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ABSTRACT. This article provides classes of unitary operators of L2(R) contained in the commutant 
of the Shift operator, such that for any pair of multiresolution analyses of L2(R) there exists a unitary 
operator in one of these classes, which maps all the scaling functions of the first multiresolution analysis 
to scaling functions of the other. We use these unitary operators to provide an interesting class of scaling 
functions. We show that the Dai-Larson unitary parametrization of orthonormal wavelets is not suitable 
for the study of scaling functions. These operators give an interesting relation between low-pass filters 
corresponding to scaling functions, which is implemented by a special class of unitary operators acting on 
L 2 ([-zr, rr)), which we characterize. Using this characterization we recapture Daubechies' orthonormal 
wavelets bypassing the spectral factorization process. 

1. Introduct ion and Prel iminaries  

One of the two issues of this article is to deal with the following problem.-Given an arbitrary 
multiresolution analysis (abbreviated MRA) can we find unitary operators that map a scaling function 
of the given MRA to a scaling function of any other MRA? Once we can determine all such unitary 
operators we have all possible MRAs. The corresponding problem for orthonormal wavelets and 
their generalization complete wandering vectors was studied by Dai and Larson [4]. In our first main 
result, Theorem 1, we prove that given an arbitrary MRA there exists a class of unitary operators 
such that each member of this class maps a scaling function of the given MRA to a scaling function 
of some MRA and vice versa. Thus we obtain an operator-theoretic characterization of  scaling 
functions. For an MRA .A4 = {1,) }j we adopt I,~-1 _ Vj. For the definitions and a very careful and 
comprehensive introduction to MRA theory the reader should refer to [11] 
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Defini t ion 1. 
A square-integrablefunction q~ defined on R is a scaling function for  the MRA M if {q~ (. -- n) : 

n e Z} is an orthonormal basis of  Vo. 

We use our operator-theoretic characterization of scaling functions to characterize the class 
l is the Fourier transform of a scaling function. Due of Borel subsets K of R such that ~-~XK 

to this result it turns out that only a restrictive class of unitary operators mapping orthonormal 
wavelets to orthonormal wavelets map scaling functions to scaling functions (see discussion following 
Corollary 1, Corollary 2, and Example 1). Thus, although each scaling function is associated with an 
orthonormal wavelet, the classes of unitary operators provided by Dai and Larson are not the proper 
tool for the study of scaling functions. Corollary 1 gives the form of unitary operators mapping 
Shannon scaling function to every other scaling function. A careful look at this result reveals that 
determining these unitary operators is precisely the same with finding the scaling functions. This 
shows that our characterization cannot lead us to the construction of all scaling functions. Let { Vj }j 
be an arbitrary MRA and 4~ be a scaling function for this MRA. Since V0 is contained in VI for a.e. 
y in [-Jr, Jr) we have 

.v/2q~(2y) = m ( y ) ~ ( y )  (1.1) 

The 2zr-periodic function m defined uniquely by the previous equation is the low-passfilter 
corresponding to the scaling function 4~. Equation (1.1) is often called two-scale relation. M R A  
theory proves that for a low-pass filter m corresponding to a scaling function the next equality is true: 

[m(y)l 2 + [m(y +rr)[  2 = 2 a.e. (1.2) 

We want to consider the low-pass filters corresponding to scaling functions as a subclass of a 
bigger class of such objects. Thus we introduce the next definition. 

Defini t ion 2. 
A 2zr-periodic Borel measurable function m satisfying (1.2) is called low-pass filter. 

Every low-pass filter is not necessarily associated with a scaling function and when it is so 
we specify it in order to avoid confusion. The term low-pass filter was first adopted by engineers. 
We assign to the term low-pass filter a wider meaning than usually given to it in the engineering 
literature. The engineers usually consider continuous low-pass filters m such that m(0) = 4'2. We 
want to consider the most general class of them. This justifies our definition. 

Theorem 2 shows that for any two low-pass filters associated with scaling functions there 
exists a unitary operator which belongs to a specific Von-Neumman algebra acting on L2([-zr, Jr)) 
mapping one low-pass filter to the other. We can use this theorem to find low-pass filters associated 
with MRAs. In fact Theorem 2 provides the a unitary pametrization of the complete class of low- 
pass filters. The significance of this theorem is that we show that each of the unitary operators 
characterized in Theorem 1, mapping a scaling function to any other scaling function produces a 
relation between the low-pass filters corresponding to these scaling functions. 

We use low-pass filters to construct scaling functions. For a very large subclass of low-pass 
filters the infinite product (3.1) defines a square-integrable function which satisfies the two-scale 
relation (1.1). Such a function is not automatically a scaling function. There exist conditions on the 
low-pass filter guaranteeing that the infinite product (3.1) produces a scaling function but there are 
still enough open questions related to this issue. We will discuss all these in Section 3 of the present 
article. Nevertheless the infinite product (3.1) cannot give all scaling functions (see Example 2). 
We include a discussion on this example concluding with an interesting problem. Finally we give a 
generic example (Example 3) showing how we can use Theorem 2 to recapture low-pass filters that 
are trigonometric polynomials. 

It can easily be verified that if ~b is a scaling function and tt is a 2zr-periodic unimodular 
function, then/zq~ is the Fourier transform of another scaling function for the same MRA. For the 
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rest of this article, all subspaces are closed. Let @ be any square-integrable function defined on 
R. We define @j.k(x) := 2J/2~t(2Jx - k), for all integers j ,  k. If X is a subset of a Hilbert space, 
we define [X] to be the linear span of X and by [X]- the closure of [X]. Two important unitary 
operators acting on a multiresolution analysis of L2(R) are the dilation and shift operators defined, 
by the equations Df( t )  ---- ~f2f(2t)  and Sf ( t )  = f ( t  - 1), f ~ L2(R), respectively. 

2. Unitary Mappings Between MRAs 

Another issue of this article is to provide certain classes of unitary operators which map 
the scaling function of one MRA to the scaling function of another MRA. Since the zero-indexed 
subspace of every MRA is the only subspace that has an orthonormal basis consisted of the integer 
translations of a single function [16], it is natural to search within a class of unitary operators that 
preserve this property. This leads us to the unitary operators in the commutant of the shift operator. 
Let .A/[ = {Vj : j ~ Z}, .A/" = {Vj : j ~ Z} be two MRAs with q~, X their scaling functions and ~p, 

orthonormal wavelets, respectively. The operator U defined by 

Ur = Xo.nn E Z 

uC,  s.k = 

is a unitary operator of L2(R). 

