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ABSTRACT. Let 

e~r i (tn 2 +2xn) v " ' s  e~r i (tn 2 +2xn) 
= lira ~ h(t,x) := p.v. E 2~rin N ~  27tin 

n~Z\{0} 0<lnl_<N 

(i = .J-L-T; t, x - real variables). It is proved that in the rectangle D := { (t, x) : 0 < t < 1, Ix I < �89 }, 
the function h satisfies the following functional inequality: 

[h<t,x,[ < ~7 h ( ~ , t )  -Pc, 

where c is an absolute positive constant. Iterations of this relation provide another, more elementary, 
proof of the known global boundedness result 

IIh: L ~ (E2)[ I := ess sup Ih<t,x)l < ~ .  

The above functional inequality is derived from a general duality relation, of them-function type, for 
solutions of the Cauchy initial value problem for Schri~dinger equation of a free particle. 

Variation and complexity of solutions of Schri~dinger equation are discussea~ 

1.  S c h r 6 d i n g e r  E q u a t i o n ,  F u n c t i o n a l  R e l a t i o n s  a n d  L ~ - R e s u l t  

Consider  the Cauchy initial value problem for t ime-dependent  Schr td inger  equat ion of  a free 
particle 

0up 1 02up 
0t - 4zri 0x 2 '  ~ ( t ,  x ) I t=o  f ( x ) .  (1.1) 

Math Subject Classifications. 42A16, 35J10, 11L07, 11T24, 33B20. 
Keywords and Phrases. Cauchy initial value problem, Schrtdinger equation, Hilbert transform, Gauss' sum, 
continued fraction, Fresnel integral, curlicue, selfsimilarity. 
Acknowledgements and Notes. The author was supported by DEPSCOR Grant N000149611003 and NSF Grant 
No. DMS 9706883. The author expresses his gratitude to Irina Mitrea, who read the manuscript and made a 
number of valuable remarks. 

�9 1998 Birkhiiuser Boston. All rights reserved 
ISSN 1069-5869 



342 K. Oskolkov 

V/ff• ~tix 2 7ri 

The Green's function of this problem is F(t, x) = e , , with ~r := e'a" = ~ and 

~/7 := i~ /~ ,  t < 0; the solution operator ~p(f; t, x) is represented by the convolution 

~ ( f ;  t, x) = f �9 l"(t, .)(x) = fE f (~)  r ( t ,  x -- ~) d~ .  (1.2) 

This representation implies a reciprocity type relation between ~/(f) and r where f 
denotes the Fourier transform of f :  

( f  1 t ) "  f (Y ) :=  fE f (x)  e-2~rixydx" (1.3) ~/(f;  t, x) = F(t, x) ~ ; t '  ' 

Starting from (1.3) and using some very basic properties of continued fractions, cf. (1.16) below, we 
derive a simplified proof, cf. [17, 20], of the following statement concerning discrete Hilbert trans- 
forms of imaginary exponentials with real algebraic polynomial of second degree in the exponent. 

Theorem 1. 
Let 

eni  (tn2 +2xn) e~ri (tn2 +2xn ) 

h(t,x) :=p.v.  ~ 2zrin := lim N --+ oo 2 zr i n 
n~Z\{0} 0<lnl<N 

Then h is essentially bounded on the real plane E2: 

[[h, z ll :=  ess  sup {]h(t,x)l: (t,x)~ E 2} < oo. (I.4) 

First we deduce from (1.3) a functional inequality of theta type for the function h, see (1.10). 
Then we derive (1.4). 

However, our main goal is not just another proof of (1.4). Rather, our intention is to demonstrate 
some deep relations which exist between objects of analytic number theory and partial differential 
equations of Schr6dinger type with periodic initial data. 

In Section 2 we provide some comments. Section 3 contains a discussion of complexity of 
solutions of the problem (1.1). 

Proof.  Assume that the initial data function f (x )  in the problem (1.1) is smooth and rapidly 
decreasing as Ixl ---> oo, say, f (x )  belongs to the Schwartz' space S of test functions. Via Fourier 
method of separation of variables, the solution ap(f; t, x) is given by 

x) = fE f (y )  erti(ty2+2xy) dy. (1.5) r  t, 

If we take the initial data f (x )  to be Dirac's delta-function 8(x), so that g(y) ~- 1, we obtain the 
Green's function F(t, x) of the problem (1.1): 

F(t,x) = (~) e ~i(ty2+~y) dy = e , (T~,) e ~ity2 dy = e , , t 7~ O. 

((7~) denotes improper Riemannian integration.) Thus, 

~ ( f ; t , x ) =  f *F(t, ')(x) = f E f ( ~ ) F ( t , x - ~ ) d ~ = l ~ ( t , x )  fE f(~)e-'"('2-Z~O d~ 

and (1.3) follows from (1.5) by inspection. 
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Let us introduce the generalized O-function: 

|  X) := ~ e ~ri(tn2+2xn) . 

nEZ 

I f t  is a fixed rational number, then the sequence of exponentials en := e 7rin2t, n E Z is periodic in n, 
and the series is summable to a linear combination of shifted 8-functions, say, by (C, 1)-means, cf. 
also (2.7) below. On the other hand, as it was observed by Hardy and Littlewood [10], for irrational 
values of t the series is not summable by regular methods. 

