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S a m p l i n g  of  P a l e y - W i e n e r  
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ABSTRACT We consider a generalization of entire functions of spherical exponential type on stratified 
groups. An analog of the Paley-Wiener theorem is given. We also show that every spectral entire function 
on a stratified group is uniquely determined by its values on some discrete subgroups. The main result of 
the article is reconstruction formula of spectral entire functions from their values on discrete subgroups 
using Lagrangian splines. 

1. Introduction and Statements of  Main Results 

The classical Shannon-Whittaker sampling theorem states that if f ~ L2(R) and its Fourier 
transform f has support in [ -w,  w], then f is completely determined by its values at points nf2, 
where f2 = zr/o9 and in L2-sense 

s | n  (7~ ( t  " n ~"2)) 
f ( t )  = E f ( n f 2 )  

zr(t -- nf2) 

Functions f ~ L2(R) with property suppf  C [-09, ~] form the Paley-Wiener class PWoj. 

The Paley-Wiener theorem states that f is in P Wa, if and only if f is an entire function of exponential 
type oJ. 

Different kind of generalizations of the Shannon-Whittaker formula can be found in Benedetto's 
survey [ 1]. 

We introduce an appropriate generalization of entire functions of spherical exponential type 
which we call spectral entire functions of exponential type. Our goal is to show that the reconstruction 
of sampled spectral entire functions of exponential type is possible as long as the distance between 
points from a sampling sequence is small enough. The reconstruction formula involves the notion 
of a spline. 

The consideration in the present article is subelliptic in the sense that the central role belongs to 
a certain subelliptic operator. The case of corresponding elliptic theory on manifolds was considered 
by the author in [ 11 ] and [ 12]. 
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The known proof of  the Shannon-Whittaker Formula uses the fact that functions e int form 
orthonormal basis in L2([ - r r ,  zr]). Our explanation of this phenomenon is different: an entire 
function of  exponential type can be reconstructed from its values on certain discrete sets because it 
satisfies the Bernstein inequality. Our method applied to the classical case gives the result which is 
slightly weaker than the known Shannon-Whittaker Theorem in the sense that the distance between 
points from a sampling sequence should be small enough. But the method of  reconstruction that is 
based on Approximation Theorem 3 seems to be new. 

Recall that a nilpotent group Lie G is stratified if its Lie algebra is a direct sum of VI, V2 ..... Vn 
where [ V/, Vj ] = Vi+j, if i -I- j < n and [ V~., Vj ] = 0, if i + j > n. As a manifold, such a group can 
be identified with Euclidean space and the invariant measure is the usual Lebesgue measure. The 
number Q = ~ j (dimVj) is called the homogeneous dimension of  G. 

Every stratified algebra Lie admits one parameter group of  diffeomorphisms 

t~t (vl q- ... Jr- on) = tvl -b ... q- tnvn, Vi E Vi 

which are called dilations. The homogeneous norm is introduced by the formula 

= Vi i  ( 2 n ! / i )  Vi E g i  . 

\ i = 1  / 

Let X1 ..... Xm be a basis for V1. Then sub-Laplacian D = - X l  2 - ... - X 2 is a second order 
self-adjoint and positive definite hypoelliptic operator which is homogeneous with respect to the 
above dilations. 

Using sub-Laplacian D one can introduce the Sobolev scale of  spaces with the norm II f II s~ ~G) = 
II(l + D)Cr/2f II, cr >__ 0. As was shown by Foiland [3] (see also [2, 4, 8, 9, 10]) this norm is equivalent 
to the norm Ilfll + IID~/2fll and if~r = r is an integer to the norm 

Hfli+ IIx, l . x , , f l l  . 
1 < i l  . . . . .  ir < m  

For negative cr spaces S~(G) can be introduced using duality. The full scale S~(G), -oo  < 
a < oo serves the sub-Laplacian D in the same way as standard Sobolev spaces H ~ (Ra), - o o  < 
t7 < co serve standard Laplacian A. 

