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ABSTRAC'E. The generalized Calder6n reproducing formula involving "'wavelet measure" is estab- 
lished for functions f ~ L p (R n). The special choice of the wavelet measure in the reproducing formula 
gives rise to the continuous decomposition of f into wavelets, and enables one to obtain inversion for- 
mulae for generalized windowed X-ray transforms, the Radon transform, and k-plane transforms. The 
admissibility conditions for the wavelet measure lZ are presented in terms of lz itself and in terms of the 
Fourier transform of Ix. 

1. Introduction 

The classical Calder6n reproducing formula reads 

f =  f * u t * v t  d t ,  (1.I) 
t 

where ut(x) = t -nu (x / t ) ,  Or(X) = t -no(x / t ) ,  u and v are sufficiently nice normalized radial 
wavelet functions on R n (see, e.g., [5]). The generalization of  (1.1) involving nonradial wavelets u 
and v was given in [12] and can be written in the form 

f s  fO ~ f * u v ' t * o Y ' t d t  d e  , (1.2) 
f = O(n) t 

where ue,t  and vy,t are rotated versions of ut and ot. In [5] and [12] it was assumed that f E L2(Rn).  
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Since the properties of  the operator in the right-hand side of  (1.2) depend on the combination 
u * v (not on u and o separately), it makes sense to investigate the formal integral 

f, f :""" dy  dt (1.3) 
O(n) t 

generated by the arbitrary Borel measure/z  on R n. For/z = u �9 v this gives the integral in (1.2). In 
the case n = 1, such an investigation was carded out in [17, 18] for f 6 LP(R).  We also mention 
the papers [16, 22] devoted to (1.1) for f ~ L p. Holschneider [8] investigated the formula (1.2) 
in the case n = 2, f ~ LP(R 2) for certain distributions u and v such that their convolution u �9 v 
is a regular function. Also, he has shown that if  one of the distributions, say u(x), has the form 
u(x) = 8(xl)  x l(x2) with the delta function in the xl-variable and v sufficiently nice, then (1.2) 
leads to the inversion formula for the Radon transform R f  on R 2. The formula of  Holschneider can 
be written in the form 

o o  

f =  R # R f , v }  1) dt ~ - ,  v(l)(s) = v (s, x2) dx2 ,  (1.4) 

where R # is the backprojection operator and the integral is interpreted as the limit of  the corresponding 
truncated integral in the LP-norm and in the a.e. sense. 

Our goal is to generalize (1.4) to the n-dimensional case for k-plane transforms, 1 < k < n - 1. 
A natural generalization of (1.4) reads 

f0 ~ x")  , 
dt 

:= <1.5) 

where 

(Aa,t~o) ( : ,x")  = f s  (~o* (P(ot)a,t) (x")dcr , (1.6) 
O ~ (n-k) 

E Gk,n (the Grassmann manifold of k-dimensional subspaces in Rn), x" ~ ~'• (the orthogonal 
complement of ~'), (P#f)(x") -~ (Pf)(~, x') is the k-plane transform of f, P# is the dual of P; 
S O~ (n -- k) is the subgroup of  SO (n) which consists of  rotations of  the subspace ~ • Here ~ is an 
arbitrary finite measure, satisfying certain cancellation and growth conditions; (Pc ta),r,t denotes the 
rotated and dilated version of the k-plane transform of ~. For ~ radial, the SO t (n -- k)-component  
in (1.5) may be omitted. Precise definitions and statements are given below. 

The convolution ~o �9 (P~t~)~,t can be regarded as the continuous wavelet t ransform of tp(r x ' )  
in the x"-variable. The structure of  the formula (1.5) is a priori transparent if we take into account 
the classical inversion formula (see, e.g., [10]) 

f = Ck.nP#(--A)k/2~p, ~O = P f ,  (1.7) 

involving the Laplacian A in the x ' -var iab le  and realizing the so-called convolution-backprojection 
algorithm used in modem CT-scanners. By making use of  the general wavelet type  representation 
of ( - A )  x, ~. 6 C, in R n, given by 

f, f: ' '"" ( -A)~ 'O  = O(n) dY tl+~ dt (1.8) 

with a normalized "wavelet measure" ~, one can readily get (1.5) from (1.7) and (1.8). The equal- 
ity (1.8) can be checked easily by the formal application of the Fourier transform. The details 
related to the inversion of P via (1.7) and (1.8) can be found in [20, 211 (concerning wavelet type 
representations of  the operator ( - -A)  x, see [18, 19]). 
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Thus, two approaches can be applied to the inversion of Radon transforms in terms of contin- 
uous wavelet transforms. The first one is that of  Holschneider which is based on the reproducing 
formula. The second one employs the wavelet type representation of positive powers of the Lapla- 
cian. The advantage of  the first approach is that we do not use (1.7). This observation may be helpful 
in more general situations related to Radon transforms on some manifolds rather than planes. 

Our investigation was also motivated by the following reasons: 

(a) In order to recover f from g = P f  it suffices to know the wavelet transforms of g. 

(b) If  ot in (1.5) is well localized, then (1.5) gives a local (more precisely, "quasi-local") 
reconstruction of f (up to the dilation by t). This may be important for the case of k odd when 
( - A )  k/2 is nonlocal in principle. 

(c) If  the Fourier transform ~ is well localized, then the continuous wavelet transform in (1.5) 
and (1.6)) serves as a filter in the frequency domain. 

