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ABSTRACT. Under very minimal regularity assumptions, it can be shown that 2 n - 1 functions are 
needed to generate an orthonormal wavelet basis for L 2 (R n). In a recent paper by Dai et al. it is shown, 
by abstract means, that there exist subsets K ofR n such that the single function ~, defined by ~t = XK, 
is an orthonormal wavelet for L2(Rn). Here we provide methods for constructing explicit examples 
of these sets. Moreover, we demonstrate that these wavelets do not behave like their one-dimensional 
counterparts. 

1. Introduct ion 

A function ~ ~ L2(R) is said to be an orthonormal  wavelet  if the collection 

{ ~ j j : ( x ) =  2J/2~/ ( 2 J x - k )  : j ,  k e Z }  (1.1) 

is an orthonormal basis for L2(R). More generally, a family of  functions 1//1 . . . . .  1~ rM in L2(]~ n) is 
called a wavele t  collection, or a wavele t  fami ly ,  if 

{ ~ j , k ( x )  = 2nj /2~i  ( 2 J x - k )  : j E g ,  k E Z n , i  = l . . . . .  M }  (1.2) 

is an orthonormal basis for L2(Rn). 
We say a wavelet ~ for L 2 (R) is a minimal ly  supported f requency  (MSF) wavelet if ~ = XK for 

some set K in ]R (here ~/(~) = f ~r (x )e - iX~dx  represents the Fourier transform of ~) .  The simplest 

and most well-known example is the Shannon wavelet: ~ = XK, where K = [-2zr ,  - J r ]  U [Jr, 2~r]. 
One of  the reasons for studying MSF wavelets is their usefulness in providing counterexamples to 
conjectures about wavelets. In particular, the Journ6 wavelet K = [ - -~zr ,  -4zr]  U [ - J r ,  - 4 y r ]  U 

[4rr, Jr] U [4rr, -~zr], was the first known non-MRA wavelet (MRAs are treated in the next section). 

Auscher [1] has proven that every wavelet collection ~ 1 . . . . .  ~/M for L2(R n) whose members 
satisfy a weak smoothness and decay condition on the Fourier transform side must come from a 
multiresolution analysis (MRA). In particular, we will see that this implies that M = q (2 n - 1), n > 1, 
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for some q �9 Z +. This result casts some doubt on the existence of a single function tp �9 L 2 (R n), n > 
1, such that ~j,k, j �9 Z, k �9 Z n is an orthonormal basis for L2(Rn). 

In [3], however, it is shown that there exists a set K in R n such that ~ = XK (XK denotes the 
characteristic function of K) defines an orthonormal wavelet for L2(~n). In fact, the authors prove 
the existence of such sets for wavelets with dilations more general than the usual dyadic ones. In 
light of Auscher's result, it is clear that it is the lack of smoothness of the Fourier transform of MSF 
wavelets that makes this possible. 

In this article we provide explicit examples of such sets. In the one-dimensional case there 
are many examples of simple MSF wavelets (e.g., the Shannon wavelet). In several dimensions, 
however, the MSF wavelets all seem to be quite complicated. In particular, all of our examples 
exhibit fractal-like qualities. In addition to their complexity, these wavelets do not satisfy many 
properties that one-dimensional wavelets are known to satisfy. 

The problem of constructing explicit examples of dyadic wavelet sets in higher dimensions 
was proposed to the two authors independently by Guido Weiss in the spring of 1996 after he became 
aware of the existence of such sets from the paper [3]. 

2. MRAs for L2(R n) 

A muhiresolution analysis (MRA) for L2(Rn), n >__ 1, is a sequence of  closed subspaces 
r~, j �9 Z, of L2(R n) satisfying 

Vj C 1,~+1 for all j �9 Z ; (2.1) 

f �9 Vj if and only if f (2-)  �9 Vj+I for allj �9 Z ;  (2.2) 

N vj = {0/; (2.3) 
jeZ 

U Vj = L2(R") ; (2.4) 
j~z 

There exists a function ~b �9 Vo such that {q~(. - k) : k E 7Z n } (2.5) 

is an orthonormal basis for Vo. 

The function q~ is called the scaling function of the MRA. It is also possible to define an MRA with 
several scaling functions. This is done by assuming the existence of a finite family of functions 
t~ l  . . . . .  ~q �9 V0 such that {q~i(" - k) : k �9 Z n, i = 1 . . . . .  q} is an orthonormal basis for Vo. 