We understand | x) as a family of linear functionals, parametrized by t E E, over the 
Schwartz space S of test functions tp(x), x E E. By definition for ~p E S we have 

| .). r ~ fE (P(x) eJri(tn2+2xn) dx = ~ (9(-n)e 7rin2t = ~ ~(n)e ~rin2t . 
nEZ nEZ nEZ 

The role of | is clear. If the initial data function f (x) in the problem (1.1) is periodic, i.e., f (x + 1) - 
f (x), then 

~ ( f ;  t, x) ~ ~ f(n)  e Jri(tn2+2xn), 3~(n) := f (x)  e -2~rinx dx, n �9 Z. 
n~Z 

The solution ~ is represented by convolution of f with O on the period: 

/01 ~ ( f ;  t ,x) " | . ) . f ( x ) : =  | - ~ ) f ( ~ ) d ~ .  (1.6) 

In the other words, | is the Green's function of the problem (1.1) with periodic initial data. In the 
sense of linear functionals over S, | coincides with the periodization of 1" in x: 

| := ~ r ( t , x  - n) .  
nEZ 

In particular, h(t, x) represents the generalized solution of the problem (1.1) with f (x)  = 
1 2 {x}, where {x} denotes the fractional part o fx  �9 E: 

Oh 1 02h h(t ,  x )  It=o = 1 y ~  e 2zrinx 
0-7 = 4zri ax 2'  ~ - {x} = p.v. 2~rin 

neZ\{0} 

The following relation is a corollary of (1.3). It is a variant of the well-known functional 
equation for the Jacobi theta-function O(t, x), cf. (2.4), (2.5), and can be considered as a limiting 
case of the latter for 9t t ~ 0+ in the sense of linear functionals over S. [ ]  

Lemma 1. 
For each fixed t ~ 0, | x) satisfies, in the sense of linear functionals, the following 

equation: 

|  t )  or ~'-~e rri(tn2+2xn) ~ rtix2 ~-~ rri(n2+2xn) 
, = e i" e , ( . 1 . 7 )  

n~Z nEZ 

(Here and below, z* denotes the conjugate of a complex number z.) 
Indeed, let us take the initial data f (x )  in the problem (1.1) to be the periodized 8-function 

A(x) := Y'~n~Z 8(x - n). Then A(x) = A(x) (Poisson summation formula) and (1.7) follows 
from (1.3). 
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Lemma 2. 
The function h satisfies the following functional equation: 

x + h ( t , x ) = g ( t , x ) + V t t e  , +R(t ,x) ,  

where 

t # O, (1.8) 

yo x Z �9 y) g(t, x) :=  l"(t, y) dy, R(t, x) :=  - t  h* , dl'(t, y).  

Furthermore, for each fixed t > 0 the remainder term R(t, x) is a Lipschitz' function of x in 
the interval Ixl _< �89 and the foUowing estimates hold 

a) IR(t,x)l < clx147; b) 0-~xR I clxl 1 _ < ---~, for 0 < t < 1, Ixl _< ~, (1.9) 

where c is an absolute positive constant. In particular, 

I t) [h(t,x)l < ~/~ h , + c, for 0 < t < 1, Ixl __< ~ �9 (1.10) 

By term-wise differentiation of  the series defining the function h (t, x) we see that 

0(x + h(t, X))  = ~ e zti(m2+2xn) = ~) ( t ,  x )  . 
ax 

nEZ 

Of course, here we keep the convention that the derivatives are linear functionals on S. 
Keeping this in mind, we can rewrite (1.7) in the following form: 

O(x+h( t ' x ) )=I ' ( t ' x )  [l+t~---~h*(l , . (1.11) 

Let us integrate both sides of  (1.11) in the variable x and apply integration by parts to the right-hand 
side. Since h(t, x) satisfies the initial condition h(t, X)lx=O = O, we see that 

fo x fo x O---h*(l,Y) dy x +h(t ,x)  = I ' ( t , y )dy+t  F ( t , y )  ay 

= foXI ' ( t , y )dy+tF( t , x )h*(1 ,  t ) - t f o X h * ( 1 ,  Y )  dF(t ,y) ,  

whence (1.8) follows. 
In (1.8), the function g(t, x) is represented by the Fresnel integral Frl: 

r ~ "~ ( . . ~ )  fo x ertiy2dy g(t,x) = ~ e -n'y" dy = ~/~Frl* x , where Frl(x) :=  . (1.12) 
J0  

Let us estimate the remainder term R(t, x). By (1.8) and the definition o f h  we have 

[ ~(.2+~,) \ * 

f o X l  e '  R ( t , x )=  y~  rn(t,x), rn ( t , x ) :=- t  d s  
neZ\{0} 

and it is easy to see that 

( ~i(,2+2,~,)'~* Y d F ( t , y + n ) .  e , I dF(t, y) = 
/ Y + n 
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Assume tha tn  e Z \ {0} and Ixl ~ �89 Then we can integrate by parts 

rn(t,x) - t [ x  Y dF( t , y+n)  
2Jrin Jo y + n 

t ( x @ n  fo x ( y @ n ) )  I'(t,x + n) - F(t, y + n)d 
27r in 

These estimates imply 

Ie(t, xl < __~/7 
zr 

and (1.9a) follows. 