(d) By making use of (1.3) one can invert the generalized windowed X-ray transforms 

( X u f )  (x, v) = f f ( x  + tv)dv(t);  
--OO 

x, v ~ R" . (1.9) 

In the case of an absolutely continuous measure v with the density g(t) such transforms were studied 
by Kaizer and Streater [9] in connection with applications in physics. Here g serves as a window 
function in the time variable t. 

The article is organized as follows. In Section 2 the integral (1.3) is examined for f ~ L p. 
It is shown that this integral coincides with f for the wide class of admissible measures/z,  and 
convergence of  the integral can be interpreted in the LP-norm and in the a.e. sense. In Section 3 
we reformulate the results of Section 2 for the case of two measures when/z = /z (l) */z  (2). Such 
a reformulation gives a decomposition of f into the integral of wavelet functions (or measures). 
Section 4 is devoted to the explicit inversion of  the windowed X-ray transform (1.9) of  f ~ L p (Rn). 
Sections 5 and 6 contain a generalization of Holschneider's method for the usual Radon transform 
(k = n - 1) and for k-plane transforms, respectively. 

One should mention the papers by Berenstein and Walnut [I] and Walnut [28], which are also 
devoted to studying the Radon transform by using wavelets. Our approach and technique differ from 
those in these papers. 

N o t a t i o n .  For x = (Xl . . . . .  Xn) ~ ~n and y = (y! . . . . .  Yn) ~ Rn we write (x, y) = x ly l  + 
�9 " + X n y n .  Lete l  = (1,0 . . . .  0), En- I  = {x ~ R n : Ixl = 1}, I~;n-ll = 2~rn/2/F(n/2); [a] is 
the integer part of  the real number a. Given a function k(x)  on ]~n and e > 0 (instead of e there may 
be t, p or another letter) we denote ke(x) = e -nk (x / e ) .  The notation C(R"),  C~(R n) ,  LP(IR n) 
is standard; Co(R n) = { f  e C(R")  : lim f ( x )  = 0}; S ( R  n) is the Schwartz space of rapidly 

Ixl~oo 
decreasing C~-funct ions with a standard topology; 8'(P, n) is the dual of  S(R") ;  �9 = ~ ( R  n) is 
the subspace of S, which consists of  functions orthogonal to all polynomials. Given a finite Borel 
measure/z on R n, we denote by Ilttll the total variation of  Ittl. The Fourier transform and its inverse 
are defined by 

f v f f(es) = f(x)eilX'~ldx,  g (~) = (2zr)-" g(~)e-ilx'~)des . 

Rn R n 

Sometimes we use the abbreviations ''5-<" and ""~" instead of "<"_ and . . . . .  - , respectively, if the 
corresponding relations hold up to a constant factor. [ ]  
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2. Reproducing Formula with One Measure 

Given a locally finite measure/.t on Rn, we denote by/zv,t the rotated and dilated version of 
/z such that 

(lz• f )  = fR  n f ( w y ) d l z ( y ) ,  t > O, E S O ( n ) ,  

for sufficiently nice f .  Let 

~,, t) = fR" f ( x  - txy)d/L(y)  = f �9 lz• t . (2.t) (x, 

In the case d/z(x) = g(x)dx, g ~ L:o c, we also write 

(Wgf)(x'y't)=fRn f(x--tyy)g(y)dy=t-nfRn f(Y)g(y-I(x--Y)) (2.2) 

If/z(R n) = 0, the integrals (2. I) and (2.2) will be called the wavelet transforms. Denote formally 

fs fo~176215 fso(n) dYfo ~176 dt I(Iz, f )  = dF at  = (w/z f )  (x, y ,  t ) - - .  (2.3) 
o (n) t t 

The following statement is rather standard (cf. [5]). 

T h e o r e m  1 .  
Let Iz be a finite Borel measure on R n such that the integral 

1 f#(/7) d 1 f f~(/7) d 
Clz = I • n - - l (  ~ /7= ~i~mo [~:n-l'-'---'~ " ~ -  /7 

Rn p"->~ e<lr/l<p 

is finite. Then for  f E L 2, 

<:)s f ' f ,  1(/1., f )  = lim d F Izr"t'dt = c / z f .  
~-.o O(n) ~ t 

# .--.~. oo 

Proof.  Let 

f s  f~P f *  
l~,p(Iz, f )  = d y  lzy't dt,  

O(n) t 

(2.4) 

(2.5) 

O < e < p  < o ~ ,  (2.6) 

and assume that f ~ L t A L 2. Then Ie.p(lz, f )  ~ L l fq L 2 and (le.p(lz, f ) ) : ' (~)  = l%,p(~)f(~), 
where 

P 
= 1 

SO(n) 8 elr 

/2(o). 
V ~  a/7, ~ # 0 .  

If c~ is finite, then the function lp(r) = f l y l<r  fz(/7)d/7/loln is continuous on [0, co], and there is a 

constant A = SUpr>0 I~/(r)l such that I~c~,p(~)l _< 2 A / I Z n - l l  for all p > e > 0 and all ~ ~ R n. By 
the Plancherel formula, this gives 

--11 II ,, ',,f,,2 i)112 
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and 
= ( ) ---~0 as e--+O, p - . + o o .  (2.8) &o-c,, : = 

The result for arbitrary f 6 L 2 follows from (2.7) and (2.8) by taking into account that II l~,p (f,/z) I12 _< 
II~zll Il f l l21og(p/e).  []  

Our next goal is to extend Theorem 1 to f ~ L p and to present conditions for/z without using 
the Fourier transform. 

For convenience of the reader we recall the following auxiliary lemma. 

