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ABSTRACT.  The generalized Caldercén reproducing formula involving “wavelet measure” is estab-
lished for functions f € LP (R™). The special choice of the wavelet measure in the reproducing formula
gives rise to the continuous decomposition of f into wavelets, and enables one to obtain inversion for-
mulae for generalized windowed X -ray transforms, the Radon transform, and k-plane transforms. The
admissibility conditions for the wavelet measure . are presented in terms of p. itself and in terms of the
Fourier transform of .

1. Introduction

The classical Calderdn reproducing formula reads
o0
p= [ (1.1
0

where u;(x) = t "u(x/t), v;(x) = t™"v(x/t), u and v are sufficiently nice normalized radial
wavelet functions on R” (see, e.g., [5]). The generalization of (1.1) involving nonradial wavelets u
and v was given in [12] and can be written in the form

o0
f =f dy/ Irya*vye 1.2)
50(n) 0 t

where u,,; and v, ; are rotated versions of u, and v;. In[5] and [12] it was assumed that f € L2(R™.
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Since the properties of the operator in the right-hand side of (1.2) depend on the combination
u * v (not on u and v separately), it makes sense to investigate the formal integral

o0
/ dy f Trbye (13)
S0(n) 0 t

generated by the arbitrary Borel measure x on R”. For u = u * v this gives the integral in (1.2). In
the case n = 1, such an investigation was carried out in [17, 18] for f € L?(R). We also mention
the papers [16, 22] devoted to (1.1) for f € LP. Holschneider [8] investigated the formula (1.2)
inthecasen =2, f € LP(R2) for certain distributions « and v such that their convolution u * v
is a regular function. Also, he has shown that if one of the distributions, say u(x), has the form
u(x) = 8(x1) x 1(x2) with the delta function in the x;-variable and v sufficiently nice, then (1.2)
leads to the inversion formula for the Radon transform Rf on R2. The formula of Holschneider can
be written in the form

oo]

e d
f=/0 R* (Rf*v,(l)) ;25, v(l)(s)= / v(s, x2)dxy, (1.4)

-

where R* is the backprojection operator and the integral is interpreted as the limit of the corresponding
truncated integral in the L”-norm and in the a.e. sense.

Our goal is to generalize (1.4) to the n-dimensional case for k-plane transforms, 1 <k <n-—1.
A natural generalization of (1.4) reads

*© dt 7 n
1= [ Paacoir o) = (BN () L5
where
(Aar o) (2, X") = /.;Oc(n—k) ((p * (P;a)‘”) (x") do , (1.6)

¢ € Gy.p (the Grassmann manifold of k-dimensional subspaces in R"), x” € ¢+ (the orthogonal
complement of ), (P; f)(x”) = (Pf)({, x") is the k-plane transform of f, P* is the dual of P;
SO;(n — k) is the subgroup of SO (n) which consists of rotations of the subspace ¢*. Here  is an
arbitrary finite measure, satisfying certain cancellation and growth conditions; (P; )4 denotes the
rotated and dilated version of the k-plane transform of «. For « radial, the SO, (n — k)-component
in (1.5) may be omitted. Precise definitions and statements are given below.

The convolution ¢ * (P; ), can be regarded as the continuous wavelet transform of ¢({, x)
in the x”-variable. The structure of the formula (1.5) is a priori transparent if we take into account
the classical inversion formula (see, e.g., [10])

f=cnP (=), ¢=Pf, (1.7)

involving the Laplacian A in the x”-variable and realizing the so-called convolution-backprojection
algorithm used in modern CT-scanners. By making use of the general wavelet type representation
of (=A)*, A € C, inR", given by

Uy

(- y = dy e,

§O(n) 0

dt (1.8)

with a normalized “wavelet measure” u, one can readily get (1.5) from (1.7) and (1.8). The equal-
ity (1.8) can be checked easily by the formal application of the Fourier transform. The details
related to the inversion of P via (1.7) and (1.8) can be found in [20, 21] (concerning wavelet type
representations of the operator (—A)*, see [18, 19]).
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Thus, two approaches can be applied to the inversion of Radon transforms in terms of contin-
uous wavelet transforms. The first one is that of Holschneider which is based on the reproducing
formula. The second one employs the wavelet type representation of positive powers of the Lapla-
cian. The advantage of the first approach is that we do not use (1.7). This observation may be helpful
in more general situations related to Radon transforms on some manifolds rather than planes.

Our investigation was also motivated by the following reasons:

(a) In order to recover f from g = Pf it suffices to know the wavelet transforms of g.

(b) If « in (1.5) is well localized, then (1.5) gives a local (more precisely, “quasi-local”™)
reconstruction of f (up to the dilation by ¢). This may be important for the case of k odd when
(—A)*/? is nonlocal in principle.

(c) If the Fourier transform & is well localized, then the continuous wavelet transform in (1.5)
and (1.6)) serves as a filter in the frequency domain.

(d) By making use of (1.3) one can invert the generalized windowed X-ray transforms
o0
Xvf)(x,v) = / fx+1w)dv@); x,veR". (1.9)
-0

In the case of an absolutely continuous measure v with the density g(t) such transforms were studied
by Kaizer and Streater {9] in connection with applications in physics. Here g serves as a window
function in the time variable t.

The article is organized as follows. In Section 2 the integral (1.3) is examined for f € L”.
It is shown that this integral coincides with f for the wide class of admissible measures p, and
convergence of the integral can be interpreted in the LP-norm and in the a.¢. sense. In Section 3
we reformulate the results of Section 2 for the case of two measures when 1 = pD % u@. Such
a reformulation gives a decomposition of f into the integral of wavelet functions (or measures).
Section 4 is devoted to the explicit inversion of the windowed X-ray transform (1.9) of f € LP(R").
Sections 5 and 6 contain a generalization of Holschneider’s method for the usual Radon transform
(k = n — 1) and for k-plane transforms, respectively.

One should mention the papers by Berenstein and Walnut [1] and Walnut [28], which are also
devoted to studying the Radon transform by using wavelets. Our approach and technique differ from
those in these papers.