Define Wj to be the orthogonal complement of the space r~ in 1,~+1. We say that a wavelet 
collection ~pl . . . . .  ~,M is associated with an MRA if there exists an MRA such that {~pi (. _ k) : k �9 
Z n, i = 1 . . . . .  M} is an orthonormal basis for W0. For an explanation of how wavelets arise from 
an MR.A, see [8] and [ 10] (see [2] for the multidimensional case). We now develop some properties 
of MRAs that we will need. 

Since q~-t,0 �9 V-I C V0 it follows from (2.5) that there exists a [0, 2zr]n-periodic function 
m0 such that 

q~(2~) = m0(~)q~(~). (2.6) 
i Similarly, ~i �9 W0 C V1 so that ~'-1,0 �9 V0 and hence 

ff"7(2~) = mi (~)~(~) (2.7) 

for some [0, 2~r]n-pedodic function mi .  The orthonormality of the Zn-shifts of~b implies that 

E q~(~ + 2zrk) 2 = 1 (2.8) 
kEZ n 
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Similarly for the ~.i. Define [] = Z n N [0, 1] n. That is, [] consists of the 2 n lattice points contained 
in the unit cube. Then 

= E q~(2~ +2rrk) 2 
k E Z  n 

= E Imo(~ + zrk)l 2 ~(~ + rrk) 2 
k E Z  n 

= E E Imo(~ + rrl + 2zrk)[ 2 q~(~ + zrl + 2~rk) 2 
l ~ n  k ~ Z  n 

= Z Im~ E q~(~+Jr/+2:rk) 2 

l e d  k E Z  n 

= ~ Im0(~ + ~1)12 . 
l e o  

Similarly for t h e  l~b "i . Fix i, then the shifts of 1~ r a r e  all orthogonal to r so that 

A 

0 = E ~i(~e + 2Jrk)q~(~: + 2zrk) . 
k ~ Z  n 

Therefore, we obtain 

0 = Z ~ ( 2 ~  + 2~rk)q~(2~ + 2rrk) 
k E Z  n 

= Z mi(~+zrk)m~ qb(~q-Trk) 2 
k E Z  n 

2 
= E E mi(~ +lrc + 2zrk)mo(t + lzr + 2srk) q~(~" + l~r + 2srk) 

l e o  k E Z  n 

= Z m i ( ~  +lJr)mo(~ Wire) . 
l e o  

Thus, the vectors rhi(~) = { mi(~ + lzr) }leo and rho(~) - { mo(~ +lrc) }leo are orthonormal in 
12(rq). The same is true for the vectors rfiiz (s e) and rhi2(~) for il :# i2. Thus, the matrix with rows 
equal to mi(~), i = 0 . . . . .  2 n - I, is a square orthogonal matrix. This implies, in particular, that 
the first column vector has norm 1. That is 

2 n --  l 

1 = ~ Imi(~)l 2 . 
i = 0  

Therefore, we have 
2 n --  1 

q~(~)2= q~(2~)2+ E ~ ( 2 ~ ) 2 "  

i----1 

The usual iteration argument (see [8]) then gives 

2 n - - 1  c~  

I2 I2 
i = 1  j = l  

(2.9) 
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Therefore, using (2.8) we obtain 

2n--l  co 

i=1 j = l  I ~ Z  n 

Note that this equality was derived using the scaling function of the MRA although there is no longer 
an explicit reference to it. It was observed by Auscher [1], Wang [12] and Gripenberg [7] that this 
equality, in fact, characterizes those wavelet families that arise from an MRA. 

For a given wavelet family @l . . . . .  @g we define the dimension function 

M co 

D ( ~ ) - - E  E ~  ~ ' 7 (2Y(~+2ks r ) )  2 .  

i = l  j = l  k ~ Z  n 

(2.1o) 

The theorem of Auscher, Gripenberg, and Wang is then: 

T h e o r e m  1. 

Let ~1 . . . . .  4/M be a wavelet collection for  L2(Rn). Then this collection is associated with 
an MRA (with a single scaling function) iff D(~) -~ 1 for  a.e. ~. 