Theorem 1. 
Let U be a unitary operator defined as in the preceding paragraph. Then the following hold: 

SU = US (2.1) 

UDg = DUg for e v e r y g i n [ r  > 0 ,  k 6 Z ] -  (2.2) 

Conversely every unitary operator defined in L 2 (R) satis~ing the preceding properties defines 
an MRA generated by U q~ and U ~ is a wavelet associated with this MRA. 

Proof .  We include only the proof of the converse implication because the other direction is 
obvious. Suppose that U is a unitary operator satisfying properties (2.1) and (2.2). Let .Ad = {~ : 
j 6 Z} be a given MRA generated by the scaling function 4' and ,p be its orthonormal wavelet. Set 
Vo := U(Vo) and Vj :-- DJ(Vo). We will prove that {Vj : j ~ Z} is an MRA generated by U~b 
which will be denoted by .A/'. 

First we have to prove the inclusion 1,~0 _ l,~i. By property (2.2) we have U D(Vo x) = D U(V~-). 
Since U and D are unitary operators, they preserve orthogonal complements. Thus, we have 

[UD (Vo)] • = [DU (Vo)] • 

equivalently U(VI) = 71. But V1 = W0 $ V0. Therefore, 

91 = U (W0) @ 17o (2.3) 

This equation implies V0 c VI- By the definition of.A/and the latter inclusion we have that.A/" is an 
increasing sequence of subspaces of L2(R). By property (2.1) {(U~b)O.n : n 6 Z} is an orthonormal 

basis of 1,70. Proposition 5.3.1 in [11] shows N VJ = {0}. By induction, using properties (2.2) 

j~Z 
and (2.3) we show for j ~ Z + ~'+t = U(Wj) @ Vj, thus 

j--1 

S, 
1=0 



202 Manos Papadakis 

Therefore U(I,~) = Vj for each j > 0, thus U VJ is dense in L2(R). [ ]  

j~Z 

Remark  1. 
If P is the orthogonal projection onto V0 then condition (2.2) of the previous theorem is 

equivalent to 
(DU - UD)(I  - P) = 0 [] 

The merit of the previous theorem is that given an arbitrary MRA it provides an abstract 
characterization of every scaling function of every other MRA by determining the unitary operators 
in this class. The unitary operator U defined in the paragraph preceding Theorem I mapping r 
to X is defined modulo the wavelets ~ and ~. Since an infinite number of orthonormal wavelets, 
are associated with an MRA we conclude that the correspondence between the set of all scaling 
functions and each of these classes of unitary operators of Theorem 1 is not one to one. It is worth 
noticing that given an orthonormal wavelet ~,  then the class of bounded operators A in {S}' such 
that (AD - DA)(I  - P) = 0 is a SOT-closed linear subspace of B(L2(R)). This subspace is a left 
module over the abelian selfadjoint algebra {D, S}'. 

Theorem l has also been obtained in a rather complicated form by Dai and Lu in [5, Corollary 
3.6], independently, but was published first in [17]. It is easy to establish the equivalence between 
the two results. 

Let 5 r denote the Fourier Transform on L2(R). We define the Fourier transform on L 1 (R) by 
the formula: 1/? 

f ( g )  := ~ -  ~ f ( t ) e - i t yd t  f e LI(R) 

Let M be defined on LE(R) by the equation Mr(t )  = ei t f ( t )  a.e. If S and D are the Shift and 
Dilation operators, respectively, it is easy to see ~ 'SY - t  = M* and ~'D.~ "-I -- D*. Throughout 
the article, given an arbitrary bounded operator A acting on L2(R) we use ,4 to denote the operator 
~ 'A.~- I. 

Let 2td be the Shannon MRA generated by the Shannon scaling function 4) := (2zr)-l/2.T'-I 
(X[-mrr)). The Shannon wavelet ~ which is associated with this MRA is given by ~ = (2~r) -1/2 
X[-2m-~)u[m2~). It is easy to see .~'(V0) = LE([~r, -Tr)) and ~'([~/k,, : n e Z ] - )  = L2([--2k+lrr, 
--2~r) U [2kTr, 2k+1~)), k > 0. LetN" be an arbitrary MRA. Let r and ~ he its scaling function and 
orthonormal wavelet, respectively. Next we will find the form of the unitary operators U mapping 
4) to ~ and ~ to J/satisfying conditions (2.1) and (2.2) of the previous theorem. Obviously 

L2(R)=~_,~L2([-2'+'zr,-2*Tr)U[2*rc, 2'+'~r))~L2([zr,--n)). (2.4) 
k=O 

Ifm belongs to L2([~r, - r r ) ) ,  then extend m 2zr-periodically over the whole real line. It is easy to ver- 

ify U m =  ~"~-m; .  Form in L2([--2k+lzr, --2kzr)U[2kTr, 2k+lzr)) we have On = -v/~-m~(2-k.), 
with m 2/c2rr-periodically extended over the whole real line. If g is an arbitrary function in L2(R) 
then it can be decomposed with respect to the latter direct sum in g = h + Y'~-~=o gk, where h is in 
L2([-rr ,  Jr)) and each gk in L2([--2k+lTr, --2kzr) tO [2kzr, 2k+lrr)). Then we have 

[ ) 0g = h$ + gk 2-< (2.5) 
k=0 

It is easy to establish the converse implication. Thus, we proved the following. 

Corollary 1. 
Let AI" be an arbitrary MRA. Let 0 and it be its scaling function and orthonormal wavelet, 

respectively. Then the unitary operator U given by (2.5) mapping 4) to ~ and ~t to it satisfies 
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conditions (2.1) and (2.2) of the previous theorem. Conversely, let U be a unitary operator satisfying 

conditions (2.1) and (2.2). If  we set 0;(I- j r : r )  :=  4'2-~'~ and 0Xt-2Jr.-rr)utrr.2rr) :=  ~r then 
is a scaling function and ~ is a wavelet associated with the MRA 0 generates. 