The following is a brief description of our main results. First of  all we introduce an abstract 
definition of  entire functions of  exponential type. 

Let E be a Hilbert space with the norm I1.11 and D a self-adjoint positive definite operator in E. 
According to the spectral theory [6] there exists a direct integral of  Hilbert spaces X = f x ()~)dm ()~) 
and a unitary operator F from E onto X, which transforms domain of  D k onto X k ---- {x ~ Xl)~kx 
X} with norm 

besides F ( D k f )  = )~ (F f ) ,  if f belongs to the domain of D k. As is known, X is the set of  all 
m-measurable functions ~. ---> x().) E X(~.), for which the norm 

(f: ): Ilxllx = IIx(X)ll2(x)dm(~.) 

is finite. 
We will say that a vector f from E is a spectral entire function of  exponential type co (co-SE 

function) if its "Fourier transform" F f  has support in [0, co]. The Eoj(D) will denote the set of  
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all o., -SE functions. The next theorem can be considered an abstract version of  the Paley-Wiener 
Theorem. 

Theorem 1. 
The following conditions are equivalent: 
a) a vector f belongs to Eoj(D); 
b) a vector satisfies the Bernstein inequality 

IlO~fll < a,~llfll 

for every natural k; 
c) for any h E E the complex valued function of one variable t E (-oo,  oo) 

F(t) =(eitD f ,  h ) =  L eitO ffldlz 

is an entire function of exponential type 09 which is bounded on the real line, i.e., it has analytic 
extension to the complex plane C and there exists a constant a = a(h) such that 

IF(z)I _< ae ~ z e C ; 

d) the abstract function eit D f has a continuation to the plane as an entire function and there 
exists a constant b such that 

IleiZO f ll <_ be ~ z E C . 

d 2 
In the case of  R l , this definition being applied to ~ gives standard band-limited functions. In 

the case of  R n, n > 1 and Laplace operator A it gives what is known as entire functions of  spherical 
exponential type that belong to L2(R"). 

In the situation of  a stratified group G we use sub-Laplacian D in the space L2(G). It is a 
self-adjoint positive definite operator. We apply the above construction to the operator D and it gives 
us the notion of a SE-function on the group G .  

We will also assume that Lie algebra has rational structure constants. This assumption implies 
existence of  a discrete co-compact subgroup F which is invariant under dilations. We will use 
notation Fj = 82;F. Let B(x, r) be a ball in homogeneous metric p(g, h) = IX - YI, g = 
expX, h = expY with center x ~ G and radius r. Here exp is the exponential map from Lie algebra 
onto a corresponding group. Suppose that { B(x r , r) }x r ~r is a cover of  G. It is clear that this cover 

has a finite multiplicity M in the sense that every ball from this family has non-empty intersections 
with no more than M other balls from the same family. Since metric p(x, y) is homogeneous, the 
family of  balls {B(x~,, 2Jr)}xyerj will also be a cover of  G of the same multiplicity M. 

Given a subgroup Fj and a sequence {s~, } ~ 12 we will be interested to find a function sk,j e 
S2k(G), k > Q/4 such that 

a) sk,j(x• = s v, x~, e rj; 
b) function Sk.j minimizes functional u ~ II Dku II. 
The same problem for functional u --+ Ilullsu~G), u ~ s2k(a), k > Q/4 can be solved easily. 
Pick a ball B(0, r) of  very small radius r and then by translations construct a family of  pair ways 

disjoint balls B(x• r), xj, ~ Fj. In the ball B(0, r) we consider any function ~Po e C~~ r)) 
such that 90(0) = 1. Using translations we construct similar functions ~Pr in balls B(x• r). Because 
of  invariance all these functions have the same Sobolev norm 

l<il<...<ik<m 

It is clear that for any sequence {sy } e 12 the formula 

f = ~ sr~~ 
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defines a function from Sk(G). Let P f  denote the orthogonal projection of this function f ( in the 
Hilbert space S ~ (G) with natural inner product) on the subspace U 2k (F j) = {f  ~ S 2k ( G ) I f  (x~,) = 
0} with S~(G)-norm. Then the function g = f - P f  will be a unique solution of the above 
minimization problem for the functional u ---> Ilu IIs2k(~), k > Q/4. 