Notation. Forx = (x1,...,x;) € R"and y = (y1,..., ya) € R* we write (x, y}) = x1y| +

oo+ Xpyn. Lete; = (1,0...,0), Syt = {x € R™ ¢ |x| = 1}, |Zpq| = 20"/2/ T (n/2); [a] is

the integer part of the real number a. Given a function k(x) on R” and & > O (instead of ¢ there may

be ¢, p or another letter) we denote k. (x) = £"k(x/¢). The notation C(R"), C*(R"), LP(R")

is standard; Co(R") = {f € C(R") : | llimoo f(x) = 0}; S(R") is the Schwartz space of rapidly
X|—>

decreasing C®-functions with a standard topology; S'(R") is the dual of S(R"); & = OR") is
the subspace of S, which consists of functions orthogonal to all polynomials. Given a finite Borel
measure 1 on R”, we denote by ||z¢]f the total variation of |i|. The Fourier transform and its inverse
are defined by

f® = / fEe=Rdx, g @) =™ f g(§)e "k .
R R

. . . < . . .
Sometimes we use the abbreviations “~" and “~” instead of “<" and “=", respectively, if the

corresponding relations hold up to a constant factor. O
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2. Reproducing Formula with One Measure

Given a locally finite measure 1 on R", we denote by 1, the rotated and dilated version of
w such that

(uys f) = /Rn FGyy)du(y), t>0, y € SO(n),
for sufficiently nice f. Let
(Wof)(x,y. )= /11;" flx—tyy)du(y) = fxuy, . Q.1
Inthe case du(x) = g(x)dx, ge L,‘ac, we also write
- yla-»
(We f) (x, v, 1) = / flx—tyy)g(y)dy =t / feg|———=)dy. (2
R" R? t

If 4 (R") = 0O, the integrals (2.1) and (2.2) will be called the wavelet transforms. Denote formally

oo o0 d
twp=[ oy [TIu= [ gy [T eroD ey
50 0 t 50(n) 0 t

The following statement is rather standard (cf. [5]).

Theorem 1. .
Let u be a finite Borel measure on R" such that the integral

1 y 1 7
tu= e [ 224y = tim / am 24)
[Zrat S Inl e=0 [Tp_y [ni"
R* p=00 e<|nl<p
is finite. Then for f € L2,
(L) p
I, f) = lim dy / UL ZE @.5)
ps_—;go 50(n) & !
Proof. Let
o
Lo, f) =/ dy/ T iy 0<ce<peco, (2.6)
S0(n) £ t

and assume that f € L' N L2 Then I, (&, f) € L' N L? and (Le., (i, FNE) = ke o (€) (5D,
where .

)

. Aye) L A
k)= | 4 dt = =V, 0.
» ) / y/ R TR

SO(n) £ elél<|ni<plfl

If ¢, is finite, then the function ¥ (r) = f|y|<r 2(mdn/In|" is continuous on [0, oo}, and there is a

constant A = sup,...q | (r)| such that Iﬁe‘p(é)l <2A/|Zp—y|forall p > ¢ > 0andall § € R". By
the Plancherel formula, this gives

“Le.p(l‘ﬂf)uz =

keof|, <2A1Z017 1512 @7
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o I 25, 0 (12, f)-cuf||2= "(1254,—@) f“z—-»O as €0, p—00. 2.8)

The result for arbitrary f € L? follows from (2.7) and (2.8) by taking into account that | I, , (f, )|z <
el 1l fll2og(o/e). U

Our next goal is to extend Theorem 1 to f € L? and to present conditions for 4 without using
the Fourier transform.
For convenience of the reader we recall the following auxiliary lemma.

Lemma 1.

Let k(x) € LY, ky(x) = p™"k(x/p). If f € LP, 1 < p < o0, then || f xky|l, — O as
p — oo. If f € Co, then sup, |(f *ko)(x)] = Oasp — oco. If f e L?, 1 < p < o0, and k(x)
has a decreasing integrable radial majorant, then (f xk,)(x) = 0as p — oo almost everywhere
on R™.

Proof. The proof of the first two statements can be found in {18, Theorem 1.15]. The last statement
follows in the usual way from the estimate sup, |(f * kp)(x)| < c(Mf)(x) where (M f)(x) is the
Hardy-Littlewood maximal function (cf. [25]). O

Definition 1.
A locally finite measure w is called admissible if
def 1 |
k(x) = ——————/ du(yye L. 2.9)
‘Zn—li ‘x‘n lyl<ix] Y
Theorem 2.

Assume that f and p are such that p is admissible and the function (y, t) — (I f*luly ) (x)
belongs to LY(S0(n) x (&, p]) forall 0 < & < p < 00 and almost all x.
WIffelP, 1< p<oo,then

e
p—>0

P
I, f) = lim f dy/ TXBYt gy — kot 2.10)
S0(n) € t

(LP)
where lim = lim,

ko=/ k(x)dx 2.11)
]Rfl

k(x) being defined by (2.9).

(i) If f € Co, then (2.10) holds with the limit interpreted in the C-norm.

(i) If f € L7, 1 < p < 00, and k(x) has a decreasing integrable majorant, then (2.10) holds
a.e onR".

Proof. The truncated integral I; , (i, f) [see (2.6)] can be represented in the form
Lo, fY=kex f—kpx f (2.12)

where k. (x) = £ "k(x/€), ky(x) = p™"k(x/p). Indeed,

2 dt r dt
f dy]T/f(x—tyy)du(y)=fdﬂ(y)/7 f fGe—tyy)dy
]Rfl

SO(n) € R" £ $0(n)

I (1, )

1 dz
= —— |4 _ 8z
|>:n—1|f ) / Fo =D
R’l

elyl<izl<plyl
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1 dz
tzn-nR[f(x_Z)w / duy) =kexf~kox . (213)

lzl/p<lyl<lzl/e

Now the statements of the theorem become obvious in view of the usual machinery of the approxi-
mation to the identity {23] and Lemma 1. O

The following statement gives examples of classes of measures that satisfy the conditions of
Theorem 2.

Theorem 3.
Let u be a finite Borel measure such that W (R") = 0. Assume that

(@) /1;” lloglx]ld|m}(x) < o0 (2.14)

or
b) du(x) = g(x)dx, g€ H(the real Hardy space on R") . 2.15)

Then w is admissible and the constant ko in (2.11) can be evaluated as follows:

1
ko = / log —du(x) (2.16)
rR* x|

in the case (a) and

.k n % ) i (/2
=A AR, X, Ap = ) 2.17
’ ,Z:T/R |x|( i8) (%) |Zp—1| T((n + 1)/2) (2.17)

(R;g being the Riesz transformations of g) in the case (b). Under these assumptions statements (i)
and (ii) of Theorem 2 hold. If moreover,

/ x| ~%dipl(x) <00 forsomes > 0, (2.18)
lx|<1

then, given f € LP, 1 < p < oo, the relation (2.10) is valid for almost all x.