We now mention two interesting properties of the dimension function. First, it is shown 
in [1] that the function D is a.e. integer-valued [D(~) represents the dimension of  a certain finite- 
dimensional vector space]. Second, using Plancherel's theorem and only the fact that II r II = 1, we 
obtain 

1 rio D(~)d~ (2~r) ~ .2~]~ 

M oo 

i=1  j = l  k E Z  n 

- (2rr)" d~ 

M co 

f _ _  2 
1 ~/i(~) d~ : 

i=1  j = l  

co M 
Z~'~ iz -n_= 2 n -  I M 
j----I 

This implies the following. 

Corol lary  I .  

I f  f/1 . . . . .  gr g is a wavelet collection associated with an MRA, with a single scaling function, 
then M = 2 n - 1. 

If we assume that I~p i I is continuous and 14//(~)1 = O (1~1- ~-~) at oo for  some c~ > 0 and 
i = 1 . . . . .  M, then it can be shown that the dimension function must be continuous. Since it is a.e. 
integer-valued, it must be identically q for some q ~ Z +. This implies that M = q(2 n - 1). In 
summary: 

Corol lary  2. 

Single function wavelets for  L 2 (R n), n > 1, do not arise from an MRA and must  have irregular 
Fourier transforms. 
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3. Wavelets in L2(~ n) 

It has been known for several years that wavelets for L2(R) can be characterized by two simple 
equations involving their Fourier transforms. It has recently been shown [4, 11] that these equations 
generalize to higher dimensions. 

Theorem 2. 
A collection offunctions ~1 . . . . .  ~ g  E Z2(Rn), with II~ i II = 1, is a wavelet collection if 

and only if 

and 

M 

E E  2J~ = 1, fora.e. ~ E R  n , 
i=1 j ~ g  

(3.1) 

M oo 

E E ~ ( 2 J ~ ) ~ ( 2 J ( ~ - t - 2 m r r ) ) = O ,  fora.e. ~ ER" ,  
i=1 j = 0  

m E Z  n \ 2 Z  n .  (3.2) 

We will also need the following equations: For a given function ~p ~ L2(IR n) the set {~j.k : j 
Z, k e Z n } is orthonormal in L2(R n) if and only if 

2 
E ~(~ +2zrk) = 1  fora.e. ~ R  ~, 

kETZ. n 

(3.3) 

and 
E ~ ( 2 J ( ~ + 2 z r k ) ) ~ ( ~ - t - 2 z r k ) = O  fora.e. ~ E R  n,  j > l .  (3.4) 

k E Z  n 

We say that a set K in IR ~ is a wavelet set if the function ~ defined by ~ = Xr is a wavelet 
for L2(Rn). Using the above equations, explicit conditions can be given for a set to be a wavelet set. 

Let us define a partition of a measurable set A C R n as a countable collection {Ar} of 
measurable subsets of A, such that A r  f') As  has measure zero i f r  ~ s and such that U r A r  = A up 
to a set of measure zero. 

Theorem 3. 
A measurable set K in R n is a wavelet set if and only if 

(a) { K -4- 2rrk : k E Z n } is a partition of R n and 

(b) {2JK : j E Z} isapart i t ionof  R n . 

Proof .  Let ~ / =  XK, then ff only assumes the values 1 and 0. In this case we will see that ~ is 
a wavelet if and only if (3.1) and (3.3) are satisfied. For such a ~, these equations are equivalent to 
the two partition equations. 

If ~ is a wavelet, then (3.1) and (3.3) are clearly satisfied. Conversely, we will see that (3.1) 
and (3.3) imply (3.2). Suppose 2i~ ~ supp ~. Then 1~(2J~)l = 1. Then, by (3.3), it follows that 

I~/(2J~ + 2zrk)l = 0, for allk ~ Zn,k ~ 0 .  

In particular, ~ (2 j (~ + 2rr m)) = 0 for every m ~ Z n \ 2Z n whenever j > 0. Thus, (3.2) is satisfied 
and, hence, ~ is a wavelet. [ ]  
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Remark 1. 
Condition (a) in the above theorem implies that the Lebesgue measure o f  K, IKI, is (2~) n. 

[] 

The problem of constructing wavelets can now be treated from a purely geometric viewpoint. 
Note that the first partition equation suggests that K resembles a cube. The second partition equation 
suggests that K resembles an annulus. In terms of certain equivalence relations, this is true. 

Def in i t ion  1. ([3]) 
We say two sets A and B are &congruent if there are two partitions {Al }l and {Bl }l of  A and 

B, respectively, and a sequence {jl} in Z such that Al = 2Jt Bl for  all l. 
Two sets A and B are r-congruent if  there are two partitions {Al}l and {Bl}l of  A and B, 

respectively, and a sequence {kt} in Z n such that Al = Bt + 2:rkl for  all l. 