Dai and Larson [4] characterize the set of  all unitary operators U such that given any orthonor- 
mal wavelet ~ ,  Uq / i s  again an orthonormal wavelet. For a given orthonormal wavelet ~ the local 
commutant Cr S) is the set of  all bounded operators A satisfying ADnsm~ = DnSmA~t for 
all integers m and n. They prove that for every orthonormal wavelet 17 there exists a unique unitary 
operator U such that U~t = 17 and U ~ Cq,(D, S). Also Cr S) c {D}'. Thus a unitary operator 
U satisfying conditions (2.1) and (2.2) U belongs to the local commutant C0(D,  S) if and only if 
U E {D, S}'. 

The following proposition which is an application of Theorem 1 characterizes the Borel subsets 
K of R such that (2~r)- I /2~ "-  1 (XK) is a scaling function for an MRA. Following [7] we call a scaling 
function <p MSF (Minimally Supported in the Frequency) if Iq~l = (2rr)-l/2Xg, where K is a Borel 
subset of  R. We use 3. to denote the Lebesgue measure on R. Therefore the following proposition 
essentially characterizes all MSF-scaling functions (see Remark 2). An MSFors-elementary wavelet 
is wavelet ~/such that 1 ~ I = (2Jr)-  l/2 X t., where L is a B orel subset of  R. The set L is called wavelet 
set. The term s-elementary wavelet was introduced by Dai and Larson in [4]. 

In [7] Fang and Wang characterize the MSF-wavelets associated with MRAs. Their proof is 
rather elaborate. The following proposition was motivated by their result. 

Let FI and F2 be Borel subsets of R. We call Fl 2rr -translation congruent to F2 if and only 
if for almost every x 6 F1 there exists a unique integer k(x) such that (x - 2k(x)zr) is contained 
in F2 and the mapping x > (x - 2k(x)r:)  is a bijection between FI and F2 (modulo null sets). 
Obviously 2rr-translation congruence is an equivalence relation. 

Proposition 1. 
Let K be a Borel subset of R. Let cp :=  (2zr)-1/25r-!  (XK). Then qb is a scaling function of an 

MRA if and only if the following conditions hold: 

A) {K + 2rrc : r ~ Z} is an a.e. partition of  R. 

B) K c_ 2K (modulo null sets). For L = 2 K \ K  the set {2 j L : j > 0} t.J {K} is a partition of 
R and {L + 2rJr : r E Z} is an a.e. partition of R. 

Also the low-pass filter m corresponding to q~ is the 2rr-periodic extension of ~/2XK/2 to the whole 
real line. 

P r o o f .  Let q~ be a scaling function such that q~ = (2 :0-1 /ZxK.  We will prove that conditions (A) 
and (B) are true. The orthonormality of the set {Sn<p : n 6 Z} gives )--~r Iq~(Y + 2r:r) l  2 = 1/2rr a.e. 
which implies Y~r XK(Y + 2rzr) = 1 a.e. This proves (A). 

Next the two-scale relation (1.1) gives 

1 
XK/2(Y) = --~m(y)XK(~/) a.e. (2.6) 

From this equation we obtain that modulo null sets K/2  is contained in K. 
By partitioning R into {[-Jr,  zr) + 2r~r : r 6 Z} and {K + 2rrr : r 6 Z} we can define 

(modulo null sets) the measurable bijection s : K ~ [ - J r ,  :r) such that for almost every y in K 
s (y )  :=  y + 2r(y)zr ,  where r ( y )  is the unique integer such that y + 2r(y)zr belongs to [ -J r ,  zr). 
Since ( K / 2 )  _c K we can define E := s(K/2) .  

Let m be the 2rr-periodic extension of ~ X e  to the whole real line. We will verify that (2.6), 
which is (1.1) for this case, is true for a.e. ~' in R. Indeed, if y does not belong to K then as we have 
already proved it does not belong to K/2,  thus both sides of  (2.6) are equal to zero. If  y belongs 
to K then ), 6 K/2  if and only if s(y)  ~ E, since s is a bijection between K and [ - J r ,  Jr). But 
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s ( y )  - ?' is an integral multiple of  2:r. Since m is 2rr-periodic we have 

m(y) = m(s(y)) = V~XE(S(y)) 

thus (2.6) is true in this case as well. Therefore, (1.1) is satisfied for this particular 2zr-periodic 
function m and the scaling function ~b. By the uniqueness property the low-pass filters have to 
satisfy (1.1) we get that m is the low-pass filter corresponding to the scaling function ~b. 

Equation (1.2) gives (E+rc)mod(2rr )  = [ - J r ,  : r ) \E ,  while we have s (K \  ( K / 2 ) )  = [ -J r ,  r r ) \E .  
Thus we obtain that s (K\ (K/2) )  is 2zr-congruent to E + it. 

The wavelet ~/associated to the scaling function q~ is given by 

1 
~t(y ) = e it'~2 ~,,~_~m(), /2 + n'))~K (y /2 )  

By the preceding arguments if ), belongs to 2K then we get m(y/2  + zr) = q ' ~  if ), 6 2K\K,  
otherwise m(?'/2 + Jr) = 0. Thus I~/I = (27r)-I/2x2K\ K. Once again orthonormality of  the family 
{sn# : n ~ Z} gives {L + 2 r r r  : r 6 Z} is an a.e. partition of R. Since {q~0,n : n ~ Z} tO {#j,n : j > 
0, n 6 Z} is an orthonormal basis for LZ(R), we obtain that {2JL : j > 0} tO {K} is an a.e. partition 
of R. 

