice of f (O)  (satisfying f (O-) < f (O) < f ( 0+ ) ) .  

P r o o f .  Since t~ < 1, the left side of  (3.5) would be negative and the right positive for S(t) > O. 
Hence, the inequality cannot hold for any value o f a  > 0. Similarly (3.6) cannot hold for ~ > - 1 .  
[] 

E x a m p l e  1. The piecewise linear spline with S(t) = (1 - It Dxt- t .  11(t) satisfies the hypothesis of  
the Corollary and hence the sampling series does not exhibit Gibbs'  phenomenon. This is in contrast 
to the mean square wavelet approximation which does exhibit Gibbs '  phenomenon [14]. We shall 
see later that the same is true for the Daubechies wavelets with four taps [4]. 
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R e m a r k  1. 
In the special case ~ = 1, corresponding to f continuous on the right at O, the condition fo r  

Gibbs right " ts ~-~n=! S(a + n) < O. This can be expressed as 

o r  

oo 

1 -  ~-~ S(a - n) < O 
n = 0  

oo 

~-~ S ( a - n )  > 1 
n = 0  

which is the condition fo r  Gibbs right in [131. 
The condition (3.1) unfortunately is not easy to check. We next introduce a simpler sufficient 

condition for  Gibbs right. It involves f l I S (t )dt, which = 1 for  the linear spline case which has no 
Gibbs, but > 1 for  the Shannon case which does. [] 

L e m m a  4. 
Let S(t)  be an even sampling function such that S(t  ) > O for  It] < 1 and 

f l S ( t ) d t = y  > 1; 
1 

let f and S satisfy the conditions o f  Theorem 1. Then there is a 8 > O, such that i f  

f ( O  + ) - ~ < f ( O ) _ < f ( 0 + )  , 

the sampling series exhibits Gibbs right at O. 

Proof .  We use the well-known fact that 

F S(t  - n) = S( t )d t  = 1 , 
oo n ~ o o  

and let S+ denote the continuous functions 

oo 

S•  = ~ S(t 4- n ) .  
n = l  

Then we have 

and 

fo I fol  S+(t)dt  = S(t  + n)dt  = S( t )dt  
n = l  

F F' S_( t )d t  = S( t )dt  . 
1 oo 

Hence, by the symmetry of S(t) we find that 

f_l fo I 1 = S( t )d t  = S( t )dt  + 2 S+(t)dt  
oo 1 

and 

1 - y  ~o 1 = S+( t )d t .  
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By the mean value theorem there is an a~(O, 1) such that 

OO 

1 - y  
= S+(a) = E S(a + n) . 

2 
n = l  

The expression (3.5) then becomes 

(t~ - 1)S(a) > 1 - y 

or, since S(a) > 0, 
y - 1  

> I - ~ (3.7) 
S(a) 

This gives Gibbs right for 1 - ~ < ot < 1 for the standard function h(t) which has h(O) = ~. The 

proof in the theorem gives us the result for other functions. [ ]  

Corollary 3. 
Let S(t) and f (t) be as in the lemma, and let f (t) be continuous on the right (respectively 

left) at O. Then the sampling series exhibits Gibbs right (respectively left) at O. 

The result for Gibbs left follows from the symmetry. 

R e m a r k  2 .  
In many examples of wavelet systems, S(t) is a convex function on [-1,1]. Since S(O) = 1, 

then f~_ l S(t)dt > 1 and the hypothesis holds. [] 

E x a m p l e  2. The Meyer wavelets have a scaling function q~(t) whose Fourier transform ~(w) 
/l" 

has support on [ - J r  - E, Jr + E] for As~ 0 <A ~ < ~  and ~'(w) = 1 for wE[-r r  + ~, Jr - E].A The 

same conditions hold for S(t) since S(w) = q~(w)/c~*(w). Thus, it is possible to show that S must 
be of  the form 

f 
w+Tr 

S(w) = h (3.8) 
�9 / 1/3 - - I t  

where h is some function > 0 with support on [ -~ ,  ~] such that f h = 1. We suppose that h and 
hence S is symmetric. 

We may find S(t) by using the inverse Fourier transform which gives us 

S(t) = - -  w)eiWtdw 
2rr 

i f f ( f  ) = - -  h eiWtdw 
2rr ~o w w-~r 

1 f )  e iwt  
dw - -  2 r t  c ~ ( h ( w  - 7r) - h ( w  + Jr)) zt 

1 fx~ h(w)ei(to+Tr)t h(w)ei(W-Jr)t 

L ~ ~ f  dw 

/? �9 = h(w)e ~wt stnTrtdw 
oo 7rt 

sin~rt f f  - -  _ _  h ( w ) e i W t  d w  
y~t 

- sinTr'-----~t(l+f_:h(w)(eiWt-1) (3.9) 
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We already know that f l  1 sin ~rt dt  > 1 ; in fact, this is exactly the overshoot for Fourier series ~ 1.18. ~rt 
Hence, if we can show the last integral in (3.9) to be sufficiently small in magnitude, we will have 
shown that Gibbs' phenomenon exists. 