The problem with functional u --+ IIDkull is that it is not a norm. But fortunately we are able 
to show that for all natural k > Q/4 and all integer j the norm 

I/2 

is equivalent to the norm II f lisa(c). So, the above procedure can still be applied to the Hilbert space 

S~(G)  with the inner product 

< :,g > =  E :(x.)g(xy)+(o.2:,~:,2g) 
Xy EI~j 

t T 

and it clearly proves existence and uniqueness of the solution of our minimization problem for the 
functional u --+ IiDkull,k > Q/4. 

The proofs of all main results in the present article are based on the following inequalities. 

Theorem 2. 
There exist a Jo ~ Z and a constant Co > 0 such that for j < jo and every f E S~  ( G), k = 

2 t Q, l = 1, 2 . . . . .  the following inequality takes place: 

,:,_<2'c0 E l:(x.)l 2 + ( c 0 : ~ )  ~ ~: �9 
XFE[" j 

In particularfor f ~ Uk(Fj) 

Ilfll _< (c02J/2Q) k Dk f l "  

For the given f ~ S2k(G), k > Q, the Sk,j(f)  ~ s2k(G) will be the function that minimizes 
u ---> IIDkull and takes the same values on Fj, i.e., sk,j(f)lrj  = frj.  Since D is invariant with 
respect to translations it is clear that Sk.j ( f )  = ~.xy ~r~ f (x~,) Lk,j (xx~ 1) where Lk,j (x) E S ~ (G) 
is the function that minimizes the same functional and Lk,j(O) = 1, and is zero at all other points of 
Fj. In the classical case, such functions are called Lagrangian splines. 

We prove the following approximation theorem. 

Theorem 3. 
There exists co > 0 such that for j < jo the following estimate takes place 

,: -.. ,<:>, llo,: :<G>, = =, 1,2 ..... 

Proof. If f E S~(G), k = 2 t Q, then f - sk,j(f) ~ U~(Fj) and according to Theorem 2 we 
have 

li:-.,,(:>, _< (.0:o)' : <:-.,,<:>>II 
Using minimization property of sk.j (f) we obtain 

,: -.,,<:>u-< (co:O)' ll..: [ 
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where co -- 2Co and the constant Co is from Theorem 2. [ ]  

Using Theorem 3 and the Bernstein inequality from Theorem 1 we immediately come to the 
following uniqueness and reconstruction theorem. 

T h e o r e m  4. 
For the same constant co > 0 as above 
a) every co-SE function f E Eoj(D), co > 0 is uniquely determined by its values on any set 

I'j = 82iF as long as j < -2Qlog2(coco); 
b) for  every such I'j the sequence o f  splines sk,j ( f ) ( x )  = Y~xv~Fj f (x~ ' )L~: , j (xx~l) ,  k = 

21Q, l = 1, 2 . . . . .  converges to f E Eo~(D) in L2(G)-norm. 

The rest of  this article is devoted to the proof of  Theorems 1 and 2. 

2. Proof  of  Theorem 1 

The goal of  this section is to prove Theorem 1. The following lemma is evident. 

L e m m a  1. 

a) The set L..Jo~>0 Eo~(D) is dense in E; 
b) the Eo~(D) is a linear closed subspace in E. 

We now prove that conditions a) and b) from Theorem 1 are equivalent. 
Let f belong to the space Eo~(D) and F f  = x ~ X.  Then 

(f0 (fo ~ = X2kllx()OII2(x)dm(X) < cokllxllx,k E N ,  

which gives Bernstein inequality for f .  
Conversely, if f satisfies Bernstein inequality, then x = F f  satisfies Ilxllx* _< cokllxllx. 