Let us prove the converse implication. For g in L2(R) we have 

g = h  + ~~gk  
k=0 

where h is the restriction of g on [ -J r ,  zr) and each gk is the restriction of g on [--2k+lrr ,  -2kr r )  tO 
[2krr, 2k+lJr). Now define the operator U acting on L2(R) by the following equation 

o o  

(lg = hxi  r + ~ gkX2kL 
k=0 

where gk and h are now considered to be 2k2zr and 2~r-periodically extended to the whole real line 
respectively. Since {L + 2r~r : r 6 Z} is an a.e. partition of R it is not hard to  check that L is 
2zr-translation congruent to [ -2zr ,  - J r )  tO [zr, 2zr). We already have established such a congruence 
between K and [ - r r ,  zr). Combining these facts with the hypothesis that {2JL : j > 0} tO {K} is an 
a.e. partition of R as well we get that U is a well-defined unitary operator. Obviously 0 commutes 
with M. It remains to prove ~lD*g = D*~lg for every g in L2((-cx~, - J r )  tO [rr, c~)). By the 
decomposition g = ~--]~=o gk where each gk is in LZ([--2k+l~, --2k~r) 13 [2kTr, 2k+lj r ) ) ,  we have 

D*g = Y']~=0 D*gk; thus, by the definition of ~,' we obtain 

D*~Jg = ~_~ (D* gk) XZ*+,L = OD* g 
k=0 

This completes the proof. [ ]  

Remark  2. 
The first paragraph of the previous proof gives that if q~ is a scaling function such that Iq~l = 

(21r)- l /2Xx for some Borel set K, then {K + 2rrr : r ~ Z} is an a.e. partition of  R. Thus K is 
2zr-translation congruent to [ -J r ,  7r). This proves that ~'-l(l~l) is a scaling function for the same 
MRA. Indeed if we consider the unimodular function/z defined on K by the equation q~ = / z l ~ l  (/z 
is the phase of  ~b), then we can extend/z 2zr-periodically over R, since K is 2rr-translation congruent 
to [-~r,  Jr). Thus Y ' - l ( l~ l )  is a scaling function for the MRA q~ generates. This argument shows 
that actually the previous proposition characterizes all MSF scaling functions. 
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A little after the acceptance of the present paper jointly with Sikic and Weiss we proved that 
{L + 2rTr : r 6 Z} is an a.e. partition of R in the previous proposition is condition redundant. It 
can be derived from condition (A) and from K ___ 2K. The proof of this result is non-trivial and will 
appear in a future paper. 

A characterization of low-pass filters associated with MSF wavelets (thus with MSF scaling 
functions) in terms of the corresponding wavelet sets is also given in [ I0]. [ ]  

It is easy to obtain the Fang and Wang characterization of the MSF-wavelets associated with 
MRAs from the previous result. 

Next assume that K1, K 2 are two Borel sets such that (2zr)- 1/2 ~ ' -  1 (XKI) and (2zr)- 1/2 ~-- 1 (XK2) 
are scaling functions. Set Li = 2K i \K i ,  i ----- 1, 2. It is easy to obtain a simple form for the uni- 
tary operator satisfying properties (2.1) and (2.2) of Theorem 1 mapping (2rg)-I/2.T'-I(xKI) to 
(2~r)-l /2.~-I(xK2) and wavelet (2zr)-Z/2.T'-l(Xt~ t) to wavelet (2~r)-I/2_T'-I(XL2). By the previ- 
ous proposition {2iLl  : j > 0} U {KI} is a partition of R. Define cr first by setting er/K1 for the 
mapping implementing the 2zr-congruence between Kl and K2. Similarly set t r /Ll  for the map- 
ping implementing the 2zr-congruence between Ll and L2. Next set for every t ~ 2JLl  or(t) = 
2Jtr(2-Jt)  ( j  >_ 0). Using (2.5) it is not hard to verify U f  = f o a - l ,  f ~ L2(R). 

A similar formula holds for every unitary operator V mapping an MSF-wavelet to an MSF- 
wavelet (see, [4, Ch. 5]). The class of these Borel subsets of R is characterized in [4]. Using different 
techniques, Fang and Wang characterize the same class in [7], but the Dai-Larson approach is more 
comprehensible. 

The problem of the connectivity of orthonormal wavelets in LZ(R) and other function spaces 
was introduced by Weiss in [ 10]. Later but independently Dai and Larson asked the same question 
with respect to the topology of L2 (R) [4]. However, the first result is due to Speegle. In [ 19], Speegle 
proves that the class of MSF-wavelets is a path-connected subset of the class of all wavelets with 
respect to the L 2 (R)-norm. One may ask if this is also true for the class of all MSF scaling functions. 
Ever since there has been substantial progress in the study of this problem. After the acceptance of 
the present paper enough results and preprints came to our attention. It is beyond our purpose to 
discuss all of them even in brief. However, we consider useful to include that a research consortium 
(the WUTAM consortium) was formed involving mainly people from Washington University in St. 
Louis and Texas A&M University for the study of this and other relevant problems. This consortium 
will soon release a paper discussing all these issues in detail. 

In [17] the author asks whether unitaries in the local-commutant C7, (D, S) map scaling func- 
tions to scaling functions. The next proposition and the example following address this issue. 

Corol lary 2. 
Suppose that ~p = (2zr)- 1/2U- l (XL t ) and ~ / =  (2zr)- 1/2.~-- l (XL2) are wavelets associated 

with the MRAs .AA and A/', respectively. Let V be the unique unitary operator in Cr ( D , S) such that 

V q/ = ~.  Then V maps every scaling function of.All to a scaling function of.A~'. 

Proof .  Set Ki = U~=12-JLi, i = I, 2. Using Proposition 1 one can see that (2zr ) - l / 2 . T - l  (xKi ), 

i = 1,2 are scaling functions for .A4 and A/', respectively. Following [4] we have l~'f = f ocr -x, 
where cr/L l implements the 2~r-congruence mapping L 1 onto L2 and for every j ~ Z and y ~ 2 j L l 
we set or(y) := 2Jcr(2-Jy).  It is easy to see VXK ~ = XK2. Let/z be an arbitrary 2zr-periodic 
unimodular function. Then (/~ o c r - l )xx  2 is again unimodular supported on K2 which is 2zr- 
translation congruent to [-rr ,  Jr), therefore we can consider this function extended 2zr-periodically 
over R. Thus, (2zr)-l/2(/z o cr-1)XK2 is the Fourier transform of a scaling function for .IV'. Since 

we have (/(lZXXL) = (/z o cr-l)xK2, the proof is complete. [ ]  

E x a m p l e  1. SetL =[.7.~., z-~-)U[-~-, ~ - ) a n d F  = [ - 4 , ,  - 2 , ) U [ ~  ' 3  ~ ) "  Set~l  =(2zr) -1/2 