Let 0-2 denote the second moment of h(w) ,  

f' 0 -2 = w2h(w)dw. 

Then we have 

f f  fol sinrrt2 f t S( t )d t  = 2 h ( w ) c o s w t d w d t  
1 Jrt Jo 

f01 sinzrt f0 ~ ( w~-~ t2 ) > 4 ~ h (w)  1 -  d w d t  
- zrt 

W2t 2 since cos wt > 1 - T for Iwtl < rr/3. Furthermore, the second integral satisfies 

fo I f '  11/2 2sinzr t  fo 1 0"2 
4 Jo h ( w ) ~ - t  lrt d w d t = 0 - 2  t s i n z r t d t = - -  lr ~ 2  " 

We can find a bound on 0-2 since 
~t rr 

0-2 ~.  w2h(w)dto  < J - ~  h ( w ) d w  

and hence 

f 
l 7r 2 
I S( t )d t  > 1.179 rr z 9 > 1, 

i.e., Gibbs holds for all symmetric Meyer wavelets for functions continuous on the right or the left 
at 0. 

Example  3. The Daubechies wavelets with support on [0, 3] are defined by the solution to the 
dilation equations 

3 
(t) = ~ E ck4~(2t -- k) (3. I0) 

k=O 

where 

co = v ( v -  1) /D 

Cl = ( 1 - v ) / D  

c 2 = ( v + l ) / D  

c3 = v ( v + l ) / D  

and 
D = ~ ( v 2 +  1),  v E R .  

The standard case that has a vanishing first wavelet moment corresponds to v = -~3"  The 
sampling function for v < 0 is [15, p. 139] 

2v ~ - ~ { l + v ~  n 
s ( t )  = v - - 1  \ l - v ]  q~(t--n + 1) . 

n-~O 
(3.11) 
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Since the S(t) is not symmetric, we cannot use Lemma 4 but must use (3.5) directly. In order to do 
so, we must evaluate 

OO 

S(a + n). 
n = l  

We try a = 1. Then 

21)s j-n (~ ) 
-- v--~l . \ l - v /  dp - j  

Jmn 

We may evaluate 4~(-32 - j )  again by using (3.10). It gives us 

= ff'2~"ck~b(1 - k )  = ~f2co~b(1) 

~ v ( v - - 1 )  ( v - - l )  ( v - - l )  2 
x,'~(v 2 + 1 )  2v 2(v 2 + 1 )  

= if2 Z ck~b(3 - k) = i f2 (c14~(2) + c2~b(1)) 

\ 2v ] + \ v 2 + l }  

= d~)-~ck4,(5 - k )  = 47c3~(2) 

V(V+ l ) ( v +  1) ( v +  1) 2 
(v2 + 1) 2v 2(v2 + 1) 

(3.12) 

by (3.12) that 

S ( ~ )  -- 2..___~v ( 1 + v ~  
v _ l  { l q ~ ( 3 ) + \ l _ i " ~ ] q ~ ( ~ ) }  

2v / ( l + v ' ~  ( v - l ) 2  [ v ( v + l )  

- ~-~ i~--~-;: :~[:-7-7) I - : + 1  
We also have 

Z S + n  
n = l  

= v ~ l  \~-v/ q) + n - k  
n = l  k = 0  

} 
-- V Z l n =  1 \ l - v /  \ ~ - v ]  

2 v s  2 ( l + v ~  n-I 
-- v--- 1 ~ 2 (v 2 + 1) + \ 1 - - " ~ ]  

n = l  

(v - 1)~-~2 + 1) = \ 1  ----2-d] 2(1 + ~)2 

(v + 1) 2 / 

2 ( v 2 +  1) / 

where q~(1) and ~b(2) are also found from (3.10) and the relation ~p(1) + q~(2) = 1. Hence, we find 
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(1 + V) 2 
w 

l + v  2 

1 For v < - 1 ,  S ( I )  < 0, and hence (3.5) becomes ot < - ; .  We always have Gibbs right in this case. 
The case u > - 1  is inconclusive. 

E x a m p l e  4. 
139] 

The cubic spline 03(t) has support on [0, 4]. Its sampling series is given by [15, p. 