Proof.  We first note that since  is finite, then I ,(Jul, | f]) € L? forall0 < ¢ < p < oo. If
w(R™ = 0 and (2.14) holds, then y is admissible because k(x) € L!. Indeed,

dx
| = / dlpl)
lxi<t [X1® Jiyj<ix)

d
+ /{ 4x dluly)

x>t X1 Jiy)> x|

IA

St f Ik (x)ldx
Rn

ISt ] log Iy1|dIil(y) < oo .
Rn

Similarly one can show that kg = f]Rn k(x)dx = fRn log(1/lyl)du(y). Furthermore, if u satis-
fies (2.18), then |k(x)| < ¢;|x|*~" for |x| < 1 and k(x) has a decreasing radial summable majorant.
Thus, the part related to (a) is proved.

In order to handle the case du.(x) = g(x)dx, g € H I we need some facts from the theory of
Hardy spaces (see, €.g., 3, 26]). We recall that a function a(x) is called an atom if a (x) is supported
in a ball B, |a(x)| < |B|~! and fa(x)dx =0.
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Theorem 4.
A summable function g belongs to H' if and only if

[0 0]
g= ija,- (2.19)

where a; is an atom and E°°0|A,l <o Ifg e H1 then ||g|l ;1 is equivalent to inf )3 —oljl where
the infimum is taken over all decompositions (2.19).

First we show that the operator (K g)(x) = |x|™" flv|<IXI g(y)dy is bounded from H! into L!.

Let g(x) = a(x) be an atom supported by the ball B of radius . Then [(Ka)(x)] <r™". M_oreover,
IKall1 < cn, where ¢, is a constant depending on n and independent of B. Indeed, if 0 € B, then

IKal = f f a(y)dy
lx|<2r |V|yl<ix|

If0 ¢ B and ro (> r) is the distance between 0 and the center of B, then

ro-+r dp ro+r |C ‘
IKal =f @ f a(y)dy} < L ey,
ro—r P Jlyl<p. yeB 1Bl Jry—r p

[here C,_» is the cylinder of the height p with the base Bf"_l) (the (n — 1)-dimensional ball of radius
r)l.

Now let g have a general form (2.19). Since |{a;{|; < 1 and E°°0|A | < o0, the series (2.19)

X
P < - dx =2" |Bl| .
x| re Jixj<2r

converges in the L!-norm. Since Ka;lli < cn, the same is true for the series K1g = EFOA Kaj,
and [iK1gll1 <c¢n Ej?‘iol).jl < const |ig|l 4. It remains to show that Kg = K g. Let B, be a ball of
radius r centered in the origin,

Lys= {fﬁ Ifllrs =/B LFolixPdx < Oo}v §>0.

Since K is bounded from L! into L, s, then

(Ll) N L'_'s N o0
Kg=K]| lim Aja; | = lim A Ka; = AKa;j =K
g N—»oog: I N—»ooz 4 1 ; k / 18
because the L!-convergence is stronger than that in the L, s-norm. Thus,

Iklli = likglh <clgly, geH', (2.20)

and therefore du(x) = g(x)dx is an admissible measure.
Let us show that

ko def T——T Jrr (K@) (x)dx = A, Z /}R . lfx"-i (Rjg) (x)dx , 221
=1

in,(n+l)/2
|Zn-1| T(( + 1)/2)

Since K and R; are bounded from H Vinto L1, it suffices to check (2.22) for functions g belonging
to the space P (see Notation) which is dense in H L(see, [24, p- 128]). According to Theorem 1, for
such g we have

1 2 " / ~ 1 d§
k dE = =
O = S S 16 % |zn_1| o O 2 5 T8 O

Ap =
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where C((n+ 1)/2)
() = (R =\ o)) e b/
gix) = (Rjg) (x) = izmtnz VP _L,, Ix _y}n_Hg(y)dy
are the Riesz transformations of g such that (R; )" (§) = I%é(é‘). By the Parseval equality it follows
that

n 1 sj ip(+1/2 n Xj
ko = / gi(6)dE = / — {R;g) (x)d
° J;lzn-n e EP1 8% lzn_1|r‘<<n+1>/2)j§ e xf U8 005
which was required. O

3. Reproducing Formula with Two Measures

In the previous section we exhibited inversion formulae for the transformation

(Wuf) G0 = [ Fe—tyduo), >0, yesom. G

provided that p is admissible. In practice, one often looks for the wavelet expansion of f or inverts
W, f with the non-admissible p. In these cases the results of Section 2 may be used if we put
w=phx w®, where 1 is a wavelet measure (or function) with respect to which the expansion
of f is needed, and @ is the original measure (or function).

Definition 2.
A pair of measures uV, u® is called admissible if their convolution u = p® % u@ s

admissible, i.e.,
1

k(x) = ———— d(u® s pu® L. 3.2
x) I f|y|<|x| (u * [ )(y)e (3.2)

The following statement is a direct consequence of Theorem 2.

Theorem 5.

Let u®, 1@ be an admissible pair of measures, Assume that f and u = 1w % 1@ are such
that w({0}) = O and the function (y,t) = (If| * |uly.r)(x) belongs to LY(50(n) x (g, p]) for all
0 < ¢ < p < ooandalmost all x.

WIffelLl,1<p<oo,then

p
f) = lim ki -";5 / dy f (W f) & ~tyy, v, 0duP (), (3:3)
p—>0o0 0 £ sOo(n) R
(L")
lim = lim, provided that ko = fgn k(x)dx # .
(i) If f € Co, then (3.3) holds with the uniform convergence.
(i) If f and p = p D % u® sarisfy (iii) in Theorem 2, then (3.3) holds for almost all x € R™.