~ - 1  (XL) and ~P2 =(2zr)-l/25v-I (XF). Dai and Larson [4] give an example of a unitary operator 
mapping wavelet 7/1 to the Littlewood-Paley orthonormal wavelet (otherwise called Meyer wavelet). 
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This unitary belongs to Cr (D, S). Details on this method can be found in [4, Ch. 5]. Let v be a 
real-valued function satisfying v(?') + v(1 - 7/) = I, i f0  < ~ < 1, v(?') = 0 if ?' < 0, and v(?') = 1 
if ?' > 1. Applying Proposition 1 we have that wavelets r I and ~P2 are associated with MRAs. Set 

h~(?') 

h2(? ' )  

f9 [-8. -4~ eir/2cos-~v(--43-~--1)], ? ' E l .  3 ,  3 ) 

ei~'/2sin v (~-~ - 1 ) ] ,  ?' ~ [~ - ,  -~-) 

3y [-4. -2~ e i W 2 s i n I ~ v ( - ~ -  ~ - 1 ) ] ,  ? ' ~ L - - 3 - , - - ~  ] 

?" 

Extend hi (i = 1,2) such that for every ?' 6 R we have hi(?') = hi(2?'). Set hi(O) = O. 
Therefore the multiplicative operators Mhi acting on L2(R) defined by Mhig = hig  are well-defined 
and commute with M and D. Define tr by 

~ r ( s )=  s + 2 r r  s ~ [  3 ' 3 ) 

s - 4 z r  s E , 

Notice ~r(F) = L. Now {2nF : n ~ Z}, {2nL : n ~ Z} are measurable partitions of R, thus 
following [4] we extend ~r to a bijection of the whole real line onto itself by ~r(y) = 2ncr(2-n?') 
for ?' ~ 2nF. Notice also ~r 2 = I d  R.  It can be proved that the operator U such that Ug = g ocr 
belongs to the local-commutant Cr (D, S) and maps ~Pl to ~2. By Corollary 2 U maps  every scaling 
function for the MRA corresponding to ~1 to a scaling function for the MRA corresponding to ~2 
�9 On the other hand, the operator V defined by 

~" = MhlI + Mh2(f (2�9 

is unitary, belongs to Cxu ~ (D, S), and maps this wavelet to the Littlewood-Paley wavelet  (refer to [4] 
for the details). Next we prove that V does not map any scaling function of the M R A  corresponding 
to the wavelet ~l  to a scaling function of the Littlewood-Paley MRA. Set K --- [ - 4 z r / 3 ,  2zr/3). By 
Proposition 1 every scaling function for the MRA corresponding to the wavelet ~Pt is of  the form 
(2zr)-  t /2T.-  1 (lzX K) where/x is a 2rr-periodic unimodular function�9 

Notice that if ?' is in [ -2zr /3 ,  - r r / 3 )  t_J [rr/3, 2zr/3) then ?' - Jr is in [--2zr/3,  -7 r /3 )  t_J 
[rr/3, 2Jr/3) modulo 2zr-translations. Notice that eiYtz(?')lz(?" - zr) + e - i r l z (?  , - :r)/z(?') does 
not vanish identically in [ 2Jr ~r ~r .~.). 3 ' --3") U [~-, Set t~ = (27()-I /2v.~'-I(IzXK).  Assume that ?' 
satisfies zr/3 < I?'l < (2~r)/3. Then it is not hard to verify/z(cr (?')) = / z ( ? '  - Jr), therefore we have 

~ r  - ~ )  

Since ~b is a scaling function, by Poisson Summation formula, we have 

Ih1(y)/z(y) -4- h 2 ( ? ' ) / z ( y  - yr)l < I 

For y ~ [-~, -~-) we get 

h i ( ? ' )  = e ~r sin v - 1 

while for y e [- :~-,  -7-~) 

hi (? ' )  = e 21• cos v - - 1 [ (3y )] , h2(y)  = e ~• sin v 1 ]r 
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In both cases for all such ?' we have thl (Y)I  2 § Ih2(?')l 2 = 1. For y 6 [-~, -~-) we have 

I h l ( y ) / z ( ) , )  § h 2 ( y ) / d , ( y  - rr)l 2 = 1 

+1 " [rrv(3~"rr -1)][eiY-lzT-~l.*(y-rr)+e-irla.(y-rr)lz(y) ] ~sln 

while for ), E [--~-,  --~) 

lht(y)/*(}') + h2()/)/~(7 - 2r)t  2 = 1 

+lsin[uv(--3@r --1)][e-'• ] 
The assumptions on v imply sin[rr v (4 -~  - 1)] >_ 0. Now let ), e [ - ~ - ,  - 9 )  U [-~, ~-). Then for 

3 ' ~) we get 

e - ' u ( r ) u ( ? '  - rr) + e i Z u ( •  - r r ) l* ( •  = - [ d  r '  ~*(•215 - 7r) + e - i ; '  l*(• - r r ) u  ( ~ ) ]  

The last equation shows that there exists a non-null subset of [--~-, -~-) tO [9 '  ~ ' )  such that for 
every ?' in this set we have Ih 1 (y)/z(y) + h2(y)/z(y - rr)l > 1, which is absurd because we assumed 
that q~ is a scaling function. 

The unitary operator V of the previous example was derived by a simple operator-theoretic 
interpolation between U and the identity operator [recall (2.7)]. However, V exhibits a significant 
change in its behavior concerning scaling functions, although both U and the identity operator map 
every scaling function of the MRA defined by (2rr)-t/25"-t (XK) to a scaling function. Combining 
the previous example, Corollary 2, and the discussion following Corollary 1, we conclude that the 
local-commutant techniques do not apply in the study of scaling functions. 

Quest ion.  Does the conclusion of the previous example extend to arbitrary interpolation pairs? 
For the definition of interpolation pair see [4, Ch. 5]. [ ]  

3. Scaling Functions and Low-Pass Filters 

As it was mentioned in the introduction our operator-theoretic characterization of scaling 
functions does not lead to a general construction method of scaling functions. Thus we have to employ 
classical analytic methods for their construction. Next we deal with this problem, we present the 
difficulties and related open questions. Scaling functions determine uniquely their corresponding 
low-pass filter by the two-scale relation (1.1). As it was shown in [16] this is not an one-to-one 
correspondence. Scaling functions having the same low-pass filters produce MRAs, which were 
called equivalent and a characterization of all such scaling functions was given in [ 16]. Set/z = ~22 m. 