Let A be a neighborhood of the origin and define I = 2A \ A. It is not difficult to show that 
{2JI}j~Z is a partition of R n. 

Theorem 4. 
A measurable set K in R n is a wavelet set if and only if  K is &congruent to I and K is 

r-congruent to T =-- [-zr, zr] n. 

P r o o f .  Suppose there are partitions {KI} and {K t } of K and partitions {/t} and {7~} of I and T, 
respectively, such that Kt = 2J~ It and K t = Tt + 2zrkt for sequences {jr} C Z and {kl} C Z n. Then 
we have 

Z - -  

jEZ jEZ 

= Z E X 2 j + J I I I ( X )  
l jEZ 

= E X v J I ( X )  
j~Z 

= 1 ( a . e . ) .  

Similarly, we have ~]~k~z n XK(x + 2zrk) = 1 (a.e.). Thus, by Theorem 3, K is a wavelet set. 
Conversely, suppose K satisfies the two partition equations of Theorem 3. Define 

KI = K N ( 2 - J t l )  

K t = K fq ( T - 2 : r k t )  

where {jr} and {kl} are enumerations of Z and Z n, respectively. Clearly {KI} and { K l } are partitions 
of  K. Since {2 jt K} is a partition of R n, we see that the collection of sets 

(2JtK) N I = 2 J t K l  

is a partition of I .  Thus, K is &congruent to I .  Similarly, { K t + 2rtkt } is a partition of T and, hence, 
K is z-congruent to T. [ ]  

In their paper, Dai et al. prove that there exist sets K in ~n that are &congruent  to {Ix[ < 
2} \ {Ixl < 1 } and are r-congruent to [ -zr ,  Jr] n. Moreover, they prove such a result  for more general 
dilations and translations. That is, the definitions of  &congruency and r -congruency can be very 
general. However, their proof is abstract and does not provide an explicit construction. To construct 
explicit examples of  these sets we will use two inductive methods based on Theorem 4. 

Me thod  1. Start with the cube K1 ---- [ - J r ,  Jr] n. To construct the set Km+�94 f rom Km we are only 
allowed to translate pieces of  Km by 2zrk for some k ~ Z n. In this way we are assured that every 
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set Km is r-congruent to Kl = [--Jr, rr] n. After each step we assess how much overlap there is 
between the various dyadic dilations of  Km. The set Km+l is constructed so as to reduce the overlap 
occurring between these dilates. The goal of  this process is to arrive (after countably many steps) at 
a set K that is also 8-congruent to 2A \ A, where A is some neighborhood of the origin. 

Method 2. Start with an annulus Kl -- 2A \ A where A is some neighborhood of the origin. To 
construct the set Km+z from the set Km, we are only allowed to dilate pieces of  Km by 2 j for some 
j E Z. Thus, we are assured that every set Km is 8-congruent to 2A \ A. After each step we 
assess how much overlap there is between the various 2:rZn-translations of Km. The set Km+z is 
constructed so as to reduce the overlap occurring between these translates. The goal is to arrive (after 
countably many steps) at a set K that is also z-congruent to [-zr ,  Jr] n. 

It is interesting to note that these two methods can produce wavelet sets with different properties. In 
the next section, we will use the second method to construct wavelet sets that have the origin as a 
limit point, thus producing wavelets whose Fourier transforms are not continuous at the origin. 

We now use Method 1 to construct a wavelet set in ]R 2. This construction generalizes to higher 
dimensions (in R, it produces the Shannon wavelet). Let K1 = [-~r, Jr] 2. To construct K2 we move 
four subcubes of  Kz. Translate the cube [0, ~]2 by the vector ( -2 : r ,  -2~r)  ~ 2:rZ 2. That is, a cube 
in the lower left comer of  the first quadrant is moved into the third quadrant. Do the same for every 
other quadrant in a symmetrical way: 

[] [] 

[] 

Note that 2 - l  K2 overlaps K2, for example, in the cube [3rr, rr] 2. Thus, to construct the set K3 we 
should translate (recall that only 2zrZn-translation is allowed) this cube to avoid overlap. Translate 
[3zr, Jr] 2 by ( -2 r r ,  - 2 : r ) .  Do the same, in a symmetric manner, for the overlap in the other three 
quadrants: 

In, .  nn I 

[] 

Continue this process and let K be the resulting set: 
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The process outlined above is not a rigorous proof that K is a wavelet set. We provide such a proof 
n o w .  