If duV(y) = g(y)dy, then (3.3) can be written in the usual form as the wavelet expansion
of f. In order to see this let A = (y,t,y) € G = R" x R x SO(n), dr = dy#dy, alx) =

t—"g(L(f:ﬂ). Then (3.3) reads

1
=g fG (W, f) (Vg1 (x)dA . (3.4)
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Note that if g = 1D % 1@ is radial (i.e., 4 is invariant under rotation), then the S O (n)-component
in all formulae in Sections 2 and 3 may be omitted. In this case, (3.3) and (3.4) coincide with the
classical Calderdn reproducing formula (cf. [5]).

4. Windowed X-Ray Transforms

The results of Sections 2 and 3 can be applied to generalization of the notion of the windowed
X-ray transform (see {9]) and enable us to obtain explicit inversion formulae involving continuous
wavelet transforms.

Lety = (y1,Y) € R", ¥ = (2, .., ya) € R"™1. We apply the consideration of preceding
sections to the measure i (y) = v(y1) x 6(y’) where v is a certain measure on R! and §( y') designates
the usual delta function on R*~!. According to Definition 1, 4 is admissible if

1 1
k(x) = ——r d =——————f dve L' (R"
) =T f.ykm BOY = 5T e ™ € F )
or i
k(r) = Z[ dv(y)eL'(RY) . @.1)
(=r.r)

Clearly, fRn k(x)dx = f]R+ k(r)dr. Furthermore,

P fx Pdr [
/ d)’/ -f-—uﬂdf =f d}’/ ——f f(x—tyyepdv(y)
SO(n) £ T 50(n) e T /-

= (e(1,0,...,0))

o0
1 °dt
= / da/ _— / fx+Tyio)dv(y) .
'En—l' Zn_1 e T
-0

Putv =10 € R", t=y; € Randdenote

e o, f)

il

[0}
Xy fHx,v) = / fx +tv)dv(e) . 4.2)

Then

X ) (1)
1 Zp-1 e<luj<p ¥ ’ jvl* '

In the case when v € £,_; and v is the Lebesgue measure, the integral (4.2) coincides with the usual
X-ray transform (see, e.g., [13]). If v is absolutely continuous with the compactly supported density
8. then (X ) (x,v) = ff°°o f(x + tv)g(t)dt is known as the windowed X-ray transform (see [9]).
Theorems 2 and 3 imply the following inversion statements.

Iepua, ) = 4.3)

Theorem 6.

Let v be an admissible measure (i.e., k(r) = r~w((=r, r)) € LYR™)) and let (X} f)(x, v)
be locally summable in the v-variable away from the origin for almost all x € R".

WIffell, 1<p<oothen
fw=tim == [ et (4.4)
e<|v|<p

-0 |Zn~1lko T
P00

(LP}
lim = lim, provided that

ko = / k(r)dr £ 0. 4.5)
]R+
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(ii) If f € Cq, then (4.4) holds with li.r_nit interpreted in the C-norm.
(i) If f € LP, 1 < p < oo, and k(r) has a decreasing majorant belonging to LYRY),
then (4.4) holds a.e. on R".

Theorem 7.
Let v be a finite Borel measure on R such that v(R) = 0. Assume that

(@) / [logltl|dIv](t) < o0 (4.6)
-0
or
() dv(t) =gt)dt, ge H'R). 4.7

Then v is admissible and the constant kg in (4.4) has the form

Joolog (1/Ddu () in the case (a) ,
ko =
ZL[% (Hg)(t) sgnt dt in the case (b) ,

(Hg)(t) = (wi )~ ! ffooo g(t) = dr — being the Hilbert transform of g. Under these assumptions the
statements (1) and (ii) of Theorem 6 hold. If moreover,

/[ 1 72 dIvi@) < 0o for some 8> 0, 4.8)
<

then for f € VL”, 1 < p < o0, the relation (4.4) is valid for almost all x.

In order to invert X, f with the non-admissible measure v one may use the argument of Section
3. Let o= puW % u@, pO(y) =v®(y)) x 8(y');i = 1,2. As above we have

Pdn [ W = @
Lo, f) = dy —/ dv” (y1) f&x—=nyiver —nziye)dv® (z1)
S0(n) N J-x —o0

= ] i‘_’; /oo dv(l)(t)/ fx+tv + )dv@ (o)

[Zp1l e<|vl<p lvl

= —1- M) 4 @
B |2n 1‘ e<|vl<p |v| / f(x + tv)d < v ) )
= ! _c_i_v_/ (Xy@ f) (x +tv, ndvD) .

[Zp—1l e<|vj<p [uj?

We say that the pair of measures v, vy @ s admissible if v = vy % v@ s admissible, i.e.,

k=1 / d (v‘“ * v‘”) ®) e L' (RY) . 4.9)
(=r.r)

r

The corresponding inversion formula, which is similar to (3.3), reads

- m
fe = | Zp—11ko fR" lv|" (¥ £) Ce 0, )V @19

We leave to the reader to state the analog of Theprem 5 which justifies this formula.
Let us give a simple example. Assume that we want to invert (X, f)(x, v), where v is an
arbitrary finite measure supported by [0, co]. Choose v = §, — 8, where 8, and 8, are unit Dirac
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masses at the points a and b, respectively. Let 0 < a < b < o0. Clearly, v = v() x v js a finite
Borel measure because the linear functional

o0 o x
- (v,p)= f dv(l)(x) / P(x + y)dv(Z)(y) = / @@+ y) — @b+ y)) dv(Z)(y)
—o0 —o0 “o0

is bounded on Co. Moreover, since D(€) = Da(£)(e!% ~ ¢'%%), then v(R) = D(0) = 0. One can
readily check that

AN

o
- 1 1 x|
k(r) = ~ / dv(t) = - f dv®(t) and kg =/ k(r)dr =/log bt
r r 0 a+tt

(=r.r) [r—b,r—a) 0

(the last integral is absolutely convergent).
Thus, Theorem 7 and (4.10) lead to the following statement (for the sake of convenience we
change the notation for measures).

Theorem 8.

Let v be a finite Borel measure supported by the positive half-line, and assume that a < b are
the arbitrary positive numbers.

WIffell 1 <p<oothen

o) tim ! [ K)o tav ) =K kbu0)
6-*0 | Zn~ lIkO s<|ul<p ol

(L?)
lim = lim, provided that ko = [§° log ZXLdv(r) # 0.
(i) If f € Co, then the limit in (4.11) may be understood in the C-norm.