If 
1 

.v/~_ H / z  ( ~ )  (3.1) 
n=l  

converges almost everywhere in R, then Mallat [15] proved that this infinite product converges to 
a square-integrable function defined on R. The a.e. convergence of the infinite product (3.1) is not 
an immediate consequence of the low-pass filter definition. In fact up to the best of our knowledge 
there exist only sufficient conditions (nevertheless mild) for the a.e. convergence of the infinite 
product (3.1). For more details see [11]. Such a sufficient condition is the H61der continuity of the 
low-pass filter at the origin: If there exist 8 and C positive constants such that for every IYI < 8 we 
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have Im(y)  - m(0)l < C l ? ' l  ~ ~e > 0. Then the infinite product of  (3.1) converges uniformly on 
compact subsets of  R. On the other hand if q~ is a scaling function such that q~ is continuous at the 
origin, then ~ is given by the infinite product (3.1). But this continuity property is not always the 
case. 

E x a m p l e  2. Equations q~(?') = (27r) -1/2 1-e-iy and m = (1 + e-i ' ) /~/2 give a scaling function iy 
and the corresponding low-pass filter for the Haar MRA respectively. We can recover q~ from (3. I), 
but if we set 

~(? ' )  i f? '  > 0 

(5(?,) = _q~(?') if ?' < 0 

then co is scaling function for an MRA different from the Haar MRA and the corresponding low- 
pass filter for co is again m [16, Cor. 2.12]. Notice that cb cannot be given by (3.1) because of its 
discontinuity at the origin. 

Therefore, it is natural to ask whether in every equivalence class of  MRAs there exists an MRA 
with a scaling function which can be derived by (3. I). Based on the characterization of equivalent 
MRAs given in [ 16] this question is equivalent to the following: Given an arbitrary scaling function 4~ 
is it possible to find unimodular functions defined on R m I 2zr-periodic and h satisfying h (2t) = h (t) 
a.e. such that .T'-l (m l hq~) is a scaling function which can be given by the infinite product (3.1)? If  
the answer is affirmative the infinite product (3.1) essentially leads to the construction of all scaling 
functions. 

If  the function q~ is defined from the infinite product (3.1) it obviously satisfies the two-scale 
relation (1.1). But it is not obvious and it is not always true that {sndp : n ~ Z} is an orthonormal 
set. The discussion on this issue is beyond the purpose of this article, but we will return to it after 
Corollary 4 for a brief comment.  So let us assume that the integer translates ofq~ form an orthonormal 
set. Define V0 := [Sn~b : n ~ Z ] -  and Vj = DJ(Vo), j ~ Z. Then {l,~}j is an increasing sequence 
of subspaces of L2(R). It can be proved that Nj Vj is trivial, but t_/j 1,~ = L2(R) may  fail. The last 
equality is true if and only if 

lim q~ ( ?' ) 1 
j-~oo 2"7 = ~ a.e. 

For proofs of  the last two results see [11, Th. 7.5.2]. Thus we come naturally to our next issue: 
How to find low-pass filters associated with scaling functions. Our next main result will show 
the connection the unitary operators which map a scaling function to every other function produce 
between their corresponding low-pass filters. 

Let {en }n be the usual orthonormal basis of 12(Z). Set T for the bilateral shift of multiplicity 
one on /2(Z) ,  i.e., Ten = en+l for every integer n. Let M be the multiplicative operator defined by 
M f ( t )  = eit f ( t ) ,  f E L2([ - r r ,  rr)). 

Definition 3. 
The operator 79 defined by 

79c(n) = c(2n) , c ~ 12(Z) 

is called downsampling operator. 

R e m a r k  3. 
Set F for the isomorphism between/2(Z)  and L2([-zr ,  7r)) defined by Fen = e -in" for every 

n e Z. The adjoint of  73 is often called upsampling operator, is an isometry, and is denoted by L(. 
[] 

We now recall a few facts that we use in the rest of  this section which are now folk-wisdom in 
wavelet literature. We present them with a rigorous operator-theoretic formulation since we intent 
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to use them in the rest of our article. Assume that m is a low-pass filter and m = Y-~.n hn e-in" 

It is straightforward that (hn)n belongs to 12(Z). Since m is essentially bounded, it yields the 
multiplicative operator H0 defined by 

H o f = m f  , f EL2([-~r,  rr)) 

Then F - I H o F  is a bounded operator acting on 12(Z). Now set Ho = F - I H o F  and H = 79H0. 
Similarly we define Go by 

G o f  = e " m ( . W  r r ) f  , f E L2([-rr,  rr)) 

Set Go = F - I G o F  and G = 79G0. It is easy to verify 

H H *  = GG* = H * H  + G*G = I GH* = HG* = 0 (3.2) 

It can also easily be verified that Ho and Go commute with T and T79 = 73T 2. Similarly we can 
prove T-I~D = 79T -2. Therefore, we get 

T H  = H T  2 T G  = G T  2 (3.3) 

and 
T - I  H = H T  -2  T - I G  = G T  -2 (3.4) 

Equation (3.3) shows that the k-column of H* is of the zero-column of H* shifted by 2k. 
This situation can be generalized in the case of low-pass filters for MRA in LE(R n) in the sense 
of [9]. We proceed now to the low-pass filter paramatrization. For an arbitrary bounded operator 
A acting on 12(Z) and the usual orthonormal basis of 12(Z) {en : n E Z} we adopt the notation 
Ak,n = <  Aen, ek >. 

We have already mentioned in the previous section that it is difficult to construct the unitary 
operators of Theorem 1. On the other hand, these operators yield an elegant relation between the 
low-pass filters corresponding to MRAs as shown by the following theorem. 

T h e o r e m  2. 