L e m m a  1. 
L e t k ( x )  ~ L t, kp(x)  = p - n k ( x / p ) .  I f  f E L p, 1 < p < oo, then I I f *  kpllp ~ Oas 

p --+ oo. I f f  ~ Co, then SUpx I ( f  * kp)(x)l  --+ 0 as p --+ oo. l f f  ~ L p, 1 < p < oo, and k(x)  
has a decreasing integrable radial majorant, then ( f  �9 kp)(x)  ~ 0 as p --+ oo almost everywhere 
on ~n .  

P r o o f .  The proof of the first two statements can be found in [ 18, Theorem 1.15]. The last statement 
follows in the usual way from the estimate supp I ( f  * kp)(x)l < c ( M f ) ( x )  where ( M f ) ( x )  is the 
Hardy-Littlewood maximal function (cf. [25]). [ ]  

Def in i t ion  1. 
A locallyfinite measure Iz is called admissible i f  

k(x) de=f l f dl~(y) E L l (2.9) 
1~.-111xl" Jl~. I<xl 

T h e o r e m  2. 
Assume that f and lz are such that Iz is admissible and the function (y, t) --+ ( I f l  * I/zly,t)(x) 

belongs to L I ( s o  (n) x [g, p]) for  all 0 < e < p < oo and almost all x. 
(i) l f f  E L  p, 1 < p < oo, then 

f s  f~ p f * l z ~ ' ' t d t  l(/z,  f )  = lim d y  . = k o f  (2.10) 
~ o  O(n) t 

p .--~ o o  

(L p) 
where lim = lim, 

P 

ko = / k ( x ) d x  , (2.11) 
JR n 

k(x)  being defined by (2.9). 
(ii) I f  f E Co, then (2.10) holds with the limit interpreted in the C-norm. 
(iii) I f  f E L P, 1 < p < oo, and k(x)  has a decreasing integrable majorant, then(2.10)holds 

a.e. on R n. 

P r o o f .  The truncated integral Ie.p(/z, f )  [see (2.6)] can be represented in the form 

I6,p(IZ, f )  = k6 * f - kp * f (2.12) 

where ke(x)  = e - n k ( x / e ) ,  kp(x)  = p - n k ( x / p ) .  Indeed, 

I~,p Oz, f )  

p P 
dt dt 

= f d•215 f f ( x - t y y ) d g  
SO(n) E Rn R n g SO(n) 

1 y d . ( y )  f f(x dz 
- I ~ . - t l  - z )  i z l ' /  

R n elYl<qzl<plYl 
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l /  . z /  
I I ]n- l l  f ( x  - Z )  lz W 

R n Izl/p<lyl<lzl/e 

dlz(y) = kE * f -- kp * f .  (2.13) 

Now the statements of  the theorem become obvious in view of the usual machinery of the approxi- 
mation to the identity [23] and Lemma 1. [ ]  

The following statement gives examples of classes of  measures that satisfy the conditions of  
Theorem 2. 

Theorem 3. 
Let lz be a finite Borel measure such that lz(R n) = O. Assume that 

(a) fR n [loglxlldllzl(x) < ~ (2.14) 

o r  

(b) dlz(x) = g(x)dx, g ~ HI( the  real Hardy space on ]R n) . 

Then lz is admissible and the constant ko in (2.11) can be evaluated as follows: 

(2.15) 

k o = f R n l ~  z(x) (2.16) 

in the case (a ) and 

 o=A. 2 L x, j= l  n ~1 (~jg)  (x)ax, 

iTr(n+l)/2 

An = 1~2n-ll F((n q- 1)/2) ' (2.17) 

(~ jg  being the Riesz transformations of g) in the case (b). Under these assumptions statements (i) 
and (ii) of Theorem 2 hold. I f  moreover, 

fl~ Ixl-Sdllzl(x) < ~ for some 8 > 0,  (2.18) 
I<l 

then, given f ~ L p, 1 < p < c~, the relation (2.10) is valid for almost all x. 

P r o o f .  We first note that since/z is finite, then I~,p(I/zl, I f l )  ~ L p for all 0 < e < p < ~ .  I f  
/z(R n) = 0 and (2.14) holds, then/z is admissible because k(x) ~ L 1. Indeed, 

1~2n-ll fR ~ Ik(x)ldx f,x < dl/zl(y) 
- I<1 Ixl n I<lxl 

ftxaXfy + dllzl(y) ' 

I>1 Ixl'; I>lxl 

Iron-ill IloglYlldllzl(y) < ~ .  
JR n 

Similarly one can show that ko = fRn k(x)dx = fRn log(1/lYl)dlz(y). Furthermore, i f / z  satis- 
fies (2.18), then Ik(x)l _< cx Ixl 8-n for Ixl _< 1 and k(x) has a decreasing radial summable  majorant. 
Thus, the part related to (a) is proved. 

In order to handle the case dtz(x) = g(x)dx, g ~ H l we need some facts f rom the theory of 
Hardy spaces (see, e.g., [3, 26]). We recall that a function a (x) is called an atom if a (x) is supported 
in a ball B, la(x)l < IB1-1 and f a ( x ) d x  = O. 
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Theorem 4. 
A summablefunction g belongs to H l if and only if 

oo 

g = E Ljaj (2.19) 
j=0 

where aj is an atom and E~~ < o~. l f  g e H 1, then Ilg II t-zl is equivalent to inf E~__o[) V I where 
the infimum is taken over all decompositions (2.19). 

First we show that the operator (Kg)(x) = Ixl - n  flYl<lxl g(y)dy is bounded from H l into L 1. 