ThUS, 

Ir,(t,x)l < ~/7 x I 
- Jr n (x  + n) 

1 
n ~ Z \ { 0 } ,  Ixl ~ ~ .  

I I ~z~ t x 2,/71xl 1 4,,/71xl, Ixl < 
O} n(x Sr n) Jr n 2 x 2 < 

n n ~ l  

Further, (I .  10) is a corollary of  (1.8), (1.9a), and (1.12), because Frl(x) is a bounded function 
on E. 

Now we can finish the proof of  (1.4). 
Given a real x, denote [x], {x}, respectively, the integral and fractional parts of  x. Let (x) 

stand for the distance from x to the nearest integer taken with its sign, i.e., (x) :=  {2x} - {x}. It is 
easy to see that 

e zri(tn2+2nx) =_e 7ri(rn2+2~n), where  ~ : =  {t} ,~  : = ( ~ + x ) ;  t ,x  E E ;  n ~ Z .  (1.13) 

In particular, it is sufficient to prove that h is essentially bounded in the basic rectangle D := 

{ ( t , x ) : O < t  < l, lx] < �89 
Consider the following mapping M of D onto itself: 

This map is directly related with the continued fraction of t 6 (0, 1): 

1 1 1 1 
t = [[ql, q2 . . . . .  qra . . . .  ]] :=  - -  : - -  : - -  "-- 1 ' (1.14) 

ql+ q2 q- . . .  qrn + . . .  qt + q2+.-. 

where the positive integers qj = qj ( t ) are partial quotients of t. 
Let us iterate (1.10), using the following properties of  M, which follow from (1.13): 

M(t,x) ED; h ( 1 ,  t )=- -h(M(t ,x , ) .  

Given a natural number j ,  and a point (t, x)  6 D, after j steps we obtain the following 
inequality: 

Ih(t,x)l < ~/tlt2...tj h (MJ(t,x)) + c ( 1  + Vqi'+ ~ + . . .  + ~/t:2...tj-1) , (1.15) 

and after it estimate the right-hand side trivially: 

~/tl x@n foX d y @ n  Ix@n IF(t, y)l < ----~; + _< 2 . 
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where Mk+l( t ,  x) == M ( M k ( t , x ) ) ,  tk+l = { l }  . Note that {t} { l}  < 1, t E (0,1),  so that 

in (1.15) we have tkt~+l < �89 for all k = 1 . . . . .  Thus, 

l + q / q +  t . v / ~ + . . . + x / t i t 2 . . . t j - i  + . . .  <_c. (1.16) 

Now, assume that t is a fixed rational number. Then, iterations of  (1.15) terminate when we 
reach the bottom of the corresponding finite continued fraction (I .  14). 

1 tm+l = O, andMm(t ,x)  = Namely, one has t2 = [[q2, q3 . . . . .  qm]] . . . . .  tm = [[qm]] = q"~, 

(0, ~), where ~e is a point on the basic interval [ -  1/2, 1/2), so that h (M m (t, x) ) = h (0, ~) = �89 - {~ }. 
Thus, we see from (1.15) and (1.16) that for each fixed rational t, h(t, x) is bounded for all x 6 E 
by an absolute constant c. 

By routine density arguing, this implies (1.4). Indeed, for a natural N denote fiN(t, x) the 
(C, 1)-means of  the trigonometric series defining h: 

( ~ )  eJri(n2t+2nx)2zrin 
fiN(t, X) :=  Z 1 - 

l<]nl_<N 

The means fiN(t, x) are uniformly bounded in N, all real x, and all rational t. Simply by continuity 
of  fiN(t, x)  in t one has SupN supt,x~E IfiN(t, x)[ < Oo, i.e., the means fi are uniformly bounded on 
E, and (1.4) follows. 

Now that (1.4) is established, the estimate (1.9b) follows from (1.8), because 

OR(t'x-----~) - - 2 ~ r i x F ( t ' x ) h * ( ~ ' t )  

One also has  

fE erri(ty2+2xy) fe eZri(ty2+2xy) 
g(t, x) = p.v. 2zriy dy = lim d y ,  

e--+0; Y-roe <IyI<Y 27riy 
which means that g(t, x) coincides with the integral analog of  the function h(t, x) .  