Let mo be a low-pass fil ter associated with a given MRA. I f  m is another low-pass fil ter 
associated with an MRA, then there exists a unique unitary operator W acting on L2([-zr, Jr)), 
commuting with M 2 such that m = Wmo and W (ei'mo(. + rr)) = el'm(. -t- Jr). 

Proof .  Assume that mo and m are associated with the MRAs .A4 and .Af, respectively. Assume 
that q~, ~ and ~, ( /are  scaling function and orthonormal wavelet for .A4 and A/', respectively. Let U 
be a unitary operator satisfying properties (2.1) and (2.2) of Theorem 1. Let H, G be the contractive 
mappings corresponding to mo and H, t7 be those corresponding to m. For every integer k we have 

r = rIn,k 'O,n + On,k 'O,n 
n n 

By the definition of /~  and t~ one can verify 

~ O , n = ~ (  )m,n~)l,m and ~O.n-.~-~(G*)m,n~a.m 
m m 

Combining the previous equations we get 

(3.5) 
m 
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But U maps Vl onto f'l isometrically, thus H * H  + t~*G is a unitary operator acting on l 2 (Z), which 
we denote by 27. Using (3.2), (3.3), and (3.4) one can easily see 27T 2 = T2Z and 

t71 * = ZH* G* = ZG* 

ff-I*eo = ZH*eo G*eo = ZG*eo 

Set W = F Z F  -1. Since Z E {T2} ' we get that W commutes with M 2 and 

m = Wmo W (ei'mo(. + rr)) = ei'm(. + rr)" 

since m = Ff-I*eo and m0 = FH*eo. 
Le t  W 1 be another unitary operator in {M2} t such that 

m = Wlmo Wl (ei'mo(. + rr)) = ei'm(. + Jr) 

Equivalently ISl*eo = (F - l  WIF)H*eo and G 'e0  = (F- IWIF)G*eo ,  t hus / t*  = (F -1WIF)H* 
and G* = ( F - I W I F ) G  *. Therefore, we have F - I W I F  = ISI*H + G*G which gives W = W1. 
[] 

Equation (3.5) shows exactly how the unitary operators of Theorem 1 imply the celebrated in the 
introduction relation between low-pass filters of scaling functions. During the final preparations of  
this article, we discovered that a version of Theorem 2 concerning quadrature mirror filters (QMF) 
was independently obtained in [12] by Holschneider and Pincall. They use the concept of loop 
groups developed in [1 8] (see, also [ 1 3, Chapter 3]) to study QME Our motivation and techniques 
used in the proofs are entirely different although some of the underlying ideas are eventually the 
same. A QMF is a pair of functions a and b in L ~ ( [ - z r ,  Jr)) such that la(y)[ 2 + [a(y + rr)[ 2 = 1, 
Ib(y)l 2 + Ib(y + zr)l 2 = 1 and a (y )b ( y )  + a (y  + : r )b(y + Jr) = 0 a.e. QMF and low-pass 
filters are in one-to-one correspondence. To see this for every low-pass filter m, set a = m and 
b = ei'm(. + Jr). For QMF-theory refer to [13]. It is implicit in the proof of Theorem 2 that it 
gives in fact a unitary parametrization of all low-pass filters not only of  those associated with scaling 
functions. 

Our next objective is to find the form of all unitary operators W commuting with M 2 using stan- 
dard operator-theoretic techniques [1]. To accomplish this task set L2([-zr ,  Jr), C 2) for the Hilbert 
space of all functions defined on [-Jr ,  Jr) taking values in C 2 such that their coordinate functions 
are in L2( [ - r r ,  zr)). Let f = ( f l ,  f2) and g = (gl, g2) be two functions in L2([--Tr, rr), C2). The 
inner product of L2([-yr ,  rr), C 2) is given by 

F < f ,  g > =  (flg'i" + f2g'2) dL 
7"t 

Set i = (1, 0) and j = (0, I). We can identify LZ([-rr ,  Jr)) and L2([-~r,  zr), C 2) via the isometric 
isomorphism V defined by the equations 

Ve i2n. = ein.i 

Ve i(2n+l)" = ein.jn E Z (3.6) 

I fMz is defined by M z f  = e l ' f ,  f E L2([-/r, ~), C2), then it is easy to see V M 2 V  -1 = M z. Also 
{Mz}' (equivalently {M2} ' ) is avon  Neumann algebra. If Y is an arbitrary element of {M2} ~ then 
V Y V - l i s  of the form 

V Y V  -1 f ( t )  = A ( t ) f ( t )  f ~ L 2 ( t - z r ,  rr), C a) 
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where A(t) is a 2 • 2 matrix such that t ~ IIA(t)ll is essentially bounded. The 2 x 2 matrix 
representing the unitary operator V W V  -1 must be unitary for almost every t in [-Jr,  Jr). We 
adopt the notation/d({M2} ') for the group of unitary operators in {M2} '. It is also well known 
that this group is norm-connected (see [14]). When A(t) is an a.e. unitary 2 • 2 matrix, there 
exist measurable functions A l, A2 and an a.e. unimodular function c defined on [-zr, Jr) satisfying 
IAl(t)[ 2 + IA2(t)l 2 = I a.e. such that A(t) is for almost every t in [-Jr,  Jr) of the form 

( A l ( t )  A2(t) ) 
-c(t)A2(t)  c(t)Al(t) 

If f is an arbitrary function in L2([-zr, Jr)) and f~ is the even part of f ,  i.e., f(t)+f(t+rr) and 2 

fo is the odd part of f ,  i.e., f(t)-f(t+Jr) (3.6) yields 
2 

Wf( t )  = [ A I ( 2 t ) -  eitc(2t)A2(2t)] fe ( t )q-[e  -ita2(2t) -bc(2t)al(2t)] fo( t ) .  (3.7) 

The next corollary summarizes the previous argument. 

Corollary 3. 
Let A l, A2 be measurable functions defined on [-zr, zr ) such that IAl(t)l 2 + IA2(t)[ 2 = 1 

a.e. and c be an almost everywhere unimodular function defined on [-zr, zr ). Then the operator W 
defined by (3.7) is a unitary operator acting on L2([-zr, rr)) commuting with M 2 and vice versa. 