(itl) If, moreover, v is compactly supported, then (4.11) holds in the a.e. sense for f € L?P,
I<p<oo

We conclude this section by exhibiting an analog of Theorem 1 for windowed X-ray transforms.

Theorem 9.
Let v be a finite Borel measure on R such that the integral

= 5(¢) 5©),
, = e =
o | o % [ e e

is finite and different from zero. Then

f= fim —t (x
pe—»() ey | Zn-1l Je<inl<p ’ vl

Proof. According to (4.3) and Theorem 1 it suffices to show that for u(y) = v(yy) x 8(y’) the
limit

. fim / u(n)
W= p‘-’o lzn-” e<|nl<p |7”n

exists and is equal to ¢,. By taking into account that ji(n) = V(7)) we have

1 am) 1 /p dr/ N
dn = —_ U (r{o, e1))do
T il Jocim<p 117 Tl e T Js, :




186 Boris Rubin

Th_ Pdr (! (n-3)/2
- :E" ?: T’fla(n)(l—tz)" dt
n— —

2l ! (n=3)/2 D %
= [Znl (1—t2)n ! dt/ @_)A/ 2y
|En—1| -1 elt|<|E|<plt] I‘SI -00 g

where

_|Baal (! (1 _tz)("'3)/2

271’"/2
dt =1 (we recall that |X,_;| = ————-) . O
Izn—ll

T'(n/2)

Corollary 1. (for two measures)
Let v = v v be q finite Borel measure on R such that the integral

o (D (E)p@D s gy
cu=f OOR® 0©AE)

—00 |$| pz:;go e<inl<p l&l

is finite and different from zero. Then

(L

f = lim / / o f)(x+tv, v)dv(l)dt .
30 cuIZ,, ll e<lvl<p oi® (X 1)

The lasvt formula leads to the wavelet expansion of f [cf. (3.4)].

5. Radon Transforms

5.1 Preliminaries

Let P? be the manifold of all hyperplanes in R". The Radon transform of sufficiently nice
function f on R” is defined by

(RF)() = f F@)dme(x), P, 5.1)

where m; is the euclidean measure on 7. Each hyperplane 7 may be parameterized by (6, s) €
R" = Ta-1 X Rsothatt = {x € R" : {x,0) = s5}. Since (0, 5) and (-8, —s) define the same
hyperplane, the correspondence between R" and P" is not one-to-one. The mapping (6,s5) —> T 1s
a double covering on P, and each function on P* can be identified with the even function on R".
Under the (6, s)-parameterization, the Radon transform (5.1) reads

(Ro f) (s) = (Rf)(8,5) = /9l f(s6 +uw)du, (5-2)

where 6 € £,_;1, s € R; du stands for the euclidean measure on the subspace 8+ orthogonal to

6, such that dx = dsdu for x = 56 + u. We consider R" as the measure space with the product
measure dfds where 40 is the rotation invariant measure on X, and ds designates the Lebesgue
measure on R.

The Radon transform R represents a linear continuous operator from S(IR") into the similar
space S (Rn) (see, [7]). For locally integrable functions f the following statements are known.
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Theorem 10. [24]

If f is nonnegative, then Rf is defined almost everywhere on R" and is locally integrable on

R if and only if
ff(x) dx < 00.
Rn

1+ x|

For each § > 0 and any measurable function f on R" the following estimate holds:

dods dx
Jn 1RD6 N < < [ 17—
Rn

Corollary 2.
Fori<p<n/(n—1)andé$ > 0,
dods

/@n |(Rf)(9,3)lm =

cllflp -

We note that in the case p > n/(n — 1) the function f(x) = (2 + {x})~"/P (log(2 + x)~!
belongs to L”(R") and is not integrable over any hyperplane.
Given 1 < g, r < oo, we define the space

q/r 1/4

o
Lo (&) = J0@9 lolls = | [ | [w@oras| ao] <o
n—1
. —0OC

Theorem 11. [14]

For n > 2 an a priori inequality
”Rf"q.r =< Cp,q.r”f“p

holds ifand only if 1 < p <n/(n—1), g < p' (p~! + p’—l =D, andr-'=np~l —n+1.

Let us define the Radon transform of Borel measures on R*. Given 8 € Z,_1, let Ey be the
orthogonal projection onto the line £9 = {s6 : —00 < 5§ < oo} and let ry be an arbitrary rotation
such that rge; = 6. We define the Radon transform Ry u of the Borel measure i on R” as the image
of i under the mapping r, lEg. This means that for each 8 € ,_|, Ryu is the Borel measure on
R such that

(Row) (Q) = p (E;‘resz) =pu (el x rgﬂ) , QCR.

The above definition does not depend on the choice of ry and corresponds to (5.2). Indeed, if
du(x) = f(x)dx, f € L'(R"), and t € P" is given by the equation {x,8) = s, then Rgu is
absolutely continuous on R with the density (Rg f)(s) because

(Row) (9) = f

rgQx9L

fx)dx = / ds/ f(s0 4+ u)du =/ (Ro f) (s)ds .
Q o+ Q

Clearly, if p is finite on R", then Ry is finite on R for each € T,_;. The idea of the above
definition was borrowed from the more general consideration in [11].

Lemma 2.
Suppose that p is a Borel measure on R" and ¢ is a Borel function on R. Then

[ 0@ Rowy ) = [0 (15" Eox) duo = [tz o0duco
R"” R"
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This statement follows from Theorem 1.19 of [11]. Assuming ¢(s) = ¢(0, 5) and integrating
the above equality over ,_| we get

f a0 fR 06, 5)d (Ropw) (s) = f dp(x) fz (0. (5,000
R’l
or
/11'2" #(6,5)d0d (Rop) (5) = f (R*e) ()dn(x) (5.3)
A
where the integral

(R) o= [ 0. z.0nde

n—1
is known as the dual Radon transform (see, [7]). In particular, if du(x) = f(x)dx, then (5.3) yields
the well-known duality relation

(Rf.0)" = (£, R') (5:4)

in which the following notation is used:

(f.o)= / FRE@dx, (h.9)~ = /ﬁnw(e,sm(e,s)deds. (5.5)
IRII

The equality (5.4) also can be obtained directly with the aid of the Fubini theorem provided that one
of the integrals (R| f1, l¢]), (£, R¥|el) is finite.