2. Comments  

R e m a r k  1. 
An essentially more general assertion than (1.4) is also true. It was proved in [2], and inde- 

pendently by Stein and Wainger [22] that thefinite discrete Hilbert transforms 

ei(xrnr +...+x2n2+xln) 
H N (x) -~. HN (Xr . . . . .  x2, x I ) :~- Y~. 

n 
0<[nl<N 

are uniformly bounded in all natural N = 1,2 . . . .  and all real vectors x = (Xr . . . . .  Xl) E Er : 

sup sup IHN(X)I = ICr < ~ .  (2.1) 
XEE r N 

The pointwise limit H(x)  :=  limN-+ooHN(X) exists everywhere in the space E r, cf  [2]. [] 

However, the proof of  (2. I) and the pointwise convergence required complicated techniques 
even in the case o f r  = 2. The main tool was a variant of  Vinogradov's method, cf. [23] and [1], of  
estimates and asymptotic formulas for Weyl 's exponential sums. More general series of the type 

V ( f ;  x ) : =  y ~ . f ( n ) e  2ari(xrnr+'''+x2n2+xtn), . f (n) := fol f(x)e-2rtinx dx, n E Z ,  
n~Z 
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were also considered. They were called by the author Vinogradov series, or V-series, V-continuations 
o f f  ofrth degree. It turned out subsequently that V-continuations have certain noteworthy applica- 
tions to investigation of local and global properties of solutions of time-dependent Schr6dinger type 
equations. In these investigations, Vinogradov's method played a decisive role, cf. [2], [17] - [20]. 

This justified the interest in an alternative, more elementary proof of (1.4), with possibly 
minimal references to methods of Analytic Number Theory. As mentioned above, the present proof 

V~ ttix2 of (1.4) is based on the duality relation (1.3), or simply the representation F'(t, x) = e - " 7  for 

the Green's function of the problem (1.1). 

Remark  2. 
The global boundedness result 

0<lnl < N E  e~ri(tn2+2xn) sup ].hN; LC~(E 2) := sup max 
N>0 N>0 (t,x)~E 2 2zrin 

< O O ,  

can be deduced from Carleson's theorem [5] on almost everywhere convergence of trigonometric 
Fourier series of the class L 2. The following strong type (2, 2)-estimate for the operator of maximal 
discrete Hilbert transform is sufficient: 

�9 2 

)--'~sup ~z~ { am+me'rag < c E  lan[ 2 . 
n~Z x~E m 0} n~Z 

The latter estimate was derived from Carleson's theorem by Makai [14]. The author learned about 
this way of estimating of h N from Stein in 1990 (personal communication). [ ]  

Remark  3. 
(1.3) is a reflection of the duality relation for the solution operator u(f ;  t, x) of the Cauchy 

initial value problem for the heat transfer equation: 

Ou 1 O2u 
t > 0; u(t, x) 1/--0 = f ( x ) .  (2.2) 

at 47r ax 2' 
~r x2 

The Green's function of this problem is the Gaussian kernel G(t, x) := e r , t > 0, and the 

following identity is valid." 

u ( f ; t , x ) - -  e , u ; t '  , t > 0 ,  x ~ E .  (2.3) 

The following classical functional equation for the elliptic Jacobi #-function of real and positive 
argument t, cf., e.g., [12, Chapter I]: 

71  ( ~ )  O(t) = 0 , where O(t) := E e-rrn2t' t > 0,  (2.4) 
n~Z 

is a particular case of (2.3). Indeed, take as above f ( x )  = A(x) to be the periodized Dirac's 
8-function. Then, on one hand, the corresponding solution O(t, x) := u(A; t, x) is given by 

O(t, X) = ~ e -Trn2t+2zrinx , 

nEZ 

and, on the other, 

~/--~E a'(x -n)2 ' 
a(t, x) = A �9 G(t, .)(x) = ~ G(t, x - n) = e 

n~Z n~Z 
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Thus, we obtain the well-known Fourier expansion of the Green's function O(t, x) of the prob- 
lem (2.2) with periodic initial data f ( x  + 1) -- f (x ) :  

O(t, x) = ~ e-"l~;"12 = ~ e -Trnh+2xinx. (2.5) 

nEZ nEZ 

Obviously, (2.4) follows from (2.5), if we take x = 0. Relations (2.4) and (2.5) admit an 
extension to complex t, with fit t > 0, and (2.4), (2.5), which is an essential point in establishing the 
classical functional equation for Riemann's zeta-function, cf. [12, Chapter 1]. [ ]  

Remark 4. 
For fixed rational values oft, both functionals | ( t, x ) and | (1,  t )arerepresentedby linear 

combinations of shifted Dirac's g-functions. Let us verify that for rational t represented by reduced 
fractions t = P, where pq - 0 (mod 2), the relation (1.7) is equivalent to the known reciprocity 

q , 
of truncated Gauss sums, cf., [10, p. 22]: 

q Z e rtin2P -- ~rim2q 
q = e p (2.6) 

.__, 

In particular the boundedness result (1.4) can be considered as a corollary of (2.6). 
Since (p, q) = 1, pq - 0 (mod 2), the sequence of exponentials en :=  e ~rin2t, n E Z, 

is periodic in n, with the period = q, i.e., en+q ~ en. The series defining | x)  can be summed, 
say, by (C, 1)-means, as follows: 

O( t ,x )  = ,...., a x -  y t, , where y t, := e q (2.7) 
m = l  

The factors y (t ,  q ) =  y (q~, q)  in (2.7) representshiftedtruncatedl Gauss' surns. [] 

Let us use the following properties of delta-functions 8(x) and A(x) (q - a fixed positive 
number; f ( x )  - a fixed continuous and bounded function on E; ~ - a fixed real number): 

q 1 ( ~ )  ( ~ )  1 n~Z ( q )  f ( x ) 8 ( q x - ~ )  -- - f  8 x - -  ; A ( q x ) - -  8 x -  ; 
q 

