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ABSTRAC'E In this article we give some new necessary conditions for subsets of the unit circle to 
give collections of rectangles (by means of orientations) which differentiate L P-functions or give Hardy- 
Littlewood type maximal functions which are bounded on L p, p > 1. This is done by proving that a 
well-known method, the construction of a Perron Tree, can be applied to a larger collection of subsets of 
the unit circle than was earlier known. As applications, we prove a partial converse of a well-known result 
of Nagel et aL [61 regarding boundedness of maximal functions with respect to rectangles of lacunary 
directions, and prove a result regarding the cardinality of subsets of arithmetic progressions in sets of the 
type described above. 

1. Introduction 

An important problem in harmonic analysis is the question of the differentiability of  integrals 
in R 2, or more generally R n. One formulation of this problem is the following: Consider a set 
A C T, the unit circle in R 2, and view A as a selection of directions. If  Ax is the collection of all 
rectangles in R 2 containing x and oriented in one of the directions in A, is it true that for "all" f 

diamR--~olim ,--,1 fR f ( y )  dy = f ( x )  a.e. ? 

REAx 

If  this is true for some class of  functions, we say that A differentiates that class of  functions. Closely 
related to this is the problem of  the LP-boundedness of  the corresponding Hardy-Lit t lewood maximal 
operator MA,  defined by 

M A ( f )  = sup I f (Y)[dY.  
REAx -~1 
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If  A differentiates characteristic functions, then A is called a density basis. When MA is of  
strong type (p, p)  for some 1 < p < oc, then A is said to be a Max(p) set (or that A has the Max(p) 
property). (The cases p = 1 or p = oo are not of much interest since MA is never of strong type 
(1, 1) [9, X.2.3] and obviously always of type oo.) 

Not all sets are Max(p) sets or density bases. Indeed, any set that is dense in a subset of  T of 
positive Lebesgue measure is neither. (c.f. [3, p. 228] or Fefferman's proof that the characteristic 
function of the ball is not an L p multiplier [2].) Also, in a recent article Katz showed that the classic 
Cantor set is not a Max(p) set for p < 2 [5]. In contrast, Nagel et al. [6], improving upon earlier 
results of  Str6mberg [11] and Cordoba and Fefferman [1], have shown that if A is a lacunary set of  
directions, then A has both properties. As a partial converse to this we use the Perron tree construction 
to show that if the set of  directions A = {Oj } is either a Max(p) set or a density basis, and satisfies 

l some regularity conditions (for instance, if the sequence {~ o:_1 } is increasing), then the set A 

must be lacunary. Our work improves upon a related result found independently by Stokolos [10]. 

However, it is not necessary for a set to be lacunary in order to be a Max(p) set as Sj6gren and 
Sj{51in [8] have shown. In the second part of  the article we refine the Perron tree construction and 
use it to find necessary conditions for general sets of  directions to have either of  the two properties. 
As an application we find bounds for the cardinality of  the intersection of a Max(p) set or density 
basis with an arithmetic progression. 

2. Lacunary Sequences 

Let A = {Oj }~k=l C [0, zr/2) be a decreasing sequence and consider the collection of triangles 
in Figure 1. 

(0,I) 

T1 

(0,0 b I b 2 b 3 b 2 �9 

FIGURE I. Set of  triangles. 

2 k 
If  from the set of triangles we can construct a Perron tree E = U i=I  ]'i such as Rademacher 

does for the special case bl = b2 . . . . .  b2k = 1 (see [7], [9, X.1], or [3, 8.1]), with T / a  translate 
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2 k 
of Ti and m(Ui= l T/) 
that 

2 k 
< ~m(Ui=  l 7~), then, as is reasoned on [3, p. 224--226], E has the property 

{ 1-~0/ m(E) m x : MA (XE) (x) > > (2.1) 
E 

If  MA is of  strong type (p, p)  for some p < oo (i.e., A is a Max(p) set), then (2.1) cannot 
hold for E arbitrarily small (depending only on the operator norm of MA). If  A is a density basis, 
the Busemann-Feller  criterion (see [3, 6.4.3]) again implies that (2.1) cannot hold for E sufficiently 
small (depending on A). Thus, if such a construction exists for all ~ > 0, the set A cannot be Max(p) 
for any p < c~ and cannot be a density basis. 