We explicitly define the portion of K lying in the first quadrant. The rest of  K is defined by 
symmetry. Define disjoint cubes Qm and Rm, m > 1, as follows: 

a m  

g m 

4 -  (�88 ]2  
"4 - (1)m-2n',  7r (3.5) 

6 6 ' 

3 zr, 3 Jr . (3.6) 
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Define 

a = [0, Jr] 2 \ S ,  (3.8) 

B = - S + ( 2 ~ r ,  2rr) (3.9) 

[here (., .) denotes an ordered pair point in the plane]. The portion of K that lies in the first quadrant 
is defined to be A U B. The rest of  K is defined by symmetry. We now show that K satisfies the 
hypotheses of  Theorem 4. 

To show K is 8-congruent to [ - r r ,  Jr] 2 \ [---~, _~]2 it suffices, by symmetry, to prove: 

Claim 1. 
(2 -1B)  U A - - [ 0 ,  rr]2\[0,-~] 2. 

P r o o f .  For this it suffices to show that 

1 
(-Qm+(2rr, 2rr)) = Rm ,m>_ 1,  (3.10) 

1 
z ( - R m + ( 2 r r ,  2:r)) = Qm+l , m  > 1.  (3.11) Z 

Indeed, if (3.10) and (3.11) hold, then 

2 - 1 B )  U A = 2 - l  ( - S  + (2zr, 27r)) U A 

= ( Q 2 U Q 3 U . . . ) U ( R I U R 2 U . . . ) U A  

= [0, 2l"] 2 \ Q1 = [0, 7l"] 2 \ 0, . 

We will prove (3.10): 

1 1 
(-Qm + (2zr, 2zr)) = 

1 
= ~ 

1 

2 6 

__ [s+(~) ~ 

[ - 
= 3 Jr, 

~ g m �9 

E(4 (4 ) 

8+/~/m-'~ ~+  /~/m : 1: 
m--2 7t, l 2 
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The proof  of  (3.11) is similar. [ ]  

To show K is z-congruent to [ - r r ,  7r] 2 we will show that 

( - B  + (2zr, 2zr)) U A = [0, Jr] 2 . (3.12) 

(note that - B  is a portion of K lying in the third quadrant). This equality follows trivially from the 
definition of B. Indeed, 

( - B  + (2zr, 2rr)) U A = (S - (2zr, 2zr) + (2~, 27r)) U A 

= S U A  = [0 ,~ ]  2 . 

This completes the proof  that K is a wavelet set. 
In one dimension the preceding construction yields the Shannon wavelet ( K  -- [ -2zr ,  - J r ]  U 

[Jr, 2zr]). It can be shown, using results from [9] (see Theorem 7) that the only one-dimensional 
wavelet whose Fourier transform is supported in [ -2zr ,  2zr] is the Shannon wavelet (up to modula- 
tion). Therefore, to construct more general wavelets (ones that are not extensions of  the Shannon 
wavelet), we cannot have K C [-2zr ,  2zr] n. The following wavelet set is constructed in a similar 
way to our first example. Indeed, K1 and K2 are the same but we then start to translate outside of  
the cube [-27r,  2zr] n. The limiting set K is contained in [ -4r r ,  4zr]n: 

m I 

m 

1 

I t  

1 

~ 

1 

m m ~ 

This construction also works in one dimension. It gives an example of  a new band-limited 
MSF one-dimensional wavelet. This new wavelet can be visualized by projecting onto the x-axis 
the intersection of the above wavelet with the diagonal A = { (x, y) : x = y }. 
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4. Hole in the Middle 

309 

Suppose, for the moment, that ~ is a wavelet whose Fourier transform is continuous at the 
origin. Then the finiteness of the sum 

j~x 

implies that ~/(0)---- 0. Sometimes even more can be said. For example, suppose ~" is a wavelet for 
L2(~) such that if" is supported in [--~-, -~-] (no regularity assumptions). Then it is shown in [9] 

that ~ must vanish in the neighborhood [ - - ~ ,  -~-] of the origin (there is a hole in the middle of 

the support of ~). More generally, if ~ is supported in [ - 8 a ,  4rr - 4t~], for 0 < u < Jr, then 

must vanish on [-2or, 2zr - ~t~] (see Theorem 7). One may conjecture that any band-limited (i.e., 
compactly supported Fourier transform) wavelet must vanish in a neighborhood of the origin. This 
is not the case. Indeed, Garrig6s [6] has constructed a wavelet set that is supported in the interval 
[-Jr, 4rr] that has 0 as a limit point. Thus, in one dimension, suitable restrictions on the size of the 
support of ~ imply that ~ must vanish in a neighborhood of the origin. 