A(x) :=  y ~ 8 ( x  - n)=-- Z e27rinx -- A(x)  . 
nEZ mEZ 

Then we obtain: 

O(t , x )  
q q 

nEZ m--1 nEZ m--I 

1 ~ ~ x em e 2~rimx 8 x e m e q 
q 

m----I n ~ Z  m--I 

-) 
I I f p  is even, say p = 2a, then the sum 

y , ~--~ " ~  e q 

n=l 

is the usual (complete) shifted Gauss'  sum with odd denominator q. 
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xin 2 zrin2q 
and (2.7) follows. Since pq -~ 0 (mod 2), the sequence e - 7 -  = e p , n ~ Z is again periodic, 

(1 x)  andwehave:  this time with the period equal p. Thus, (2.7) is applicable to | , 7 , 

o(1 :) : L 

Consequently, the right-hand side of (1.7) can be rewritten as follows: 

~/~e-'~':"'20*(l,t ) = ~ Z e - " i : - - ~ , ( X - q )  y * ( ~ , p )  
n~Z 

- - - - V ~ n ~  z e ~-~ y * ( q , p )  
qZ,(x q) - . (2.8) 

Let us compare the coefficients by S (x - q)  on the right of (2.7) and (2.8). To establish the 

equivalence of (1.7) and (2.6), we need to prove that the following relations for shifted Gauss' sums 

Y (t, q)  are valid: 

y , = M e  ~ y* , , n 6 Z .  (2.9) 

The shifted Gauss' sums y (t, q)  can be expressed in terms of non-shifted ones, i.e., y(t ,  0). 

Indeed, assume as above that t = /~ is a reduced fraction, and denote T = T(t) one of the Farey q 
neighbors to t, that is a rational number T = ~ satisfying 

IP Q 1 i.e., pQ qP=h,  where h = + l . = - -  It- Tl= q -  qQ, 

Then 

(pQ)2+(qp)2 __ 1 (rood 2pq); pm2+2mn =- p (m 2 + 2hQmn) (mod2q) ,  m , n ~ Z .  

Consequently, 

so that 

~ri(pm2+2mn) ~rip(m+v) 2 -xip(Qn) 2 
e q ---- e q e q , with v : = h Q ,  

q) 1 -~rip(Q n)2 ~ trip( re+u)2 
~ e  q e q 

m-.~ | 

1 -Jrip(Q n)2 ~ ~riP m2 -'ffip(Qn) 2 
% ~  e q e q -..~. e q 

m=l 
0) 

and further 
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Since .2) 
7ri('qW~)2+e<Q')2-?'7 = e pq = 1, n E Z ,  e \ P q 7ri (qp)2+(pQ)2_ 1 n2 

it follows from (2.10) that (2.9) indeed reduces to (2.6). 

R e m a r k  5. 
To find a Farey neighbor T(t)  to t = /~, t ~ (0, 1), consider the representation t = 

[[ql, q2 . . . . .  qm]] by (1.14). One can select ~ ( t )  to be the last but one in the corresponding 
sequence of  convergents, i.e., T(t)  = T - ( t )  = [[ql, q2 . . . . .  qm-1]], or an arbitrary following 
fraction of the form T(t)  = T+(t) = [[ql, q2 . . . . .  qm,qm+l]], where qm+l is a natural number. 
For more details, see, [10]. [ ]  

R e m a r k  6. 
Hardy and Littlewood (see [10, p. 67-112 and p. 113-114]), established the following 

approximate functional equation for finite partial sums of the series defining |  0): uniformly in 
t ~ ( 0 , 1 )  a n d N > 0 ,  

S N ( t ) = v ~  ~ ( S ~ r  where SN( t ) := E errin2t" 
O<n<N 

The relations (2.6) represent a remarkable class of  cases when the remainder term O(1) equals 0, 
i.e., the approximate equation is exact. [] 

Further, in [10, pp. 113-114] and [9] the iterations of the same kind as in (1.15) were used in 
estimates of  incomplete Gauss'  sums. 

R e m a r k  7. 
It is not hard to see that 

1 
sup { t l t2 . . - t j }  = - -  j = 1, 2 . . . .  

l F j '  ' 

where Fj denotes the j th  Fibonacci 's number, i.e., FI :=  1, /72 := 2, Fy := F j - I  + Fj-2, 
It can also be shown that the maximal value of the infinite sum 

j > 3 .  

max { l + . r  t ~ + . . . }  
t~(o, 1) 

43-1 i .e. ,maxt~c0,1){.. .}= 1 is attained for the golden mean t. = 2 ' 1 - - - S - - ~ ' ,  �9 For this remark the author 

is indebted to Popov. [ ]  

R e m a r k  8. 
As a disadvantage of  the above proof of  (1.4), it should be noted that it does  not provide the 

existence ofh  for all (t, x).  The case of  concrete irrational t has not been treated by the new approach 
simply because pointwise convergence remained obscure, and a priori the series migh t  be divergent 
on a certain set of points of  zero Lebesgue measure. 