We turn now to the construction of the (generalized) Perron tree (P.T.), taking into consideration 
the variation of bj. We shall see (in this section and the next) that under certain restrictions on the 
variations the P.T. construction will still go through. 

We begin with two adjacent triangles as shown in Figure 2. 

a b 
FIGURE 2. Two adjacent triangles. 

This situation is transformed by the basic operations in the P.T. construction, described in [3, 
p. 202], to the situation in Figure 3. 

Simple geometry gives that triangles I and III are similar, as are triangles II and IV, and the 
triangles have areas: 

2 b 2 a 
III = (1 - a )  -.d---~A, IIII = (1 - a)  ~-~--~A 

o t ) 2 _ ~ _ _ . _  b 2 a A .  a 2 b A IIVI = (1 - c~)2a2 a + b I I l I I  = ( 1 -  + b  ' 

Thus, the excess triangles have area totalling 

Ill + 1111 § 11111 + IIVI = (1 - a)2A (1 + 
\ 
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c~ 

Area= t~ ~ A 

t x ( a + b )  

FIGURE 3. Situation obtained using the basic operations in the P.T. construction. 

The factor (1 - ~)2 is the same as in the classical situation. The prize we pay for having bases 
with variable length is the factor (8 + b) (which in the classical case always reduces to its minimum 
value 2). 

Continuing these transformations as in the classical construction, we easily see that what is 
needed, in order to go through with the P.T. construction, is control of this factor. 

It is clear that if the factor (~ + b) is uniformly bounded in all the steps of the P.T. construction, 
with the bound, say c, independent of  the number of  steps, then after k steps we will have constructed 
T/, i = 1 . . . . .  2 k satisfying 

( 2 / = U l )  (oe 2k ~) )m ( U )  m ~/ ___ + c ( 1 -  T,. . 

\ / = l  

By choosing oe and k suitably we can arrange for 

m < E m  T/ , 
\i=1 

for any specified E > 0. 
The case when the factor (8 + b) is not uniformly bounded needs more care, and will be 

discussed in the next section. The bounded case suffices for a partial converse to [6] when the 
directions {Oj }~o have certain regularity properties. 

Recall that a decreasing sequence {Oj } of  positive numbers is called lacunary if inf ~ > q > 
O j +  1 - -  

1. 

Theorem 1. 
Let {Oj }~ C [0, -~) be a decreasing sequence and suppose there is some 0 .<  c < 1 such that 

cot0j  - c o t 0 j - i  > c max (cot 0i - cot0i_ l )  (2.2) 
l<i<j 

(where we set Oo = ~).rr I f  {Oj} is a Max(p) set for some p < (x~ or a density basis, then {Oj} is 
lacunary. 
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P r o o f .  This proof is an adaption to our situation of the proof of Theorem 3.5 in [4]. Suppose {Oj } 
is a Max(p) set for some p < cx) or a density basis. As discussed at the beginning of the section, there 
exists some r > 0 so that there is no P.T. construction using directions from {Oj } satisfying (2.1). 

Pick an tx < I satisfying 6(1 - tz) < ~ and take k so that C~ 2k < 3" We will show that if {Oj } is 

not lacunary, then there are directions {Oil . . . . .  Oi2 k } with all factors (3 + b) at most 6. Our choice 

ofc~ and k ensures that tX 2k + 6(1 -- a)  < E; hence, the corresponding ET. construction will give a 
set E satisfying (2. l) which contradicts our assumption. 

We begin by choosing M such that [2M-lc] >_ 2 k + l .  (Here [x] denotes the integer part o fx . )  
First, we see that (2.2) implies 

J 
cot0j = ~ (cot 0i - cot 0i_1) > cj cot01 ; 

1 

hence, Oj ---> 0 as j --~ oo. Thus, we can choose Jo so that for all j > J0, 

Oj-I > ( 1  - 1 ) c o t O j  
- c o t O j _ !  

because 0 cot(0) = 0 cos0 --+ 1 as 0 --~ 0. We claim that {Oj } is not only lacunary, but in fact 

0j_ 1 1 
~ > 1 +  u  

0 j  - - ' 

for suppose not, say - ~  < 1 + # for some J > J0- Then 

c o t 0 j - c o t 0 j _ l  ( 1 ) (  ) 2 
< - - l = 2 M _ l  co t0 j_ l  1 _ ~ - M  1 + 2  -M 