We wish to show that this sort of result cannot be generalized to higher dimensions. This is 
done by constructing a wavelet set with essentially the smallest possible support such that 0 is a limit 
point of this set. We first make the observation that any wavelet set must accumulate near points in 
the lattice 2zrZ n other than 0. It is clear that a wavelet set cannot be a neighborhood of the origin. 
This follows from the second partition equation in Theorem 3. However, the first equation in this 
theorem implies that a wavelet set is a neighborhood of the origin modulo 2rrZ n. Thus, the set must 
accumulate near non-zero lattice points. Consider the four closest lattice points to the origin in the 
plane: (0, 2zr), (2zr, 0), (0, -2zr),  (-2zr, 0). It is not hard to see, using Theorem 3, that any wavelet 
set contained in the convex hull of these four points must accumulate near each of these lattice points. 
We now construct such a set which has 0 as a limit point. The construction follows Method 2. 

Let A be the convex hull of the points (0, Jr), (Jr, 0), (0, -Jr) ,  (-Jr,  0) and set KI = 2A \ A: 

Construct K2 by dilating portions of this annulus by 2-I:  
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To construct Kra+1 from Kin, dilate the portions of  Km that overlap under the action of 2zrZ n by 
smaller and smaller powers of  two. This forces the origin to be a limit point of  the resulting set: 

! 

We now state some specific results about the behavior of the Fourier transform of  single function 
wavelets. 

Theorem 5. 

Let y be a wavelet for L2(R n) (not necessarily an MSF wavelet). Then the intersection of  
7t supp ~, and the cube I - M ,  M] n has strictly positive Lebesgue measure for M > ~ .  

R e m a r k  2. 

I f  y is an MSF wavelet, there is an easy way to see this. Suppose the support of  ~, (the set 
K)  does not intersect the cube [--M, M] n. We know that the set K is ~-congruent to the annulus 
[ - 2 M ,  2M] n \ [ - M ,  M] n. Since K N I - M ,  M] n has measure zero, it is an easy exercise to see that 
the measure of  K must be larger than the measure of  this annulus. However, the measure of  K is 
always (2zr) n, thus we obtain the inequality (2~r) n > (4M) n - (2M) n. Solving the above inequality 
for M gives the desired result. [] 
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Remark 3. 
When we constructed our first wavelet set we commented that the construction works in all 

dimensions. The n-dimensional version o f  this set does not intersect the cube [-~-, 7r n :-] . This is 
optimal for  any construction that holds in all dimensions. Indeed, the limit as n approaches infinity 

7r Jr [] o f  the expression ~ is : .  

Although a wavelet set K may have 0 as a limit point, we can say something about the 
concentration of K near the origin. 

Theorem 6. 
Let K C R n be such that ~ = Xr  is the Fourier transform o f  a single function wavelet. Then, 

for  every k > O, 

K n 2 - k [ - - z r ,  zr] n < ( 2 n - 1 ) n  -n 
- ~:  

~n 
so that ~ vanishes on a set o f  measure at least ~-ff contained in 2-k[--zr, Jr] n. 

I l K  C [-2zr ,  2zr] n, then, for  every k > O, 

rr]n 2 n - 2 
K n 2-~[-7r ,  < (2rr)n 2 n(k+l) - 1 

This implies, in particular, that ~, vanishes on a set o f  measure at least (2~)" contained in [-zr, Jr] n. 2 n -  1 

R e m a r k  4. 
Suppose K C [-2~r, 27r] 2 C R 2, then the above theorem states, in particular, that 

I K O [--Tr, :7l"12 ___ 2(2r : )2 .  

That is, K does not cover more than 2 o f  the cube [-Jr ,  ~]2. This estimate is optimal since the 

wavelet set constructed in the previous section covers precisely 2 o f  this cube. 