Let g(x) = a(x) be an atom supported by the ball B of radius r, Then I(Ka)(x)l < r -n. Moreover, 
[IKa[ll < Cn, where Cn is a constant depending on n and independent of  B. Indeed, i f 0  e B,  then 

f l x f y a ( y ) d y d X l f l  x = 2 " .  IlKalll = < dx IBll 
1<2r I<lxl Ixl n -- ~ 1<2r 

I f 0  r B and ro (> r) is the distance between 0 and the center of B, then 

fr~ f~ a(y)dy I f r~  Cn 
II Ka Ill = < = 

a ro--r W . I<p, yEB  - -  - ~  Jro--r t 0 

[here C,.r is the cylinder of the height p with the base B~ n- l) (the (n - l)-dimensional ball of  radius 
r)]. 

Now let g have a general form (2.19). Since Ilajlll _< 1 and E~=01~.jl < oo, the series (2.19) 

converges in the L l-norm. Since I IKaj  Ill < c . ,  the same is true for the series Klg = E ~ o L  j Kaj, 
and I lglgl l I  < cn E~__01~.j I < const Ilg IIH t. It remains to show that Kg = Klg. Let Br be a ball of 
radius r centered in the origin, 

L r . , = l f  : " f l l r . ,=  fB ' f(x)llxladx < ~ } ,  a > 0 .  
r 

Since K is bounded from L l into Lr,6, then 

K g = K  | lim ) lim E X j K a j  = ~ L k K a j  Ktg 
j=l j=l j=l 

because the L l-convergence is stronger than that in the Lr, a-norm. Thus, 

Ilklll = Ilgglll  _< eHgllH l, g �9 H l , (2.20) 

and therefore dlz(x) = g(x)dx is an admissible measure. 
Let us show that 

n 

ko def fRn (Kg)(x)dx = An n ~ (~Jg) (x)dx , (2.21) 

izr(n+l)/2 

An = IZC,-ll F((n + 1)/2) 

Since K and ~ j  are bounded from H l into L l , it suffices to check (2.22) for functions g belonging 
to the space �9 (see Notation) which is dense in H l (see, [24, p. 128]). According to Theorem 1, for 
such g we have 

I f ,(~) n lfR ~ If. d~ k0 -- [Zn-,---~ " [ - ~ d ~  ----y~. IZn- l [  n (T~jT~Jg)^ (~) I - ~  n = [Zn- , I  "(T~JgJ)^(~)I~] n '  
j= l  '-- 
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where 
l"((n + 1)/2) f~ xj - yj gj(x) = (TCjg) (x) = v.p. g(y)dy 

i ~ ( n + l ) / 2  . ,~n ]x--'y-'~ -+1 

are the Riesz transformations of g such that ( ~ j  g)^  (~) = ~ ~ (~). By the Parseval equality it follows 
that 

ko=~--~ I~n-ll n I~1 n+l~'j(~)d~ = 
j=l  

izr(n+l)/2 ~.~ifR xj 
IZn- l l  F((n + 1)/2) = n "~1 (TC.jg) (x)dx 

which was required. [ ]  

3. Reproducing  Formula  with Two Measures 

In the previous section we exhibited inversion formulae for the transformation 

(W~f )  (x, Y, t) = L n  f (x -- tyy)dlz(y),  t > 0, y ~ S O ( n ) ,  (3.1) 

provided that/z is admissible. In practice, one often looks for the wavelet expansion of f or inverts 
W ~ f  with the non-admissible/z.  In these cases the results of  Section 2 may be used if we put 
/z = / z  (l) � 9  (2), where/z  (l) is a wavelet measure (or function) with respect to which the expansion 
of f is needed, and/z  (2) is the original measure (or function). 

Definit ion 2. 
A pair of  measures/z (1), /z (2) is called admissible if their convolution/2. = /z (1) �9 (2) is 

admissible, i.e., 
1 / y  d (tz(l) , l~(2)) (y) ~ L l (3.2) 

k(x) = IXn-~l Ixl" t<txj 
T h e  following statement is a direct consequence of Theorem 2. 

Theorem 5. 
Let/z (1),/1. (2) be an admissible pair of  measures. Assume that f and/z = / z  (1) � 9  (2) are such 

that/z({0}) = 0 and the function (y, t) --+ ( I f l  * I/zlv.t)(x) belongs to L I(SO(n) x [e, p]) for all 
O < e < p < ~ and almost all x. 

( i ) / f f 6 L  p,1  < p < c ~ , t h e n  

P 

f ( x ) = l i m l f d t f  f ,-,, ~o t dy  (Wu~)f) (x - t ry ,  Y, t)dlz(l)(Y), (3.3) 
p--~oo e SO(n) R n 

(LP) 
lim = lim, provided that ko = fR n k(x)dx # O. 

(ii) If  f ~ Co, then (3.3) holds with the uniform convergence. 
(iii) If  f and /z  = / z  (l) . / z  (2) satisfy (iii) in Theorem 2, then (3.3) holds for almost all x E R n. 

If  d/z(l)(y) = g(y)dy, then (3.3) can be written in the usual form as the wavelet  expansion 
of f .  In order to see this let 3~ = (y , t ,  y)  6 G = R n • R + • SO(n), d~. = d y ~ d y ,  gx(x) = 

t - n g ( - l f ~ t - ) ) .  Then (3.3) reads 

f ( x )  = ~ol fG (Wur (L)gx(x)d;~ . (3.4) 
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Note that if/2 =/2(1)./2(2) is radial (i.e.,/2 is invariant under rotation), then the SO (n)-component 
in all formulae in Sections 2 and 3 may be omitted. In this case, (3.3) and (3.4) coincide with the 
classical Calder6n reproducing formula (cf. [5]). 