Set d = c o t 0 j  - c o t 0 j _ l .  Then 

cot 0j = d + cot 0 j_ l  > d2M-! , 

s o  

c 

For each i = 1,2 . . . . .  [2M-lc] > 2 k+l, let Ki be chosen such that 

d (cot OKi_I cot OK,] �9 cot 0j - i -  ~ 
c 

Notice that the integers Ki are distinct since 

( c ~ 1 7 6  =dc cot Oj - cot 0 j_  1 

c 

_> cotOj - cotOj-I  

f o r j  < J .  
2 k Now construct the P.T. with directions {OK2i }i=t (see Figure 4). Notice that the base lengths 

of the corresponding triangles are between d/c and 3d/c since there are always exactly two terms 
from the arithmetic progression, 

{cot e -i -i lc .... E2 -,cl} 
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(OA) 

In this example  } 

B j .  1 B j  (o,o) 
aj-4d/c Bj -3d/e Bj-2~c 

K4=J-5 K3=J-3 K2=J-2 

FIOrd, {0K,/)L 

d 

K 1 =J-l" 

on the base of each of the corresponding triangles. Consequently, each factor (~ + b) is at most 6. 
Since there are 2 k triangles so constructed, we have obtained the desired contradiction. 

T h u s ,  

-~j _ ~=g , V j >  Jo 

and this certainly suffices to prove that {Oj } is lacunary. []  

R e m a r k  1. 
Theorem 3.5 o f[4]  could similarly be generalized to the following. []  

Propos i t ion  1. 
Let E = {nj }j c~ =0 C N be an increasing sequence and suppose there is some c > 0 so that 

nj+l - nj > cmaxi<_j (ni+l - ni) for  all j .  I f  the square function 

1 

j n~[ni,n]+O 

is o f  strong type (p, p) for  some p < 2, then E is a lacunary set. 

We next state some corollaries of Theorem 1. In order to prove the first corollary we need an 
elementary lemma. 

Lemma 1. 
For 0 # ~ ~ [0, -~) 

7r - -  I I - -  " 
o # 
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P r o o f .  It is routine to see that 

cot(0) - cot(/~) 
1 1 

sin(/~ - 0) 

Now observe that fl - 0 ~ [--~, 9] and 

2 sinx Jr 
- -  < - -  < 1 i f  Ix l _< -=- �9 [ ]  

x Z 

Remark  2. 
In fact, it is clear from the first equality in the proof  that given any E > O, there exists Oo so 

that i f  - 00  < 0 ~ fl < Oo, then 

cot(0) - cot(fl) 
l - - E <  < 1 + ~ .  [ ]  

1 1 

Corol lary  1. 
Suppose {Oj } C [0, 9)  is a decreasing sequence and that there exists 0 < c < 1 such that 

, , ') 
- -  > c max (2.3) 

Oj Oj_ I -- l<i<j  O'~- 1 

I t  (setting O0 = ~ ). I f  {Oj } is a Max(p) set for  some p < oo or a density basis, then {Oj } is lacunary. 

Proof.  By Lemma 1 

2 ( 1  01_ ) ( 2 ) 2 ( ~ j  1 ) 
Jr ~ 1 < c o t 0 j - - c o t 0 j _ l _  < Oj-i " 

T h u s ,  
c 

cot Oj - cot Oj- l > ~ max (cot Oi - cot Oi- l) 
l<i<j  

By Theorem 1 {Oj }~ is lacunary. [ ]  

For the next result, just take c -- 1. 

Corol lary  2. 
Suppose {Oj } is a decreasing sequence, and 

1 1 

is increasing. Then {Oj} is a Max(p) set for  some p < ~ or a density basis iff {Oj} is lacunary. 

Corol lary  3. 
Suppose {Oj } is a decreasing sequence with limit 00. I f  

oil 1 
-Oo 0j_l-0o} 

is increasing and {Oj } is a Max(p) set for  some p < oo, then {Oj - 0o} is lacunary. 

Proof.  We need only observe that A is a Max(p) set iff A - 0o is a Max(p) set, and apply the 
previous result. [ ]  
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In this example .  

J-5 ...... 

\ X ( \  f \ X  ( \ • ( \ ,,, 
Bj. 1 Bj 

Bj-4d/e Bj-3d/e Bj-2d/c Bj-d/c ,_ ~ j 

d 

$=J-5 K3=J-3  K2=J-2  K 1 =J-l" 

F,ouR 4. P Twi  

the corresponding triangles. Consequently, each factor (~ + b) is at most 6. 