Suppose that there exists a set cr C [0, oo] \ [0, col whose m-measure is not zero and x l ,  ~ 0. We 
can assume that tr C [co + E, c~) for some E > 0. Then for any k E N we have 

r Itx(~.)ll2(x)dm(X) < Xkx(Z) d/z < Ilxtl~ (co/~o + ~)2k 
Jw+E (X) 

which shows that or x (X) is zero on cr or cr has measure zero. 

The implications b) ---* d) ---* c) in Theorem I are evident. Therefore, it is enough to show 

the implication c) --+ b) which is a consequence of the following lernma. 

/.emma 2. 

Let D be a self-adjoint operator in a Hilbert space E. I f  for  some f E E there exists an co > 0 
such that the quantity 

sup Dk f co-k = R ( f )  
k e n  

isfinite, then R ( f )  < IIf]l. 

P r o o f .  By the assumption IIDrfll < R( f ) co  r, r ~ N.  Now for any complex number z we have 

[ II eizDg = y ~  ( i r z r D r g ) / r !  < R ( f ) ~ l z l r w r / r !  = R ( f ) e  Izl~~ . 

0 0 
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It implies that for any h 6 E the scalar function (eizDf, h) is an entire function of exponential 
type w which is bounded on the real axis R 1 by the constant IIh II II f II. An application of the Bernstein 
inequality gives 

[(ei'~ h) c(nl,= -~ (eitOf, h) <ojkllhllllf[I �9 

The last one gives for t = 0 

I(Dk f ,  h) < o~kllhllllfll . 

Choosing h such that Ilhll = 1 and (Dkf ,  h) = IIDkfll we obtain the inequality IlOkfll < 
co k II f II, k ~ N, which gives 

R ( f ) =  sup (oa -k D k f  ) _< Ilfll �9 
k~N 

Lemma 2 is proved. [ ]  

3. Proof  of  T h e o r e m  2 

L e m m a  3. 
I f  A is a self-adjoint operator in a Hilbert space and for some element f 

llfll < b + al lAf l l ,a  > O, 

then for all m = 2 l, l = 0, 1, 2 . . . .  

Ilfll < m b  + 8 ra-la m I[A" f l l  

as long as f belongs to the domain of  Am. 

P r o o f .  For any self-adjoint operator B in a Hilbert space we have 

Ilfll ___ II(I + e i B ) f l l  

and the same for the operator (I - ei B). It gives 

ellBfll <_ f l ( / - e i B ) f . [  + [Ifll < ( I  + e 2 B  2) f l  + 'lfll < e2 B 2 f  I at" 2llfll �9 

So, for any f from the domain of B 2 we have the inequality 

IlBfll ___e IB2f [ I - I -2 / e l l f l l , e  > 0 .  

Our lemma is true for m = 1. If it is true for m, then applying the last inequality for B = A m 
we obtain 

Ilfll < mb + 8m-la m (e [Ia2'n f + 2/el l f l l )  . 

Setting e = 8 r~-l (a)m2 z, we obtain 

Ilfll <- 2mb + 82m-l(a)2m ]]A2m f . 

Lemma 3 is proved. [ ]  
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We consider  Sobolev spaces S cr (G) with the norm II f IIs~ (G) = II f II + II Da/2 f II, ~r > 0 and for  
any open f2 in G we define the space S 'r (f2) as the collection of all restrictions gs2 = gl~,  g �9 S ~r (G) 
with the norm llgnltso(~) = inf Ilgllso(a) where g runs over the set of  all functions from S~(G) 
whose restriction to f2 gives g~. Let B(3., M) = {B(x e, 3.)} be a cover of G of finite multiplicity 
M. We introduce a map 

TB(X.M) : Sa(G) -+ 12 (S a (Be) ) ,a  > O, 

TB(X.M)(S) = {g•215 = gls(x,.X) 

where the Hilbert space on the right is defined as the set of  all sequences {gr }, g r  �9 S`r (B(xe,  L)) 
for which ( ~ r  Ilgr II~(s(xy,x)) I/~- < oo. 