The approach based on Vinogradov's method provides more detailed information concerning 
local and global properties of  h. For instance, if t is irrational, then the series defining h converges 
uniformly in x, so that for such t, h (t, x)  is continuous in x. Also, the traces of h (t, x) are continuous 
on every line on the plane E 2 not parallel to the x-axis; in particular, for each fixed x, h(t, x) as a 
function of t ~ E is everywhere continuous. [ ]  

For more details concerning local and global properties of V-continuations of  higher degree 
and implications to the Cauchy initial value problem for Schr~Sdinger type equations, see [17]. This 
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includes, in particular, the degenerate (linearized) Korteweg - deVries equation 

OU 03U 
- ~  = a-ff~x3, u(t,x)l/_-o = f ( x ) .  

3. On Variation and Complexity Features. Curlicues 

The function h(t, x) is related with a wide class of solutions of (1.1) with periodic f ( x )  of 
bounded variation on the period [0, 1). The solution operator for such initial data can be represented 
by Stieltjes convolution 

,~ ~ f (n )  e ~i(nh+2nx) = f(O) + L h(t, x - ~) r  t, x) df(~)  (3.1) 
d T  

n E Z  

(here and below, T indicates that the functions are periodic, of period equal 1, and that the integral 
is taken over the period). 

As mentioned above (cf. [17]), for fixed irrational t, h(t, x) is continuous in x and the integral 
is Riemann- Stieltjes. Ift  is a rational number, then x +h (t, x) is piecewise constant, with equidistant 
jumps on T, and for a general f ( x )  of bounded variation, the integral can be understood as Lebesgue 

- Stieltjes. 
Denote Varl (T) the space of functions f (x ) ,  f ( x +  1) -- f ( x )  of bounded variation varl ( f ;  T) 

f(x_)+f(x+) for all x, and denote IIf, Varl(T)ll := Ilf, L~176 + on T. We assume that f ( x )  =- 2 
var l ( f ;  T) the norm in VI T. 

Theorem 1 implies that 

v a r l ( T ) ,  < (3.2) 

i.e., the solution operator ap is bounded from Varl (T) into L~176 
This statement can be strengthened, see Theorem 2 below. Namely, the functional equa- 

tion (1.8) with size and smoothness estimates (1.9) of the remainder term R(t, x) can be used to 
analyze variational features of h(t, x), and consequently those of ~ ( f ;  t, x) with f E Varl(T). 
In particular, one can provide an alternative proof, cf. [20], of the fact that for eachfixed t, h(t, x) 
as a function of x is of bounded weak quadratic variation on the period [0, 1), and that the latter 
property holds uniformly in t E E : 

supwar2(h(t,x) : x E [0, 1)) < oo.  (3.3) 
l 

Let us recall the corresponding definitions of generalized strong and weak or-variation, where ~ > 1. 
The strong or-variation varu(f;  I) of a bounded function f ( x )  on an interval I C E is defined 

by 
1 

vara(f ;  I ) : =  sup osc ~ ( f ;  lj) , 
{til~z 

where osc(f ;  I) := sup {1 f ( x )  - f(Y) l : x, y 6 I }, and Z denotes the class of all partitions {lj } of 
the basic interval I into unions of pairwise disjoint subintervals lj. The notion of strong 2-variation 
was introduced by Wiener, and usefulness of a-variation in Fourier analysis has been thoroughly 
studied, cf. [3, Ch. 4]. 

The notion of weak c~-variation wara ( f ;  I) is a modification of vara ( f ;  I) in the general key 
of weak type estimates. Namely, 

1 

war~(f;  I ) : = s u p  sup e (card { j :  o sc ( f ;  l j)  > e}) ~ , 
�9 >o {Ii}~2; 
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where card denotes the number of elements in a (finite) set. Weak variations are more handy in 
applications than strong ones, and they are easier to compute (see below, (3.4) and (3.5)). 

Denote Vara(1), (Wara(I)) the corresponding classes of all functions f ( x ) ,  x ~ I with 
f(x_)+f(x+) suchthatvara(f ;  I )  < c~or, respectively, wara( f ;  I )  < c~. Then Vara (I)  C f ( x )  -- 2 

Var#(I), Wara(I)  C War#(/)  for fl > or, i.e., the classes are expanding along with the growing 
a. Further, by Chebyshev's inequality, wara ( f ;  [) < varct(f; I ) ,  and the imbedding Vara(I) C 
Wara(1) is obvious. One has (cf. [7, Ch. 12, Theorem 4.3]) Varl(I)  = War l ( I ) ,  while for ~ > 1 
the class Wara(I)  is essentially wider than Vara(I).  Also, if 1 < t~ </3, then Wara( I )  C Var#(I), 
i.e., if a function f (x ) is of  bounded weak or-variation, then it is also of bounded strong ~-variation 
for every # > or. 

There are two alternative equivalent definitions of the class Wara(I):  a) in terms of the rates 
of non-linear approximation by piecewise constant functions (splines with free nodes), and b) via 
interpolation - -  in terms of Peetre's functionals. 