)"+' 
S3(t) = ~ ~ / 3 - - 2  0 3 ( t - - n + l )  

t n=0 
r n--I } 

+ E ( , ~ - ~ )  ~ ( ,+ .+ l )  
n=l 

Thus, we need to evaluate the integrals 

fo I 03, f02 03, fl 3 03, f24 03, f34 03 

which because of the symmetry of 03 are easily found. Since 03 (t) = 03 (4 - t) and 03 (t) = t 3/6 for 
O < t  < 1, we find 

fo' 03 = ~ =  o3, 

fo 2 f2 4 1 03 = 03 = ~, 
~ 3  1 11 

03 = 1 -  1"-2 = 1"2" 

Then we find 

f l S3( t )d t  = 
1 

{n~= 0 2--n 

- -  03 ( t )d t  
n=l ,~n 

§ lf13~3"1"- (G--2) f24~3-'1"- ('ffr3--2)2f34~3] 
{( 1 _- ,~ ~ - ~ ) ~ +  ~) ~ + ~ +  ~+ ~)~ 

- -  ~ ( ~ - 2 ) +  12 +i~ 

= ~/3{- .2679  + .0059 + .9166} = 1.1339. 

Hence, $3 (t) exhibits Gibbs' phenomenon at 0. 
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4.  How to Avoid Gibbs'  P h e n o m e n o n  
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The sampling function S(t) which exactly recovers f e Vo from its sampling expansion 

f (n)S( t  - n), f E Vo f ( t )  
n 

is unique for a given multiresolution analysis { Vm }. If, however, we are interested in finding a 
sampling series 

fo(t) = ~ f (n)u( t  n) i 

n 

which associates with each f ~ L2(R) tq C an element fo ~ V0, then we have more latitude. We 
still need to check that the dilations 

fro(t) = ~ f (2 - ran)u  (2rot- n) (4.1) 

converge to f ( t )  as m ---> c~. If  we can find a u ~ Vo such that 

(i) u(t) > O, t E R, 

(ii) ~ u(t - n )  = 1, t E R 
n 

u(t) = 0 (Itl - l - ~ )  as t --+ ~ ,  a > 0 ,  (4.2) (iii) 

then we have the desired result. Similar results appear in many other settings. For one that is close 
to ours see [2]. 

Theorem 2. 
Let u(t) E Vo satisfy (4.2) and let f be a piecewise continuous bounded function in L2(R). 

Then fm given by (4.1) satisfies 

fro(t) -"> f ( t )  as m ---> oo 

at each point of continuity o f f  and does not exhibit Gibbs' phenomenon. 

P r o o f .  Let t be a point of continuity; then we have 

Ifm(t) - f ( t ) l  

= ~n f (2-mn) u (2rot -- n) -- f ( t )  ~Un (2rot -- ni 

-< I s  (2- ran)  - s(t) l  u (2mt- n) 
It-2-"nl<~ 

+ i f  (2-ran) - f(t)l u (2rot-  n) 
It-2-mnl>6 

< , ~ u (2mt - :n )  
It-2-mnl<8 

+ 2[Ifll~ ~ u (2rot- n) 
12mt-nl>2m8 

i 1 I l+c t  

_< E + 2 1 1 f l I ~  ~ c 2m--A-7-t---t---t-~_n 
12mt-nl>2'n8 

= E-F0(1)  as m - - + ~  (4.3) 
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where E > 0 is arbitrary and 8 is such that I f ( t )  - f ( s ) l  < ~ whenever It - sl < 8. Thus, 
fm( t )  ~ f ( t )  as m ~ c~. To show that Gibbs '  phenomenon does not hold, it suffices to show that 

and 

CO 

~'-~ u( t  -- n)  < 1, 
n = O  

t > 0  

O0 

~ u ( t - t - n ) > O  t < 0 .  
n--1 

But both of these inequalities follow from the fact that Y'~n~176 u(t  - n) = 1 and u( t )  > O. []  

Now all we need to do is find such a function for each type of wavelet subspace. 

E x a m p l e  5. For the Meyer wavelets of  Example 1 as in [ 14], we may take 

1 2 (4) 
2n Then u 6 V0 (since f i ' (w)has support [ - - - 3 '  ~ ] ) "  

Furthermore ~'(w) satisfies ~'(0) = 1 while ~'(2~rk) = 0, k # 0. Thus, the periodic function 
is given by 

u(x  - k) = ~ ane 27rinx 

its Fourier series. But the coefficients are 

fo  I 5-" k)e- i2ninXdx an = ~ u(x  - 
k 

/? = u(x)e-2~rinXdx 
O0 

= ~(2n'n)  = 80n 

and hence ~--~ u(x  - k)  = 1. 