Lemma 4. 
For any natural M and any ~r > 0 there exists a C = C(M, a) such that for every cover 

B(3., M), 3. > O, 
I I r . (~,M,  II -< C(M,  a ) m a x  (1 ,~ - r  . 

P r o o f .  Let 0 �9 C~(R) ,  O(t) = 1, It[ < 1, supp 0 C [ - 2 ,  2]. We define 0x,~,(x) = O(p(O, 
8x-l(xx~l)) ,x  E G, X > 0. Then 0x ~ C~~ = 1,x �9 B(x e, L),supp Ox C B(x e, 23.). 

It is clear that IXit . . .  XijOx (x)l < C(j,  O)3.-J. Therefore, if f �9 Sk(G), k > 0 is an integer, then 

fls(xy,X) < 

< 

< 

II fox II~k (G) 

S, fB Ix,,...x,, (x)l 2 a.  
[j[<k (x~,,2X) 

C(k 'O)max( l '3 . -2 ' )  .~. fa:x 2x' Ixit '"Xi~f(x)12dlz 
j l<k ~, r,  : 

and then 

e 

< C(k'O)max(1'3.-2k) E E fB 2x Ixi '" 'Xii f(x)12dlz 
r lit< k ( x ~ . )  

<_ C(k,M,O)max(1,3.-2k)llfll2sk(G). 

Thus, for natural s = k the lemma is proved. A general case can be obtained by interpolation since 
for the complex interpolation functor [., .]0 

[12(L2(By)),12(S a (Be))]  0 =12(S Oa ( B e ) ) , 0  < 0  < 1. [ ]  

We now prove Theorem 2. 

Proof  of  T h e o r e m  2. Let {B(x e, 1)}xr~r be a cover of G of the finite multiplicity M. The 

cover {B(x e, 2J)}xe~rj, l"j = 82j 1" also has the same multiplicity M. Let ~Pe, supp~e C B e be a 
corresponding partition of unity. 

For a function f from S~(S), a > Q/2 we consider decomposition 

s(x) = 52 = s (x,) , ,(x) + Z] (s(x)- f (x,)) ,,(,o 
Y x y 

and then 
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where C depends only on multiplicity M. 

Since every vector field on the group G is a linear combination over C ~176 of the fields 

[X i l  . . . .  [Xik_ l  , X i k ] . . . ] ,  1 < k < n, 1 _< i j  < m, the Newton-Leibnitz formula gives 

I:<~) -: (x,)l 2 -< 
2 

c 4 J ~  ~_~ ( s u p  I x i l x i 2 . . . X i k f ( y ) [ .  
k=l l<il,i2,...ik<m \ y~B(xy ,2J )  

' Applying anisotropic version of the Sobolev inequality [3] we obtain 

I f ( x ) - f ( x y ) l  = _ < 

c4J~'~ ~ sup Ixi txi2. . .Xikf(Y)l  < 
k=l l<il,i2,...ik <m \Y~B(xr ,2J )  

n 
2 

C 4j~_, ~_, IIx,,x,=...Xi, fllso/=+~(BCx,.=~)), 
k = l  l<il,i2,...ik<m 

where x E B(xy, 2J), e > 0, C = C(Xi ..... Xm; e). 
An application of Lemma 4 gives 

fB I:(~)-: (x,)l 2 a. < 
• (x~.2J) 

c(2J)Q+2~ ~ ~llxi' "''XikflI2sQ/2+'(B(x~,,2J)) <-- 
k = l  l<i,,i2,...ik<m Y 

k=l 1<i I ..... ik<m 

2 UXiI'.'XikfIIsQ/2+,<G) 

U xi, 2 �9 . . x , , f l l s ~  , 
k=l 1<i I ..... ik<m 

where cr > Q/2 + e, C depends only on Xi . . . . .  Xm on cr and on multiplicity M. Since 