Namely, for a given natural n denote Pn the class of all piecewise constant functions P(x)  on 
I,  such that I can be represented as a union I = [,_J'~ lj of m < n pairwise disjoint subintervals Ij 
and P(x)  is constant on each Ij. Further, denote 

8n(f;  I ) : = i n f  { l l f - g ;  L (z)II : g 

the nth best uniform piecewise constant approximation of f ( x )  on I .  Then 

( ' )  f ~ W a r a ( I )  -~ '." s I)  = O n-~  , n ~ ~ .  (3.4) 

In interpolatory terms, the definition of the class War,~(I) is given by 

f e W a r a ( I )  r inf {llg; vl(1)ll : I I f - g ;  Z~(l)l l  -<~} = ~  ~ o .  (3.5) 

In the other words, f ( x )  belongs to the class Wara(l)  if and only if for all (small) e > 0 it can 
be uniformly approximated with the accuracy e by a function g(x) = ge(x) whose ordinary total 
variation varl(g; I)  is of order O(e-a).  

The next simple lemma is useful in applications to (1.1). 

L e m m a  3. 
Assume that f ( x )  E Varl(T) and h(x) E Wara(T), where ~ > 1, and let 

r  := (h ,df)(x) = fr h(x -~)df(~).  

Then ff/(x) ~ Wara(T). 

For the proof, let us represent h(x), in accordance with (3.5), as h = g~ + re, where g~ 
Varl(T), and IIg~; 1II(1)11 < const, e - a ,  lira; L~176 < e. Then it is easy to see that the function 
~s (x) := (h6 * d f ) ( x )  is in Var! (T), and 

I1 , - L~176 = o ( , ) ,  varl T ) =  O ( , - " ) ,  , 0 

Thus, the next statement follows from [20] and (3.3), (3.5). It is a refinement of (3.2). 

Theorem 2. 
The following property holds uniformly in t E E for the solution operator ~ of the prob- 

lem (1.1): 
~p : Varl(T) ~ War2(T), (3.6) 

and in particular, for all ot > 2 

if,/ : Varl(T) ~ Vara(T), ot > 2 .  (3.7) 
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For possible generalizations to a wider class of problems of type (1.I) involving sufficiently 
smooth potentials p(t, x) (periodic in x), i.e., 

i (o% ) 
O----t = ~, ~x  2 + p ( t ' x ) ~  , ~/(t,x)lt_-O = f ( x ) ,  

the reader may be referred to [17] and [18]. 

R e m a r k  9. 
In the limiting case ot = 2, the statement (3. 7) of  Theorem 2 is not true. There exist such values 

of t  that h(t, x) is not of bounded strong 2-variation in x, see [20]. [] 

The above variational results provide the first insight into complexity features of the solutions 
of the problem (1.1). As noted above, for each fixed irrational value of t, the function h(t, x) 
is everywhere continuous; however, it is nowhere differentiable in x. For irrational t, uniform 
smoothness of h (t, x) in the variable x is "best possible" if the sequence of partial quotients {qj } in the 

continued fraction (1.14) isbounded. In such cases, h(t, .) 6 Lip �89 ,i.e., Ih(t, x ) - h ( t ,  Y)I < c ( t ) l x -  

yl �89 for all x, y ~ E.  A wide set of such values o f t  is provided by quadratic surds (irrationalities), 

e.g., t = ~/2, t = - ~ ,  etc. These results indicate on a complicated character of the corresponding 
trajectories, which resemble those of Brownian particles on the plane. 

Let us establish some preliminary facts concerning these objects, and their relationship with 
the so-called curlicues. For a fixed t ~ E consider the following set of points on the complex plane 
C: 

7-/t := {z ~ C : z = x + h( t ,x) ,  x E T} . (3.8) 

One can understand (3.8) as parametric equation of the set ~ t  on the real plane E2: 

:= { x = ( x l ,  x2) E E 2 :  Xl = x + 9 1 h ( t , x ) ,  x 2 = ~ h ( t , x ) ,  x E T }  . ~ t  

If t is a rational number, the function x + h(t, x) is piecewise constant, so that 7-/t is a discrete 
set. The values of h at rational points on E 2 are computable as finite discrete Hilbert transforms, 
cf. [17, 20]: 

1 ~ e 2rti~'~-h~ 
h ( ~ ,  b ) =  ~q/ ta'--'n'~ 

where a, b ~ Z, (a, q) = 1. On the other hand, if t is irrational, then x + h(t, x) is continuous and 
nondifferentiable, and ~ t  is a continuous and nonrectifiable curve. 

Curlicues were studied by Berry and Goldberg in [4]. They represent a peculiar class of 
curves on C resulting from computation and plotting of the values of incomplete Gauss' sums. 
Such computations and analysis were seemingly initiated by Lehmer [13], and later continued by 
several authors, cf., e.g., [4, 16], with emphasis on possible applications as models in optics and 
thermodynamics. A curlicue is defined for a fixed real parameter r as the broken line on C resulting 
from computations of quadratic exponential sums 

n 

Z n ( r ) : = ~  e ~rim2T, n = 0 ,  1 . . . . .  (3.9) 

r a = 0  

and joining each pair of consecutive points by line segments [Zn, Zn+l]. For "complicated" rational 
r,  i.e., when the number of "levels" m in the continued fraction (1.14) is large, the corresponding 
curlicue represents a rather spectacular combination of several hierarchies of coiling and uncoiling 
Cornu spirals. In a curlicue of such kind, features of selfsimilarity are present. 
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The Cornu spiral is parametrically represented by the incomplete Fresnel integral, cf. (1.12): 

{ y0 } b v := z = ~ F r l * ( x )  = Vri e -rtiy2 dy,  x ~ E . 