4.  W i n d o w e d  X - R a y  T r a n s f o r m s  

The results of Sections 2 and 3 can be applied to generalization of the notion of the windowed 
X-ray transform (see [9]) and enable us to obtain explicit inversion formulae involving continuous 
wavelet transforms. 

Let y = (Yl, y') ~ R n, y' = (y2 .... Yn) ~ ]Rn-l. We apply the consideration of preceding 
sections to the measure/2(y) = v(y l )  x 6(y') where v is a certain measure on R 1 and 8 (y') designates 
the usual delta function on R n-l .  According to Definition 1,/z is admissible if 

1 i -  1 d /2 (y)  = I~ : . -~ l  Ixl" k(x) = i~:n_~llxl n <xl  I~l,lxt) 

o r  

1 i -  dv(yl)  EL I ( R  +) . k(r) = -~ r,r) 

Clearly, f~n k ( x )dx  = JR+ lr Furthermore, 

Ie.p(/2, f )  = 

P u t v = r a  6 ~ n ,  

Then 

(4.1) 

dF d r  = d y  ~ f (x - r y l y e l ) d v ( y l )  
O(n) v O(n) r oo 

( e l ( l ,  0 . . . . .  O) ) 
OQ 

1 da ~ f (x + ryl a )  dv (Yl) �9 
I ~ n - l l  .-t r 

--~:X3 

t = Yl 6 ]~ and denote 

// ( X u f )  (x, v) ---- f ( x  + t v ) d v ( t ) .  (4.2) 
oo 

1 i (Xvf) (x, v) dv  
I~,p(/2, f )  = IEn-1---'-~ <lvl<p I vln (4.3) 

(4.5) 

(Le) 
lim = lira, provided that 

fR  lc(r)dr ~ O . ko = + 

In the case when v ~ En-1 and v is the Lebesgue measure, the integral (4.2) coincides with the usual 
X-ray transform (see, e.g., [13]). If v is absolutely continuous with the compactly supported density 
g, then ( X g f ) ( x ,  v) = f~oo f ( x  + t v )g ( t )d t  is known as the windowed X-ray transform (see [9]). 
Theorems 2 and 3 imply the following inversion statements. 

T h e o r e m  6. 
Let v be an admissible measure (i.e., it(r) = r -1 v( ( - r ,  r)) ~ L l (•+)) and let (Xiv I If l)(x,  v) 

be locally summable in the v-variable away from the origin for  almost all x E R n. 
(i) I f  f ~ LP, 1 < p < oo, then 

f ( x ) =  lim 1 i ( X v f ) ( x , v ) d ~ n  , (4.4) 
,-,o I ~ : . - l l  ko <lvl<p 
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(ii) I f  f E Co, then (4.4) holds with limit interpreted in the C-norm. 
(iii) l f  f E L p, 1 < p < oo, and lc(r) has a decreasing majorant belonging to LI(IR+), 

then (4.4) holds a.e. on ]R n. 

Theorem Z 
Let v be a finite Borel measure on R such that v(N) = O. Assume that 

o r  

s (a) [log Itl [dlvl(t) < ~ (4.6) 
c~ 

(b) d r ( t )  = g( t)dt ,  g E HI(JR).  (4.7) 

Then v is admissible and the constant ko in (4.4) has the form 

/ f_o~ log ( I / t )dcz( t )  

ko / -~ f_~176 ) sgn t dt 

in the case (a) , 

in the case (b) , 

too -~- dr  ( H g)(t  ) = (Jr/) - l  J-oo gt  )y-s? being the Hilbert transform o f  g. Under these assumptions the 
statements (i) and (ii) of  Theorem 6 hold. I f  moreover, 

fit t l -~dlvl ( t )  < oo for  some 8 > O, 
[<1 

(4.8) 

then for  f ~ L v, 1 < p < ~ ,  the relation (4.4)is  valid for  almost all x. 

In order to invert X~ f with the non-admissible measure v one may use the argument of Section 
3. Let /z  = / z  (l) � 9  (2), I z ( i ) ( y )  = v(i)(yl) x 8(y ' ) ;  i = 1, 2. As above we have 

Ie,p(IX, f )  /s : = d y  --~ dv (1) (Yl) f (x - r lylyel  -- O z l y e l ) d v  (2) (zl) 
O(n) oo oo 

I f : _ I dv  ~ dv(1)(t) f ( x  + tv + rv)dv(2)(~) 
IEn- l l  <lvl<o Ivl n ~ oo 

- I~n- l l  <lol<p Iol n oo f ( x + t v ) d  v ( l ) . v  (2) (t) 

_ 1 dv  (Xr  (x + tv,  v )dv ( l ) ( t ) .  
I l cn - l l  <l~l<p lvl n 

We say that the pair of  measures v (t), v (2) is admissible if v = v (1) * v (2) is admissible, i.e., 

l c ( r ) = l f ( _ r  r,r) d ( v ( 1 ) * v ( 2 ) ) ( t ) E L l ( N + )  " (4.9) 

The corresponding inversion formula, which is similar to (3.3), reads 

1 do (Xv(2)f) (x + to, v)dv(1)(t) . 
f ( x ) -  II;n-llk'-----~ n i - ~  oo 

(4.10) 

We leave to the reader to state the analog of Theprem 5 which justifies this formula. 
Let us give a simple example. Assume that we want to invert (Xr  v), where v (2) is an 

arbitrary finite measure supported by [0, c~]. Choose u (1) = 8a - 8b where 8a and 8b are unit Dirac 
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masses at the points a and b, respectively. Let 0 < a < b < ~ .  Clearly, v --- v (0 �9 v (2) is a finite 
Borel measure because the linear functional 

(x~ oo oo 

~-+(v,~)=fdv")(x)f~(x+y)dv~2~(y)=fFC(a+y)-~(b+y)ldv~2~(y) 
--00 --00 --OQ 

is bounded on Co. Moreover, since 0(~) = ~2(~)(e ia~ - elba), then v(R) = D(0) = 0. One can 
readily check that 

oo 

f f fo it(r) = _1 dr ( t )  = _1 dv(Z)(t) and ko = [r = log 
r r a + t  

(-r,r) [ r -b . r -a)  0 

(the last integral is absolutely convergent). 
Thus, Theorem 7 and (4.10) lead to the following statement (for the sake of convenience we 

change the notation for measures). 