Lemma 3. .
If  is a locally integrable tempered function on R, then

R' < L, (R) S (") |

Proof.  According to (5.4) for the arbitrary @ € S(R") we have (R*¢, w) = (¢, Rw)™, and the
result follows from the continuity of R from S(R") into S (IR"). O

5.2 Inversion of Radon Transforms

Assume thaty = (y1, ..., ¥a) = (31, ), v(¥) = 8(y1) x L(¥") where §(y)) is the unit Dirac
measure on R and £(y') is the Lebesgue measure on R* !
Lemma 4.

Let f € LP(R™), 1 < p < n/(n — 1). Then for the arbitrary finite measure o on R",

{~n

=t # )
/SOW (f *ays*vy)dy = |)3n-1|R (Rf * 0 ) (5.6)

where ax(l) is the dilated version of the measure

aV =aoEj!' = R, 5.7

(the “projection” of a onto the first coordinate axis).

Proof. We observe that

(frvys) ) =t"""(Ro f) ((x,6)), B =yer.
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Indeed,
(frvpa) ) = ff(x—tyy')dy’=t“” / f(x.venyyer —y2)dZ
Rn—l Rn—l

- fel f(x,0)6 —w)du =1'"" (Rg f) ({x,6)) .

i

It follows that

f (f *ays*vy,) x)dy = / dy/ (f * vy} (x —tyy)da(y)
S0(n) » SO{n) /"

= a7 [ ay @R (= tyy, yen ye da)
SO(n) RN

1—-n
= do ] (Ro f) ({x, 6) — ty)) dar(y) =Lemma2)
1 Znoil Jx,_, |
I—-n ®
- ! a6 f (Ro ) ((x,8) — ty1) dee® (3)
lzn—l[ -t o

which coincides with the right-hand side of (5.6). The application of the Fubini theorem in the above
calculations is possible because for nonnegative f and o by Theorem 11 we have R|f] * |a|(l)

L7 (R") and therefore by Lemma 3, R*(R| f| le| ) (x) is finite for almost all x. O
Corollary 3.
Assume that f € LP(R™), 1 < p <n/(n — 1); « is a finite Borel measure on R". Then
dt
/ R#(Rf m)———hg*f £>0, (5.8)
&
where
el
h(x) = / (x> = sH D 2daM sy (5.9)
ls)<ix|

|B§"‘l)| =x=D2/T ((n 4+ 1)/2) being the volume of the (n — 1)-dimensional unit ball.

Proof. Putpu = axv, v = 8(y;) x L(y), in (5.6). One can readily check that u(y) =
a®(y1) x L(y'). Moreover, the function (v, 1) = (| f|* |fly..)(x) belongs to L'(SO(n) x [¢, p])
for almost all x because by (5.6),

o dt
/ dyf || * |Mly.t dt = f R# R|f| " |ot](l)) _a.e.oo
SOm) B t P

in accordance with Theorem 11 and Lemma 3. By (2.12) and (5.6) it follows that

fR“(Rf a(”) = | "f 7+ “V’dz_he*f hy* f (5.10)

€
where

7

1 1
h(x) f du(y) = f da® (y1) dy
11" Jiyl<iel X" Jiyi<iel y'l<y/1xF=y2

’B(" l)‘ /2
n—
S L )T o0
yii<lx|
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In order to obtain (5.8) we first note that the integral in the left-hand side of this equality
belongs to L}OC(R") N &’(R™). Indeed, since

|RF*o® O] <cifip ju] |

|, SclRflr

then by (5.4) for any w € S(R") we get
b dt b ~ dt ® dr
# (D 1)
([5 R (Rf*a, )Tn’w)“/s (Rf*a,( ,Rw) = Sc@Iflp “aa)”/e - <00

Thus, it suffices to check the validity of (5.8) in the S’-sense. We have

o o
(f R#<Rf*a,(l)) f’;—’,w) = pixr;of ;ij/a(x)R#(Rf*af")(x)dx
Rn

= pl_i_)moo(hg*f—h,,*f,w)=(he*f,w)

- pli{go f fy)dy _/ h(Do(y + pz)dz = (h: * f, w)
R? R"
and the result follows. O

Our next goal is to show that the kernel 4(x) in (5.9) belongs to L!(R") under certain natural
conditions. For this purpose the following general statement will be useful.

Lemma 5.
Assume that 1 <k <n — 1, m is a finite Borel measure on R""",

lek)| N7
h = 2_ " d 1" .
(m) (x) iy (lxl l)’ | ) m(y )
If
/ |y”|ﬂd|m| (y") <oo forsome B >k (5.11)
1y"1>1
and
/ (") dm (y") =0 for |jl =0,2,...,2[k/2], (5.12)
R’l—k

then hn)(x) enjoys the following properties:
0 (jx*=) iflx| <1,
)] h(my(x) € L (R"), himy(x) = (5.13)
O (xk="7) iflxl > 1,

where y = min(8, 2[k/2] + 2);

nl+k/2(_1)(k+l)/2 The L ) ]
2F(1+k/2)' ! fk [y"|" dm (y") ifk is odd ,

1)) fh(m)(X)dx = W2y R . | 5.14)
o b1t ¢ (),(/2)1 [ n—ll f |yll| log lyll| dm (yll) lfk is even .

Rn —k
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Proof. Denote

k/2
Am () = [T (1 +k/2)n)™! f (n=1y"[*)" dm (5" .

ly"I2<n

Clearly,

k/2
a4 | Zp-al
hmy(x) = —W_—’;—Am,k (|X|2) ,

and the relations h(m)(x) € LI(R”) and A 4 (1) € L‘(O, o0) are equivalent. Moreover, f gn Bmy(x)dx =
(%2 Zp-11/2) f5° Am.k(n)dn. It remains to apply Lemma 17.1 from [18]. O

Theorem 12.
Let f e LP(R™), 1 < p <n/(n—1). Leta be an arbitrary “wavelet measure” satisfying the
following conditions:

/Iyllﬂ dla|(y) < oo forsome B>n—1, (5.15)
]RII
/y{da(y):O for j=0,2,... ,2[(n—-1)/2) . (5.16)
Rn
Then .
(L o0 dt
1m})/ R* (Rf*a,“’) - =hof «®=Rya, (5.17)
e—0J,
where “p "
n ~1" - . .
rg,/z)r(((n_:l)/nmjr; |)’11" ldot()’) lfn Ls even ,

ho = zﬂn—I/Z(_l)(n-H)/Z (5-18)

Loty | Inl"oglyllda(y) ifnisodd.
RrR™

The limit in (5.17) can be understood also in the a.e.-sense. If f € LY(R") N LP(R™) for1 < q <
n/(n—1)and 1 < p < 0o (L™ should be understood as Co), then (5.17) is also true.