Another way to see this is as follows: I f  K C [-2zr,  2:r] 2, then the set 2 - l  K U 2 - 2 K  U . . .  is 
disjoint from K and is contained in the cube [ -Jr ,  Jr] 2. The measure o f  this set is 

( 1 1  ) (27r) 2 
I2-1KI + 12-2KI + . . . .  (2zr)2 + ~ + . . . .  3 [] 

Let QI . . . . .  Qx, denote the 2 n quadrants in ]R n and let I g  = [--2M, 2M] n \ I - M ,  M] n. 
Define functions ~pl . . . . .  ~ 2" such that ~/ = Xalntu.  

Lemma 1. 
I fO < M < Jr, then the collection ~ l  . . . . .  ~p2" generates a tight frame for  LE(Rn). This 

means that 
2 n 

llfll2 = Z Z E (f' ~P; rk) 2 (4.1) 
r= l  jEZ k : Z  n 

fora l l  f E L2(Rn). 

P roo f .  It is shown in [4] that the two equations in Theorem 2 (without the assumption that 
II r  II = 1) characterize tight frames of this form. Equation (3.1) is easily verified for this system. 
Equation (3.2) follows from the fact that the diameter of the sets Qi n 11t4 measured along the 
coordinate axes (i.e., in the norm Ilxll = maxl<_i<__nixil) is smaller than 2~r. Hence, all of  the 
summands in (3.2) vanish a.e. [ ]  
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Note that 
1 1 M n (2 n - 1 )  

II~'rll 2= (2~r)n I1~112-- (2~)n [ Q r f ' l l M [  = ( 2 ~ )  n 

Let y be a single wavelet for L 2 (Rn). Every ~/r can be expressed in terms of  the system {Yj,k }. 
Thus, we have that 

2 n M n (2 n - 1) 

(2rr) n 

2 n 2 n 

= ~ II~'rll z = ~ ~ ~ I<v,', rJ,k>l 2 
r = l  r = l  kEZ n j E ~  

2 n 2 

r = l  kEZ n j E Z  

2 n 
= ~ Z ~ 2 _ n j l  1 2 

r=l  k~Z n jr=Z 

Changing variables in the integral and separating the sums for j > 0 and j < 0, we have 

2nM n (2 n - 1) 

(2~). 
= ~_, Z Z 2n) 1 ~7 2j~ ~,(~)e-i,*dr 

n 

r = l  k~Z n j ~ Z  

2 n 

= Z Z y ~ 2 n J [  1 ~ ( ) <~)e-i'*dr 2 
r = l  k~Z n j > O  

2 n 

I f ,  ( )~(~)e_ik~d~ 2 
r=l  k~Z n j<O 

-= Sl + $ 2 .  

We first evaluate SI. It is clear that t.J2"=tsupp~'~ = In, and, i f j  > 0 and M < Jr, that 
t-J2"=lsupp ~-7(2J.) = 2-JIM C [--Jr, Jr] n. Thus, we have that 

S1 
2. 12 = ~"~ Z Z 2nJ [ I f[_ ~'~7(2J~) ~'(~)e-ikr 

r = l  kEZ n j > 0  ~ rt'n']n 

2" 2n j 

2nJ 

To estimate $2 we use the fact that, for every j < 0, 

kEZ n 

I 1 L  ( )e-i2'kCdr 2 _ < ~ 2  ~ j ~  ~(~)~ 2q 
kEZ n 

since the second sum contains more terms than the first one. 
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Denote by ~M the function such that 

~'~ = (1 - Xt-M,M~") 13. 
A 

Then, using the fact that the ~pr form a tight frame such that supp ~r  C IM, we obtain 

$2 _< 

2 n 

E E Z  2nj l fR  e-i2'k~dt 
r=l  k ~ Z  n j<_O 

2 n 

(~)n . (U(t)~r 2Jr 
r=l  kEZ n j E Z  

( 2 ~ )  n " I~(t)l~dt = ( 2 ~ )  n " \ [ - / , M ] .  

URn\[_M,M] n [13(t)[ 2 d t  = (2rr) n -- j>~O f2-;lM 113(t)[2 d r .  