Theorem  8. 
Let v be a finite Borel measure supported by the positive half-line, and assume that a < b are 

the arbitrary positive numbers. 
(i) l f f E L  p, 1 < p < oo, then 

f ( x ) =  lim l f~ ( X u f ) ( x + a v ,  v ) - ( X v f ) ( x + b v ,  V)dv ' (4.11) 
~ ( ,  I Z , - l l k 0  <lul<p tvl n 

,o-..+ oo 

(L p)  

lim = lim, provided that ko = f ~  log b+t - -~dv( t )  ~ O. 
(ii) l f  f E Co, then the limit in (4.11) may be understood in the C-norm. 
(iii) If  moreover, v is compactly supported, then (4.11) holds in the a.e. sense for  f E L p, 

1 < p < c ~ .  

We conclude this section by exhibiting an analog of Theorem 1 for windowed X-ray transforms. 

T h e o r e m  9. 
Let v be a finite Borel measure on R such that the integral 

f_~ f~ O(~) d~ ~(~)d ~ lim 
Cv = oo 'J~J r = ~( '  <lrll<p J'-~' ~ 

p---~oo 

is finite and different from zero. Then 

(L2) 1 fe do 
f = lira ( X v f )  (x, v)tv~n . 

,--,o cv IZn-l l  <lol<p 
p--*-oo 

Proo f .  According to (4.3) and Theorem 1 it suffices to show that for /z(y)  = v(y l )  x ~(y') the 
limit 

c~ = lim 1 f~ /2(0) , 
~ o  IZ, - l}  <lnl<p In} n a ~  

,o--~oo 

exists and is equal to cu. By taking into account that/2(0) = ~(rh) we have 

1 f~ /2 (r/_._.~) d r I = 
J:c,,_~l <t,71<o Irl[" 

1 / ~  e l ) ) d a - -  
[Zn-lJ r ,_~ 
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- -  ~ ~ ( r t )  1 - -  t 2 
[~,n_l[ r 1 

It, n-2, f _ '  ( ) ( n - 3 ) / 2 d t f 6  ---,af_ - -  1 - -  t 2 ~(~) o o  ~)(~) 

where 

[~n_21 f l ( )(n--3)/2 ( 27fn/2 ) 
A = ~lZn_ll I 1 - t  2 dt = 1 we recall that IZ.-ll = F(n/2---"~ " [ ]  

Corollary 1. (for two measures) 
Let v = v (1) * v (2), be a finite Borel measure on R such that the integral 

cu = a~ = lim 
p.-.+ oo 

f~<l~/l<p u(1) (~)u(2)(~) d~ 
I~1 

is finite and different from zero. Then 

(L2) 1 fe dv f -  ~ (X~r + t v ' v ) d v ( l ) d t "  f = lim 
o--*(:x~ 

The last formula leads to the wavelet expansion of  f [cf. (3.4)]. 

5. R a d o n  T r a n s f o r m s  

5.1 Preliminaries 

Let pn be the manifold of  all hyperplanes in R n. The Radon transform o f  sufficiently nice 
function f on IR n is defined by 

(Rf) (v)  = fr f (x )dmr(x) ,  v E I~ ,  (5.1) 

where mr is the euclidean measure on v. Each hyperplane v may be parameterized by (0, s) 

]~n = En- l  X R SO that r = {x 6 R n : (x, 0) = s}. Since (0, s) and ( - 0 ,  - s )  define the same 

hyperplane, the correspondence between A n and pn is not one-to-one. The mapping (0, s) --~ ~ is 

a double covering on/W, and each function on IW can be identified with the even function on A n. 
Under the (0, s)-parameterization, the Radon transform (5.1) reads 

( Ro f )  (s) =- ( R f)(O , s) = fo• f (sO + u)du , (5.2) 

where 0 ~ I ]n - l ,  s ~ R; du stands for the euclidean measure on the subspace 0 • orthogonal to 

0, such that dx dsdu for x sO + u. We consider A n = = as the measure space with the product 
measure dOds where dO is the rotation invariant measure on Zn- I  and ds designates the Lebesgue 
measure on R. 

The Radon transform R represents a linear continuous operator from S(R  n) into the similar 

space S ( R  n) (see, [7]). For locally integrable functions f the following statements are known. 
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Theorem 10. [24] 
l f  f is nonnegative, then R f  is defined almost everywhere on ~n and is locally integrable on 

~n if and only if 

f f ( x )  1 < ~ "  
dx 

+ Ixl 
R n 

For each 3 > 0 and any measurable function f on •n the following estimate holds: 

f(~ dOds <_ c f dx 
n I(ef)(O's)l(1 + isl)l+a If(x)l  1 + Ixl 

R n 

Corollary 2. 
For l <_ p < n / ( n -  1) a n d 8  >0, 

f~  dOds 
n I(Rf)(O, s)l (1 + tsl) 1+8 < cllfllp �9 

We note that in the case p > n/(n - 1) the function f ( x )  = (2 + Ixt) - n / p  (log(2 + txl)) - l  
belongs to LP(N ~) and is not integrable over any hyperplane. 