~gles so constructed, we have obtained the desired contradiction. 

0j_l > ( 1 +  1 ) 
T - -  ~-ff , V j  >_ Jo 

ces to prove that {Oj} is lacunary. [ ]  

~4] could similarly be generalized to the following. []  

h he uses to prove that 

ently, the set of angles 

9j } is lacunary. 

Bases 

bounded over all steps 

) taken over all lengths 

' certain circumstances. 

n tends to 0 as k ~ c~. 

0 C N be an increasing sequence and suppose there is some c > 0 so that 
(ni+l - ni) for  all j .  I f  the square function 

1 

) f o r  some p < 2, then E is a lacunary set. 

me corollaries of Theorem 1. In order to prove the first corollary we need an 

2 cot(O)-cot(fl)(2) 2 
71"  - -  1 1 - -  " 

e 

k such that Ot 2k + (1 -- 

[] 

tains its minimum in the 
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A consequence of the proposition is that if Hk = o(k), then the P.T. construction can be used 
to show that certain sets of  directions are not Max(p) sets. In terms of the directions {Oj }~~ we can 
obtain the following theorem: 

T h e o r e m  2. 
�9 O0 7"t Let {Oj }j= 1 C [0, ~)  be a decreasing sequence, i f( taking Oo = -~ ) 

m a x  +21 On 
1 = o ( k )  

n>2l \ ~ On_2l 
n+2/<2 k 

then {Oj } is neither a Max(p) set for  any p < oo nor a density basis. 

P r o o f .  Our previous results show that we just need to check that this hypothesis gives Ilk = o(k). 

First observe that at step I in the P.T. construction, (b) • is of the form 

/ --'n+21 h. ) 4-1 
/-.,i=n+ 1 ~l. 
n b ' 

Ei=n--2 '+l  i 

for appropriate choices of n > 2 l and n + 2 / < 2 k. 
Now, bi = cot Oi - cot Oi-1 (recall Figure 1); hence, 

( b )  +1 = ( c~176  4-1 

k cot G - cot 0~_21 ] 

Since this ratio is comparable to 
4-1 

+2 / On 

l 
\ on ~_21 

(See Lemma 1), Hk is indeed o(k). []  

One can use the "bounded factor" P.T. construction (or Corollary 1) to prove that a Max(p) 
set (or a density basis) does not contain arithmetic progressions of arbitrary length. This fact can be 
improved by applying the ideas of  our previous theorem. 

T h e o r e m  3. 
Suppose A C [0, -~) is a Max(p) set for  some p < oo or a density basis, and suppose f is a 

function satisfying f (x ) = o(logx).  There is an integer Mo, depending on A and f ,  such that A 
contains at most 2 M - f ( 2  M) terms from any arithmetic progression o f  length 2 M, M > Mo. 

P r o o f .  Choose ~ > 0 so that inequality (2.1) does not hold for MA (for any set E). 
Since f ( 2 g ) / M  --+ 0 we can assume without loss of generality that f ( 2  M) < 2 M-2 for all 

M. Apply Lemma 2 to choose M0 so that i f k  > Mo, and 1 < Xk < 12(1 + f(2k+2))  then 

~-~ + 1 -  \ 2 k /  ] x k  < E (3.1) 

Let M > M0 + 2 and assume 

is a decreasing sequence which is contained in the arithmetic progression of length 2 M-  1 
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We need to consider 

max +21 0, = max 
1 n,l n>2~ k~  o_2l 

n+2t<2 k 

(( On--On+2'~ On-2t~ 5:1 

o.+,---7: 

Since the angles {Oj } are chosen from an arithmetic progression of step size d, and at most 
f ( 2  M) terms from this progression are omitted, 

On--On§ ~ (21-~ f (2M)) d , 

and On_2l - O n > 2l d. 
Moreover, as 2M-ld  < Oj ~ (2 M -- 1)d, 

Hence, 

On_2t (2 M - - 1 ) d  
- -  < 

On+2 t - 2 M- I d 

( On--On+2t) (On-2 t )  < 2 ( l  q _ _ _  

e : ~  : - 

As A C [0, -~) we know (by Lemma 1) that 

(, cot  On+2l -- cot  O n On+2t 
< 4  1 

cot On -- cot On_2l -- On 

<2. 