I[xilxi2...xi~fl[ <_ c { l l f l l +  Ok:+~/2 f l }  , 

we have for particular choice o f z  = 1/2, cr = 2Q - n, d > 2 

Ilfll -< C [ f ( x y ) [  2 -I-2 j/2 DQ f + 2J/211fll , 

where C depends only on X1 . . . .  Xm and multiplicity M. Thus, if j is smaller than some j0 = 
jo(Xl . . . . .  Xm; M) it gives 

/: ~176 Ilfll _ < C  [ f  ( x y ) l  2 --F C 2  j / 2  , C = C ( X l  . . . . .  X m ;  M )  �9 



Theorem 2 is proved. 

Lemma 5. 
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Using Lemma 3 for a = D Q, b = ()-'iv If(xY )12) 1/2 we obtain 

, I ,  <_ II(xy)l  2 + (CoV O , 

where l = 0, 1, 2 . . . . .  Co = 8C. After all, for f ~ u2ta(r~j), j < JO 

tlfl '  (Co2J/2) 2' < o2tQf[ I , l  = 0, 1,2 . . . . .  

[] 

norm 

Proof. 

279 

For any natural k > Q / 4 and any P j = 82~ r, j ~ z ,  the norm II f lisa(G) is equivalent to the 

) 1/2 

D~f + ~ If (x , ) l  2 
xyEr  

The proof of Theorem 2 shows that for every natural k > Q/4 there exists a j (k)  such 
that for every j < j (k)  there is a C = C(k, j)  for which 

llfll_< c o k f  + If(xy)l 2 
x 

Now using homogeneity arguments one can easily show that for every natural k > Q/4 and 
every integer j there exists a C = C (k, j )  for which the above inequality takes place. In order to prove 
inverse inequality we consider C~(G)  functions ~by with disjoint supports such that $v (xv)  = 1. 
Using Sobolev embedding theorem we obtain for k > Q/4 

2 < Ckllfllsz~(G), k > Q/4 .  If (x,)l 2 s ca IIf~,llsa~G) - 

The proof of  Lemma 5 is finished. [ ]  

In the introduction we explained how one can use these results to construct splines sk.j ( f )  and 
to prove uniqueness theorem and reconstruction formula. 

4. Some Properties of  the Functions sk,j 

We will show now that functions Sk.j have the following remarkable property (see [5, 7]). 

D2kSk,j = ~ ~ 
xy~rj 

where 8(x) is the Dirac measure and {dr} ~ 12. 
Indeed, suppose that Sk,j E S 2k ( G) is a solution to the minimization problem and h E U 2k (r  j). 

Then 

Dk(s~,j+Xh) 2= Dksk.j 22+2ReXfcD'sk.jDkhd~+lX12]D~h122. 
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The function Sk,j can be a minimizer only if  for any h e U2~(I ' j )  

fM DkSk,j Dkhdlz = 0 h 

So, the function ~ = Dksk,j E L2(G) is orthogonal to DkU2k(Fj).  Let r be the same 
set of  functions as above and h ~ C ~ ( G ) .  Then the function h - Y ] h ( x r )  %, belongs to the 

u2k(rj) n C~(G). Thus, 

o r  

In other words 
Dkdp = ~ oty~ (xy) , 

xy61"j 

D2ksk,) = ~ ctr$ (xy) , 
xyEr'j 

where 8(x) is the Dirac measure. 
Moreover, for any integer r > 0 

y=l  1 S-2k(G) 

where C is independent on r .  It shows that the sequence {at r } belongs to 12. 
It also can be shown that on the space of  splines the norms L2 (G),  S 2k (G) and ( ]~"~ If(xy)12) 1/2 

are equivalent. 
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