Given 1 < q, r < o~, we define the space 

If I~(O,s)lrds q/r l l / q  } d O  ( )_~n_ = r  S ) :  [[r = < ~ - Lq, r 
n - I  

Theorem 11. [14] 
For n > 2 an a priori inequality 

Ilefllq.r < Cp.q.rllfllp 

holds ifandonly i f l  < p < n/(n - 1), q < p '  ( p - I  + p , - t  = 1), andr - t  = n p  -1 - n + 1. 

Let us define the Radon transform of  Borel measures on R n. Given 0 6 E n - l ,  let Eo be the 
orthogonal projection onto the line e0 = {sO : - ~  < s < c~} and let ro be an arbitrary rotation 
such that roel = 0. We define the Radon transform Rolz of the Borel measure/z  on •n as the image 
of/x under the mapping r~ -l Eo. This means that for each 0 6 E n - l ,  Rolz is the Borel measure on 
R such that 

(Ro t z ) ( f2 )=Iz (Eo l ro f2 )=l z (O ' l ' •  f 2 C R .  

The above definition does not depend on the choice of  re and corresponds to (5.2). Indeed, if 
dl~(x) = f (x )dx ,  f 6 Ll(Rn), and r 6 ~Dn is given by the equation (x,O) = s, then Rotz is 
absolutely continuous on ]R with the density (Ref)(s)  because 

(Rolz)(g2)=fro f2xO l f(x)dx=fndsfoi f(sO+u)du=fn(Rof)(s)ds. 
Clearly, i f /z  is finite on R n , then Ro lz is finite on R for each 0 6 Z n -  I. The idea of  the above 

definition was borrowed from the more general consideration in [ 11 ]. 

Lemma 2. 
Suppose that lz is a Borel measure on 1R n and ~o is a Borel function on R. Then 

R n R n 
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This statement follows from Theorem 1.19 of [1 I]. Assuming ~o(s) _---- ~0(0, s) and integrating 
the above equality over I]n-1 we get 

f~._l dO fR ~~ s)d (Rolx) (s) = f dl~(x) f~._l ~~ (x, O})dlz(x) 
R n 

or  

 (O,s)dOd (RoU)(s) = f (x)d.(x) 
R n 

(5.3) 

where the integral 

( x )  = ~o(O,(x,O))dO 
n-I 

is known as the dual Radon transform (see, [7]). In particular, if dlz(x) = f ( x ) d x ,  then (5.3) yields 
the well-known duality relation 

(Rf, ~p)~ = (f, R #r (5.4) 

in which the following notation is used: 

( f , g )  = : f ( x ) g ( x ) d x ,  (~,~o) ~ = ~ n  ~(O,s)~o(O,s)dOds . (5.5) 

R n 

The equality (5.4) also can be obtained directly with the aid of the Fubini theorem provided that one 
of the integrals (R l f l ,  I~01), ( I f l ,  e#l~ol) is finite. 

L e m m a  3. 
I f  ~o is a locally integrable tempered function on ~n, then 

: z.L (R ~ n s' (R"). 

P r o o f .  According to (5.4) for the arbitrary o9 6 S (R  n) we have (R#~o, w) = (~o, Rog) ~, and the 

result follows from the continuity of R from S(IR n) into S(~n). [] 

5.2 Inversion of Radon Transforms 

Assume that y = (yl . . . . .  Y,,) = (yl, y'), v(y) = ~(yl) x E.(y') where ~(Yl) is the unit Dirac 
measure on R and s is the Lebesgue measure on R n - l .  

L e m m a  4. 
Let f ~ L P (~,n), 1 < p < n / (n - I). Then for the arbitrary finite measure ot on R n, 

tl--'-'--~n R# (Rf ,~>I)) (5 .6)  

l:C.-~l 
f s  ( f  * Ot~,,t * Vy,t) dg = 

O(n) 

where ~1)  is the dilated version of  the measure 

~(L) = ot o E o  I = RetOt (5.7) 

(the "projection" of  or onto the first coordinate axis). 

P r o o f .  We observe that 

( f  * vy,t) (x) = t l-n (Rof)  ((x, 0)), 0 = Fel �9 
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Indeed, 

It follows that 

( f  * v• (x) = f f(x-t• f f ( ( x ,  y e l ) F e l - y z ' ) d z '  
R n -  1 R n -  1 

= t l - n  fo• f((x,  0)0 -- u)du = t 1-n (ROY) ((x, 0)) . 

fso:., (:''''*''')<.>"" = (:*'"') <" - "'>"'<') 
R n 

= tl-n fs d y f ( R f ) ( ( x - t y y ,  yel),yel)dOt(y) 
O(n) 

R n 

,l f f - -  dO (Ro f )  ((x, 0) - tyl) d~(y) =(Lemma 2) 
IZn-t l  . - t  Rn 

tl-n fZ f = dO (Rof) ((x, 0) - tyl)d~ (0 (Yl) 
IZn-ll ._~ 

- - 0 0  

which coincides with the right-hand side of (5.6). The application of the Fubini theorem in the above 

calculations is possible because for nonnegative f and ce by Theorem 11 we have Rlf[ * I~1} l) 
LI ' r (R  n) and therefore by Lemma 3, R#(RIfl * I~l~I))(x) is finite for almost all x. [ ]  

Corollary 3. 
Assume that f E LP(~,n), 1 < p < n/(n - l); o~ is a finite Borel measure on ~n. Then 

fE ( :)dt ~176 Rf,~ I) TY=he*f, t>0, (5.8) 
where 

BI n - l )  

h(x) -- ; (Ix] 2 - -  S2)(n- l ) /Zdol ( l ) ( s )  , (5.9) 
Ixl ~ Jlsl<lxl 

IBln-l) I = rg(n-l)/2 / F ((n + 1)/2) being the volume of the (n - 1)-dimensional unit ball. 