- ' )  ( ()) o~ < 8  I + f  2 g 

O n-21 

A similar argument gives the better bound 4 (1 + f (2M))  for the reciprocal; hence, all the factors 

(2 + 3) are at most 12 (1 + f (2M)) .  

For k ----- M -- 2, construct the Perron tree from {0j}2k=l (we can do this since 2 k < 2 M-l - 

f (2M))  with proportionality parameter ta = 12(1+/(2~+2)) If, as usual, Hk is the maximum value 2k 
of the factors (~ + b) at all steps 1, 2 . . . . .  k, then certainly 1 < Ilk < 12(I + f(2k+2)). Since 
k > Mo, (3.1) implies that (2.1) holds when E is this Perron tree, and this contradicts the choice of  
~. This contradiction means we cannot have 

{Oj : j = l  ..... 2 M - I - - f ( 2 M ) } c A N { 2 M - I d  ..... ( 2 M - - 1 ) d }  �9 

To complete the proof, assume A contains the arithmetic progression {a § d . . . . .  a + 2Md} 
for some d > 0. As A C [0, ~),~r a _> - d ,  and thus, {d, 2d, . . .  , (2 M - 1)d} C (A - a) A[0 ,  ~.).Jr 
But A - a is a Max(p) set (respectively, density basis) with the same choice of E failing (2.1) as does 
for A. It follows that 

(A--a)NI2M-Id ..... (2M--I) dlI<2M-I--f(2M) 

and thus A contains at most 2 M - f(2 M) terms from any arithmetic progression of length 2 M, 

M > M 0 + 2 .  [ ]  

R e m a r k  5. 
I f  instead, we assumed the directions were chosen from a set of angles whose cotangents 

(i.e., the base lengths of the corresponding triangles in the P.T. construction) were in an arithmetic 
progression, then a similar result is true. Also, the angles do not need to be chosen from a strictly 



Applications of  Generalized Perron Trees to Maximal Functions and Density Bases 225 

arithmetic progression. By similar reasoning, one can more generally show that if  A is a Max(p) set 
or a density basis, then 

{ k =  1,2 . . . . .  2M : A A [ a  + k d ,  a + (k + l)d)  # O } < 2 M - - f ( 2  M) 

for  M sufficiently large. Another cardinality result for  sets o f  angles o f  mutual distances at least d 
can be found in [8, 2.7]. []  

1 oo In [3, Th. 8.6.1] the standard P.T. construction is used to show that {n}n=l is not a density 
basis (or a Max(p) set, as can be seen from the proof). This too can be improved. 

Propos i t ion  3. 
Suppose A C [0, -~) is a Max(p) set for  some p < oo or a density basis, and f (x ) = o(logx).  

For every ot > 0 there is an No = No(A, f )  so that for  all N > No 

P r o o f .  The details are similar to the previous theorem and are omitted. [ ]  

R e m a r k  6. 
The alert reader will have noticed that in Proposition 2 it is actually enough to have 

Ilk 
lim inf T = 0 (3.2) 

in order to be able to show that for  every E > 0 one can choose a, k so that tx 2k + (1 - ot)Hk < E. 
Furthermore, this is all that is needed to make the P. Z construction work in, for  example, Theorem 2. 
Our final result provides a partial converse to this. [] 

Propos i t ion  4. 
I f  the exact area of  the set obtained from the Perron tree construction is 

A (ct 2j + ( 1 -  ot)/-tj) , 

where j is the number of  iterations, A is the area of  the initial triangle, and a is our choice o f  
parameter in the construction, and if  there is some c > 0 such that flj > cj  for  all j ,  then 

ct x j + (1 - or) fflj stays bounded away from zero for  all choices of  or, and the Perron tree construction 
fails. 

Proo f .  If f-Ij > c j ,  then 

Let 

ot 2j + (1 - ot)t--lj > ot 2j + (1 - oOcj . 

Gj(ot) = c~ 2j + (1 - o l ) c j  . 
t 

Then G j(ot) = 2jot 2)-1 - cj ,  so 

1 

Gj (or) = 0 if and only if ct = u0 = rT-:l 

The second derivate is positive, so ~o is a (unique) minimum with value 

Gj (or0) = ( 2 ) ~  + (1 - ( 2 )  ~'!21") j , 
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