Ifsupp 13 C [ -2M,  2M] n, then 

(2M) n (2n - 1) -(2zr)  n = Z ( 2nj - 1) --f-'IM 113(t]1~ a t .  
j>O 

2nMn(2n-1)  
Proof.  We have shown that (2rr)" = ($1 + $2) and that 

1 113(t)12dt 
$2 _< (2~r)---- ~ "\I-M,M] n 

with equality if supp 13 C [ -2M,  2M] n. Thus the proposition holds, since 

2 n 

$2 Z Z ( 2 @  fR f'M(t)~'7(t)e-ik~dt2 = . = (2~:)" I I ~ l l  ~ . 
r=l  kEZ  n 

Hence, we get the following result: 

Proposition 1. 
Suppose that g is a single wavelet for L2(R n) and let IM = [--2M, 2M] n \ [-M, M] n, with 

O < M < Jr. Then 

f~ - _ f :  1 3 ( ~ ; ) l : d t + f  113( t ) l :d t .  E 2nj -JIM 113(t)12dt < (2M)" (2 n - 1) < Z 2"j -il. ,R ' \ [ -M,M]"  
j>0 j>0 

[] 

We can now prove Theorem 5. Suppose y is a wavelet for L2(R n) such that supp t3 C 
•n \ I - M ,  M] n. Then, by Proposition 1, 

(2M) n (2 n - 1) _< 113(~)12dt = (2~r)n " 

This implies that M < ~ .  

A 

Furthermore, if supp 13 C [ -2M,  2M] n, then supp ( g  C [-2M, 2M] n \ [ -M,  M] n and the above 
inequality becomes an equality, since in this case 
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Using Proposition 1 we can now prove Theorem 6. Suppose ~ = XK is a wavelet for some 
K C R n. Let I = I~r. Then, Proposition 1 takes the form 

j>0 j>0 

and, when K C [-2zr ,  2zr] n, 

j>0 

This implies that, for every k > 0, 

2 nk Kf'12-k[--zr, rr]nl<y~2nJ K N 2 - J l  < ( 2 r r ) n ( 2 n - 1 ) .  
I - -  

j>__k 

The second part of  Theorem 6 is proved similarly. 

5. Final Remarks 

In [5] there is a construction of an unbounded wavelet set in one dimension. Like most 
constructions of  wavelet sets in one dimension, the method in [5] does not readily generalize to 
higher dimensions. However, by using Method 1 one can easily construct unbounded wavelet sets 
in higher dimensions (and new ones for LE(R)). 

In [9] the authors obtain the following "classification" theorem for one-dimensional wavelets: 

Theorem 7. 
Suppose ~ ~ L2(R) and b = I~bl has support contained in 

& =  - ~ , 4 ~ r - g ~  , 0 < ~ _ < ~ .  

Then ~ is an orthonormal wavelet if and only if 

1. b2(~l + b2(�89 = l for a.e. ~ e t - 4 ~  - ~ , 4 ~  - ~c~l; 

2. b(~) = l for a.e. ~ ~ [2rr - 2~, 4~r - 8r 

3. b 2 ( ~ ) + b 2 ( ~  + 2 r r ) =  l fora.e. ~ ~ [ - ~ , - 2 o t ]  ; 

4. b(~) = b(�89 + 2rr)fora.e. ~ ~ [ -~ot , -4c t] ;  

5. ~p(~) = eip(~)b(~), with p(~) satisfying p(~) + p(2(s e - 2Jr)) - p(2s  e) - p(~ - 2zr) = 

(2n(~) + 1)rr for a.e. ~ ~ Da ["](Supp b ) N  (�89 b) ,  where Da = [2rr - 4at, 2rr - 

and n (~ ) is an integer-valued measurable function. 

6. b(~) =Ofora.e. ~ ~ [-~r - 4~] = Ha. 

In particular, I~'1 is completely determined by its (arbitrary) values on Da = [2Jr - ~ot, 2zr - 

~ ] .  The key to the proof of this theorem is showing that ~ / =  0 on Ha = [ - ~ a ,  2zr - 4~] when 

is supported in Sa = [-8or ,  4rr - 4or]. In this case, the equations in Theorem 2 have a particular 
simple form. The results in the previous section show that no such simple "classification" theorem 
can hold for higher dimensional wavelets. 

All of  the wavelet sets constructed in this article are non-trivial in the sense that they cannot 
be written as a finite collection of polygons. We conjecture that this is always the case. That is, 
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any dyadic wavelet in higher dimensions cannot be written as a finite collection of polygons. In [3] 
there are examples of dilation matrices A for which there exist wavelet sets consisting of  two convex 
polygons (here the definition of  wavelet is changed to have dilations by A j instead of the usual 
dyadic dilations 2J). Thus, an interesting problem would be to characterize those dilation matrices 
for which there exist "simple" wavelet sets. 
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