E x a m p l e  6. For the wavelets based on splines, the defining function On (t) is nonnegative. Since 
its Fourier transform is simply 

A ( 1  --e-iW) n+l 
o~(w) = ~w ' 

it follows that 0"n (2zrk) = 80k. Hence, by the same argument as in Example 5, this function satisfies 

y '~  On(t - k) = 1 . 
n 

Thus, we can avoid Gibbs'  by using the original B-splines. 

E x a m p l e  7. The Daubechies wavelets were left in the air in the last section for values of  the 
parameter v > - 1 .  We were unable to show that Gibbs'  exists. There is a good reason for this; we 
have the following. 

/ . e m m a  5. 
Let S ( t )  be the sampling funct ion given by (3.11)for - 1 < v < O; then S ( t )  >__ 0 (and  ~ S ( t -  

n) = 1). 
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Proof. The proof involves finding the dilation equation for S(t) from that of q~ (t) (3.10). Since 

2v ~ - ~ ( l + v )  n 
-- v ~ l  \ l - v ]  $ ( t - n + l )  

n=0  

3 
~/22v ~-~ ( l  +v~nECkdp(2t_ 2n + 2_k) 

- = 

S(t) 

(4.4) 

we need only convert the right-hand side of (4.4) to an expression involving S. But this is easy since 

v - 1S t v+ 1S( t q ~ ( t ) = y  ( - 1 ) + - ~ u  - 2 )  

for v < O. Thus, we have 

" r  + v + l ' ~  S(t) = v~-I \ l - v /  ck--~--v ) S ( 2 t - k - 2 n )  
n = 0  

v-- - i  \ l - v ]  ~ "  f ) z - - - 'dkS-Zt -Zn-k-  
n = 0  k 

~/-22v ~-~. (~=o(l+v]n ) 
- v S l  \ l - v l  dj-2n S (2 t - j ) .  (4.5) 

j=- I  

We first need to calculate the dk of which there are only five non-zero values. They are from (3.10), 
since dk ---- ck+lY-~ ---r- ck"~7,v+l 3 = x/~(v2 + 1) 

d-1 = (v- -  1)2/2D, 

( v -  1) (v 2 + 1) 
do = 

2v D ' 
dl = 0, 

d2 = (v + l) (v2 + l) /2vD, 

d3 = (v + 1 )2 /23 .  (4.6) 

Thus, the scaling coefficients yj of S(2t - j) in (4.5) are given by 

~/-22v~(l+V~ndj_2n, j = - I , 0 , 1 , . . .  

n = 0  

For j = - 1 ,  we have 
v ( v -  1) 

Y-1 = (v 2 + 1) 

while for the others we have 

(4.7) 

Yo = 1 
v(1 + v) 

Y1 = v2+l 
Y2 = 0 

2v (v + 1) 2 
F3 = v--  1 ( v 2 + l )  ' 
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and in general for j = 2p, p > 2, 

~ 2 v  [ (1  + v ~  p (1 + v ~  p-I ] (1 + v ~  p-1 
r ip= ; - [  L~,l_--~-;/ dO+ \ l _ v  ] d2 = \ , l - v /  ? ' 2 = 0  

and for j = 2 p +  1 ,p  > 1, 

-v/'22v [ ( 1  + v ~  ' + l  ( 1  + v ~  p ( 1  + v ~  p-1 ] 
r2p+l = V~- I L \ l  - v /  a_~ + \ 1  - v /  dl + \1--5--~;~/ a3 

_ ( 1  + v ~  v-1 ( 1  + v ~  p ( - 2 v ) ( v +  1) 

- \ l - v /  r3=\1------~/  (v2+a)  

We now substitute these values in (4.5) to obtain (recall D = ~/2(v 2 + 1)) 

v(v - 1) 
S(t) = ~ v 2 - ~ T ) S ( 2 t +  1) + S(2t) 

- v ( 1  + V) s(2t - 1) 
+ ( l + v  2) 

oo ( - 2 v ) ( v + l )  ( l + ~ p  
+ E  (v2 + 1) \ l - v ]  S ( 2 t - 2 p - 1 ) .  (4.8) 

p=l 

Since - 1  < v < 0,.all of the coefficients are positive. This enables us to deduce that S(t) > 0 for 
all dyadic rationals (since we know S(k) = 80k), and hence by continuity for all real t. [ ]  

Corollary 4. 
The sampling expansion does not exhibit Gibbs phenomenon for the Daubechies wavelet with 

scaling funCtion 2r (t). 
This scaling function corresponds to v = --~3 [4, p. 235], which hence has a non-negative 

s(t). 
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