Geometrically, such a spiral uncoils counterclockwise from the point z = - �89 passes through the 
1 origin and then coils clockwise towards z ---- i .  

The function x + h(t ,  x )  is a generating function of all curlicues with rational parameters of 
the form z = q~, (p, q) = 1, where p is even, say, p = 2a, a ~ Z and q odd. In this case, the 
corresponding numbers Zn are of the form 

Zn .~- Zn ~ e q 
m=O 

i.e., they are incomplete Gauss' sums with odd denominators. Indeed, introduce the following 
sum-function of continuous argument x: 

( ~-  ) 2~iam2 
Z ( r , x ) = Z  , x  := ~,_._, e q , 

O<_m<qx 

where the first term and, in case of integral value of qx,  also the last one have to be taken with the 
factor �89 The relation between curlicues and the function x + h(t, x) can be seen from the following 
identity: 

Z(r, x)  -- G(t)  (x + h*(2t, x)) ,  where t = t(r)  . -  (4a)-I (q + 1)2a-I = 4q (3.10) 

For the proof, see [20]. In (3.10), a - l  denotes the unique modulo q solution of  the congruence 
aa -1 -- I (mod q), and we keep the assumptions q -= 1 (mod 2), (a, q) = 1. Further, G(t)  
denotes the complete Gauss' sum: 

G := e q 
n = l  

The values of G (q )  are given by classical relations due to Gauss: 

I G ( q ) l  = ~/~, and if q is a prime, G ( q ) =  

( a ) ~ / ~ . {  1, i f q _ = l  (mod4) ,  
q i, if q_--3 (mod4) .  

Here ( q ) denotes the Legendre symbol modulo prime q: 

( a )  { : =  1 i f a  is a quadratic residue (modq) ,  
q - 1 in the opposite case. 

Thus, it follows from (3.10) that complete Gauss' sums G(t)  = G(r) play the role o f  scaling factors 
in the curlicue parametrized by x + h*(2t(r), x). Moreover, the truncated Comu spirals and the 
hierarchical nature of curlicues reflect the functional equation (1.8). 
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R e m a r k  10. 
The Cornu spiral ~ is a nontrivial set from the point of  view of the theory of complexity. Let 

us conclude the article by proving that ent .T = ~, where ent ~" denotes the metric entropy of .T'. 
[] 

Recall the notion of Kolmogorov - Schnirelman entropy introduced in [11, 21], and studied 
later along with Hausdorffdimension dimH in the literature on fractal sets, see, e.g., [6, 8, 15]. 

Given a set ~" in a metric space E (in our case, .T is the Cornu spiral, s :=  C) and a number 
e > 0, denote Nj:(e) the smallest number of balls of  radius < e in 79 which are needed to cover b r .  
Then 

In Ny(e) 
ent.T" :=  l imsup - -  

e~0 In ! 
8 

The proof of  the relation ent .T" = 4 consists of  two parts: the estimate of  N~:(e) from above, and the 
estimate of  this number from below. As common in theory of complexity, the estimate from above 
is easier because any reasonable covering works. In our case, let 0 < X < ! and represent .Y" as a g '  

union .T" = brl (X) [.3 br2(X) where 

x The part brl (X) is a curve on C of  length 2X. Let this set be covered by < c T discs of radius e. The 

�89 part ~'2(X) is contained in two discs with the centers at z = + and radii < ~ .  The latter follows 
from the estimate 

f ~ e ' r i y : d y = O ( x  ) 

of the tails of  the Fresnel integral for large X. Thus, .T'2(X) can be covered by < C(x--~le) discs of  

radius e, and we have 

Ny(e) < c + . 

t 
To minimize the expression on the right in X, we choose X ~ e -~ .  This implies the estimate 

4 

N~-(e) < ce -~ ,  and consequently e n t ~  < 4 
- -  - -  3 "  

4 

To prove the estimate from below N~-(e) > c0e-~,  one applies the asymptotic formula 

I X  f /  driy2(2zriy) driX2 (X---'3) 
e zriy2 dy = 2zriy dy -- 2zri-----X + 0 , X --+ oo. 

We omit the details. 
The author hopes to return to complexity problems of  solutions of  Schr6dinger equation of  a 

free particle, such as estimates of Hausdorffdimensions of  trajectories. Although the problem (1.1) 
with periodic f ( x )  is linear, the above considerations show that the solutions may be chaotic even 
in the case of  simple initial data, i.e., possess features rather typical for non-linear problems in PDE. 
The author believes that a combination of  Vinogradov's method and the functional equations of the 
type (1.8) may be useful in this direction. It seems likely that the Hausdorff dimension of  curves ~ t  
is non-trivial, e.g., when t is a quadratic irrationality. 
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