Proof. We make use of Corollary 3 and Lemma 5 with k = n — 1 and dm(y") = daP(y;). The
required statements then follow by the usual machinery of the approximation to the identity [25].

U

6. k-Plane Transforms

6.1 Basic Definitions and Auxiliary Facts

Let Gy be the manifold of all non-oriented k-planes in R”. For sufficiently nice function f
on R”, the k-plane transform is defined by

(P = / F@dme(x), T €Gen., 6.1)

m. being the euclidean measure on 7. In order to parameterize G , we introduce the Grassmann
manifold G , of non-oriented k-dimensional subspaces of R*. Under the identification G¢,n =
0(n)/0(k) x O(n —k), the set Gy , can be regarded as the k(n — k)-dimensional compact manifold
on which the group O(r) acts transitively. We denote by d¢ the invariant measure on Gy , with the
total mass 1. Another parameterization of Gi , which is similar to that in Section 5 and employs the
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Stiefel manifold of orthonormal frames is also possible (see, [15]). We will not use it in this article.

Givenafixed{ € Gy n,eachvectorx € R" canbe writtenasx = (x, x”) = x'+x” where x’ € ¢ and

x" € ¢+, ¢+ is the orthogonal complement to ¢ in R”. Each k-plane T € Gy, can be parameterized

by the pair (¢, x”) where ¢ € Gy, and x” € ¢L. The correspondence © — (¢, x”’) is one-to-one in

contrast to that in Section 5 (k = n — 1) where we had a double covering. The manifold G , will be

endowed with the product measure d¢dx”, where dx” denotes the usual euclidean measure on ¢+.
Under this parameterization the k-plane transform (6.1) reads

PH(&.x")= (P f)(x") = / f(+x")dx', ¢ €Grn x" €t (62)

¢
Let (e, ..., e,) be the natural orthonormal basis in R”, and denote by RfandR"™ % 1<k <n-—1,
the subspaces of R”, generated by the sets (e, ..., ex) and (ex+1, . . ., €,), respectively. Fory € R"

we write y = y' + y” where y’ € R¥, y” € R"™*. Every { € Gy, can be written in the form
¢ = yR¥ forsome y € SO(n). Giveny € SO(n) and f on R", we denote f(x) = f(yx). Then

(P (t.x") = (Pfy) (Rk; y”) where ¢ = yRF, x" =yy". 6.3)

We denote by S(Gy.») the Schwartz type space of infinitely differentiable functions ¢(¢, x”)
on Gy » rapidly decreasing in the x”-variable. The k-plane transform is a linear continuous map from
S(R™) into S (concerning this fact and the precise definition of the space S(Gk.») see, [6]).

Clearly, if f € L'(R"), then fCJ‘ (P f)(x"ydx" = [gn f(x)dx for each ¢ € Gy,n, and
therefore | Pf”[_l(gk_,,) < IIfllLl(Rn).

Theorem 13. [24]

Let f be a nonnegative measurable function on R*. Then (Pf)(¢, x") is defined almost
everywhere on Gy p if and only if

f(x)dx

——
(1 + |x]n*
Rn

For each § > 0 and a measurable function f,

drdx" d
k.n

T+ )™ =)+
Rn
Corollary 4.
Forl<p<nf/kand$ >0,
, dtdx”
L e ) G s S el 6.5)

By using (6.3) and the obvious formula

f g(§)dg =f g(VR") dy (6.6)
Gin S0(n)

one can write (6.5) in the form

k dyll
4 P R y") —— =5 <clflp, &>0. 6.7)
/so(n) y k |(Pf) (R Y") Ty ,

R
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The relation (6.5) shows that for | < p < n/k, the function f € LP(R") is integrable over
almost every translate of almost every subspace { € Gy . For p > n/k this is not true as is shown
by the function f(x) = (2 + |xD™/7(log(2 + 1x))~! (see, [22)).

The k-plane transforms of Borel measures on R” can be defined as in Section 5 by using the
orthogonal projection E,1 : R" — ¢4 along the “direction” ¢. Given a measure u on R”, we define

its k-plane transform Py i as a measure on ¢+ such that
()@ =u(Ele) = [ du. aci.
Qx¢
Clearly, if p is finite on R", then Py p is finite on ;L for each ¢ € Gy p.

Lemma 6. (cf. [11], p. 16)
Let 1 be a Borel measure on R" and let g be a Borel function on {*. Then

[ o6am) @) = [o(Eax)duco.
¢ A

As in Section 5 (put ¢ = ¢({, x') and integrate over { € Gy ,), one can arrive at the duality
relation involving the dual k-plane transform

(Pe) 1) = fG X (¢, Ecrx)dg 6.8)
and having the form
Pf.o)” = (£.P') . (69)
where
(Pf.o)~ = gkn(Pf) (¢.x") o €, x")dgdx" .
The following statement is analogous to Lemma 3.
Lemma 7.

If ¢ is a locally integrable tempered function on Gy p, then
Pfpe L] (R)NS (R") .

Remark 1.

The reader may be disappointed by not finding an analogue of the Oberlin-Stein theorem for
k-plane transforms in this section. Such an analogue would be very helpful, but unfortunately (as far
as I know) it represents an open problem. Concerning this problem the reader is referredto [2, 4,27].
We shall see that one can also use Corollary 4 for our purposes, which covers the whole range of
k(l<k<n-1andp (1<p<n/k). |

6.2 Inversion of k-Plane Transforms

In order to obtain inversion formulae involving continuous wavelet transforms, we use the
same method as in Section 5. Put v(y) = £(y’) x 8(y”) where L(y") is the Lebesgue measure on
R and §(y”) is the delta function on R* .