Let m0 be a low-pass filter associated with an MRA. It can be proved by using the previous 
corollary that Wmo is again low-pass filter (not necessarily associated with an MRA). By the norm- 
connectedness of U({M2} ') and the continuity of the map U ~ Umo we have the following corollary. 

Corollary 4. 
The subset of L oo([-zr, zr ) ) consisted of low-pass filters is L2([-rr ,  zr ) )-norm pathwise con- 

nected. In particular given any two low-pass filters associated with MRAs there exists a L2([-rr ,  zr))- 
norm continuous path of low-pass filters (not necessarily associated with MRAs) connecting them. 

Bonami, Durand and Weiss proved that the set of low-pass filters in Coo([-zr, zr)) and the set 
of low-pass filters in Coo([-rr, Jr)) associated with scaling functions are pathwise-connected with 
respect to the topology of the Frechet space C ~ ([-Jr, Jr)) [2]. These are the first connectivity results 
for low-pass filters. After acceptance of the present paper we were informed that Garrigos generalized 
the previous Bonami, Durand and Weiss' results for the corresponding classes of low-pass filters 
contained in the Sobolev spaces Ha([-zr, rr)) for a > 1/2 [8]. 

One of the most interesting cases is when A 1 and A2 are trigonometric polynomials, because this 
is exactly the case of low-pass filters which are trigonometric polynomials. In the sequel (Example 3) 
we show how we use Theorem 2 for an alternative construction of Daubechies' compactly supported 
scaling functions. If we set 

1 -+- e it e it --  e 2it 
A l ( t ) = - -  A 2 ( t ) - - - -  c = l  t ~[-Jr,  zr) 

2 2 

we get a unitary operator W as in Corollary 3 such that if m0 is the low-pass filter mo = ~22(1 +e -i') 

(for Haar MR.A), then Wmo = ~22 (1 + e-3i'). In [3], Cohen studies the orthonormality of the set of 

the integer translations of the function defined as the Fourier transform of the infinite product (3.1). In 
the case/z = Wmo/~/2 this set is not orthonormal. Conditions on the low-pass filters necessary and 
sufficient or simply sufficient for this set to be orthonormal are known as orthogonality conditions (see 
[3, 11, 15]). 

Now let mo = Vc2X[-Tr/2,~r/2) (this is a low-pass filter for Shannon MRA) and 

1 -b ~ (eitr(t)) e -it -b ~ (eitr(t)) 
A l ( t ) =  A2( t )=  , c = l ,  t E [ - z r ,  zr) 

2 2 
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where D = F D F  -1 and 

J 1 i f - J r / 2 < x  < r t / 2  
r ( t )  / - 1 elsewhere 

Then Wmo is a low-pass filter for the Haar MRA. Of particular interest is to find the form of the 
unitary operators W which map ~/2Xl-Jr/2,Jr/2) to a low-pass filter of  the form ~/r2XE (not necessarily 
associated with an MRA), where E is an appropriate Borel set. As in the proof o f  Proposition I, E 
is such that (E + Jr) is 27r-translation congruent to [-zr ,  zr)kE and vice-versa. Set 

1 i f x ~ E  
re ( t )  = - 1 elsewhere 

One can easily verify that these operators W correspond exactly to the 2 x 2 matrix form 

Al l ( t )  = 1 a22(t) = D(e i t rE( t ) )  
~ ( e i t r ( t ) )  , A 2 1 = A 1 2 = 0 ,  t E [ - - ~ , z / ' )  

It is interesting to notice that for such unitaries W we always have W 2 -- I .  

E x a m p l e  3. Once again set mo(t) = ~22 (1 We -it). The low-pass filters with four real coefficients 

can be obtained by the 2 x 2 unitary matrices A(t )  of the form 

( hoWhle -it h2Wh3 eit ) 
--h2 - h3 e-it h o +  hi eit 

We also want Wmo(O) = 4"2. The last equation combined with the fact that A(t )  is an a.e. unitary 
matrix lead to the following system of equations: 

Le th0  = a > 0. 
calculation gives 

h2 

Wmo(t )  = 

h o + h l  = 1 

h 2 + h 2 + h 2 + h g = 1 

h l h o W h 2 h 3  = 0 

T h e n  h l  = 1 - a. We also get h2 2 = hohl, thus 0 < a < 1. An elementary 

q- -v / '~  - a) h3 = ~/a-(- i  -- a) 
1 

[(hi - h2) e it + ( h o +  h3) + (ho - h3) e -it + (hi + h2) e -2it] . 
L .1 

If  we want to obtain a scaling function with two vanishing moments, then we must have 
(Wmo)'(zr)  = 0. This implies a = 3/4. Notice that with the particular low-pass filter m0, if we 
want Wmo to be a trigonometric polynomial, (3.7) shows that it is enough to assume c = 1. Thus, 
the above form is a complete unitary paramatrization of  all low-pass filters which are trigonometric 
polynomials with four real coefficients. Notice also that this procedure, which is generic, bypasses 
the spectral factorization process. 

4. Open Problems 

The proof of  the fact that the unitary group in avon  Neumann algebra is norm-connected relies 
on the construction of  a norm-continuous path of  unitary operators beginning from the identity and 
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ending to each unitary operator in the algebra. Every such path lies in the algebra. Let mo and m be 
low-pass filters corresponding to scaling functions and U ~ L/({M2} I) such that m = U m o .  Does 
every unitary operator in the path corresponding to U map mo to a low-pass filter associated with a 
scaling function? 

Moreover, if both mo and m are trigonometric polynomials does this path contain unitary 
operators mapping mo to a trigonometric polynomial? If  the answer is negative we may ask some- 
thing stronger. Are the elements of/,4({M2} r) which map a given trigonometric polynomial to a 
trigonometric polynomial extreme points of  the unit sphere of the von Neumann algebra {M2}/? 
Dai and Larson introduced operator-theoretic interpolation techniques in [4]. Since L/({M2} t) ad- 
mits operator-theoretic interpolation, we expect to generate new filters, and thus new MRAs, by 
developing similar techniques. 

Another perspective is an operator-theoretic formulation of orthonormality conditions. Can 
such a formulation yield a general solution for this problem? Can we state necessary and sufficient 
orthogonality conditions for more general classes of low-pass filters (even for simply continuous 
filters)? 
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