Lemma 8.
Let f € LP(R™), | < p < n/k. Then for the arbitrary finite measure « on R" and t > 0,

/ (fxvyexay )dy =17 P My, f (6.10)
S0(n)
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where

(Mo f) (¢ %) = fs vt (P; f*(P;a)a',) (x")do (6.11)
¢in—=

SO (n — k) being the subgroup of S O(n) consisting of rotations in the ¢L-plane.

Proof. The passage from the left-hand side of (6.10) to the right-hand side is based on the appli-
cation of the Fubini theorem. In order to justify this application, we first show that for nonnegative
f and &,

"M""’f"L‘(gk,,.:(1+1x”|)“~") =< C”a" ”f”pv s>n—k ’ (612)

with ¢ independent of ¢. This would imply that for complex-valued f and «,

\(P#Mm,,lfl,w)] = |(Mpais £, Po)”| < c@)lell 11 (6.13)

uniformly in 7 for each @ € S(R"). In particular, the latter means that (P#Mla,‘, | £ D(x) is finite for
almost all x and the application of the Fubini theorem below is possible.
In order to prove (6.12) we note that

Pray = (Pa), . (6.14)

Indeed, forany Borelset A C {J'wehave(P;a,,)(A) = oz(,(E;_ll A) = a(E;la_lA) = (P;oz)(a‘lA) =
(Pra)q(A). Then

wy _dgdx”
M, X))
-/‘;’k'n( ’f) (f x ) (1+ [x"])°

d P, " tn"d (P . ”
‘/;kn ~/;:J- (1‘|'|f‘7”|)J /.;O;(n—k) U/;J.( cf) (x tn ) ( 4% )(77)

put M =yy', t=yRE, o=yr, fox)= f(yx))

dy” / f ”
d — dar P —tE da
/_;'O(n) Y -/ (1 + |y,,|)s SO (m—k) n ( yRk f) (yy (y]Rk)‘L '7) yr(TI)

]Rn—-k

dy” (6D
do(n) drf dy f Pk fon ) (' —trn") ——— <
/ SO(n—k)  Jsowm) ( R (Y))( ) a+1y"p*

]Rll—k

/ dot) [ oo (=), = cled 151

1A

Once (6.12) is established, we can prove (6.10). Given y € SO(n), we write x = x’ + x”, where
x" € yR¥ and x” € (yR*)*+. Clearly,

(f % vps) ) = f Fle—tyy)dy =17 (Pyka) (") -

]Rn—k

It follows that

f T /;O(n) (F vy s aya)dy =7 /som dyR[ (Baef) (= 1)) dey )

= " .,
= [so(n) dy ‘/(-Y]Rk)_l. (PyR" f) (x ty )d (PyRkay) ()’ ) .
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Let us replace y by yr, assuming r € SO(n — k) where SO(n — k) is the subgroup of all rotations
preserving R¥. The integration over SO(n — k) yields

1
— dy/ (P tf*{ P rox dr . 6.15
t* Jsomy = Jsom-iy N TR YR y’):) (6.15)

Given y € SO(n), there is a family of rotations which maps R* onto 2; = yR*, We fix a rule
according to which one can construct a certain concrete rotation y; : R — ¢ (for example, if
y is parameterized by the associated Euler angles, one may set the Euler angles corresponding to
the factor SO{(n — k) equal to zero). Once such a rule is fixed, for eachy : R* — ¢ the rotation

: RE — ¢ depends on { = yR¥ € Gy only. Put A =y 'yr € SO(n — k) in (6.15). Then
ay, = ®y, 1, and by (6.6) we get

1
= — d / P P dA-.—./ d P P do .
. /;?k,,, ¢ SO(n—k)< cf*( ;ay;;\), Gin ¢ SOc(n-k)< Cf*( {a)"‘f) o

This coincides with (6.10). O

Corollary 5.
Assume that f € LP(R™), 1 < p < n/k, and o is a finite Borel measure on R". Then for
e >0,

A=

© dt
-/; 114k /Gk,n % v/;'O;(n-k) (PCf * (P;tx)m‘) (EK‘LX) do = (he x f) (x) (6.16)

where

k2
hx) = lxln/[<|x|(!x|2_|y/|2) da’ (), o = Pyier, (6.17)

Chon = |B§k)|/|2,,_||, Bfk) being the unit ball in Rk,

Proof. The argument is similar to that in the proof of Corollary 3. We put p = o x v, v(y) =
L(y") x 8(y"). The u(y) = L) x &'(y"). By (6.10) and (6.13),

® dr *® dt
/s- T /SO(n) (lfl * |lv'v|y.t) dy = /g (P#Mla“|f|) t_laTI € Llloc (R") ns' (Rn) . (6.18)

Thus, we can employ the representation (2.12) according to which
/

P dt™
f P#M.,,,ft—ﬁ:hs*f—h,,*f, O<e<p<o0, (6.19)
&
where
x| ™" fx|™" 'Vl
h(x) = du(y) = do’ (y f dy
1Za—11 Jyyi<ix| 1Zn—1} Jiy71<ix| ( Y
[y </ 1x 2~y 2
!

1 k/2
= x —-n / (x " ) dal " i
_IE,._lll I . x2 = || ")

The relations (6.19) and (6.18) imply (6.16). Here one can use the same argument as in the
proof of Corollary 3. O

Now we state the main result of this section.
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Theorem 14.

Let f € LP(R"), 1 < p < n/k. Let a be an arbitrary “wavelet measure” satisfying the
Jollowing conditions:

[Iy"|ﬁ dle|(y) < oo forsome B >k, (6.20)
R’l
/ (y”)jda(y) =0 for |j|=0,2,...,2[k/2] . (6.21)
Rn

Ife, x")y = (P, x") and

et @)= [ (o2 (Pa),,) ) do

50, (n—k)
then
(I‘Lp) o0 oA dt \ .
sl—% s a.tf 1tk - Of ( .22)
where 2 ks
r — 1)U+ k . .
T ey an ly'[" dee(») if kis odd,
ho = (6.23)

ﬂk/Z((k_/lz))l!%/Z f |y//|k log |y"|da(y) if k is even,
]Rn

The limit in (6.22) can be understood also in the a.e.-sense.
If f e LYR")Y N LP(R") for some q € [1,n/k), and 1 < p < o0 (here L® = Cy), then
(6.23) is also true.

The proof is similar to that of Theorem 12 from Section 5, and is based on Corollary 5, Lemma
5, and Lemma 6.
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