P r o o f .  P u t / z  = t~ �9 v, v = 3 ( y l )  • s  in (5.6) .  One can readily check that /z(y)  = 

t~(l)(yl) • s  Moreover, the function (y, t) --+ (If t  * I/zl• belongs to LI(SO(n) x [e, p]) 
for almost all x because by (5 .6) ,  

fs f olfl*llZly.tdt - I ff~R,(Rlfl,lot,}l)) dta.e. d F - -  - - < o o  
o (n) t I E n -  i ] tn 

in accordance with Theorem I 1 and Lemma 3. By (2.12) and (5.6) it follows that 

fe ( ) d t  f E o f * l z e ' t d t : h e . f - h p . f  (5.10) PR # Rf*c~[ I) ~'=[~]n-ll t 

where 

/y l fly /, ' 1 dlz(y) ---- ~ dot (D (yl) dy 
h ( x ) -  Ixl" I<lxl ll<lxl ' 1 < ~  

-- Bln-l) flyll<lxl (lxl2- y2)(n-l)/2d~ (yl) " 
Ixl n 
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In order to obtain (5.8) we first note that the integral in the left-hand side of this equality 
belongs to L]oc(R n) :1 S'(Rn). Indeed, since 

[lnf*~ <: Cllgflll'r tt:'1 c,: , ,  I:'tl, 
then by (5.4) for any co ~ S(R n) we get 

(f6 ~ ( ) ) f e ~ (  )~ dt ot(Dii f~ dt dt or} 1), Rco t n t n R # Rf*ot~ 1) ~ - , w  = R f *  - -  <_ c(co)llfllp - - < c r  

Thus, it suffices to check the validity of (5.8) in the S'-sense. We have 

dt, w) = lim fP d__t_ f  (x)R # (R f  *ot} 1)) (x)dx ( f ~  R # (R f  *ot[ 1,) t p,oodE t " d  
R n 

= lim (he * f -- hp * f,  w) = (h, �9 f ,  to) 
D-.-~ oo 

- lim f f ( y ) d y [ h ( z ) c o ( y +  pz)dz = ( h e *  f, co) 
p.-.+oo d J 

R n R n 

and the result follows. [ ]  

Our next goal is to show that the kernel h (x) in (5.9) belongs to L I(R n) under certain natural 
conditions. For this purpose the following general statement will be useful. 

Lemma 5. 
Assume that 1 < k < n - 1, m is a finite Borel measure on R n-k, 

h(ra)(x) = Ixl---- ~ fly"l<lxl ( Ix12-  lY"12)k/2dm (y'')" 

If 

and 

i,">, ly"l ~ dlml (y") < oo for some fl > k 

f (y")Jdm(y") 0 for = 0 , 2  ljl 2[k/2], 

R n - k  

then h (m) (x ) enjoys the following properties: 

(i) 

(5.11) 

(5.12) 

O (lxl k-") /f lxl  < 1, 
h(m)(X) E L 1 (]Rn), h(m)(X) = (5.13) 

0 (Ixl k - n - r )  /flxl > 1, 

where y = min(fl, 2[k/2] + 2); 

(ii) f h(~>(x)dx = 
R n 

~'+~/2(-1)(k+')/21~-' [ ]Y"[* dm 2r(l+k/2) f (Y") 
R n - k  

jrk/2(-- 1)1+k/2 [ r.n_l [ 
(k/2)! f ly"l k log lY"ldm (y") 

Rn - k  

if k is odd, 
(5.14) 

if k is even. 
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Proof. Denote 

�9 fy.12<0 ( O - - [ Y " 1 2 ) k / 2 d m ( y  ") ~-m k(r]) = [F(1  + k/2)r/] - l  

Clearly, 7r k/2 I Zn-~l 
h(m)(X)= ixln_2 ~.m,~ (Ixl2) , 

and the relations h (m) (x) ~ L 1 (]Rn) and )~m,k (r/) E L ! (0, ~ )  are equivalent. Moreover, fRn h (m) (x)dx = 

(zrk/2[ Zn- I  I/2) fo  Xm.k(r/)dr/. It remains to apply Lemma 17.1 from [18]. [ ]  

T h e o r e m  12. 
Let f E L P (]Rn), 1 < p < n / (n - 1). Let a be anarbitrary "wavelet measure" satisfying the 

following conditions: 

f lyll~dlotl(y) < o~ for some fl > n -- 1 

R n 

f y { d e t ( y )  = 0 for j = 0, 2 2 [(n - 1)/2] i 

R n 

(5.15) 

(5.16) 

Then 

where 

lim R # R f  .ot~ 1) dt E~o -~ = hof ,  or(l) ---- Rel~ , (5.17) 

rrn+l/2(_ l)n/2 /- i n - I  
rCnl2)r(Cn+i)12)~n lyl dot(y) if  n is even, 

h0 = 27r"-U2(-l)("+t)/2 f lYlI n-I  loglYlldet(y)  i fn  i sodd .  (5.18) 
F(n/2)F((n+l)/2) R n 

The limit in (5.17) can be understood also in the a.e.-sense, l f  f E L q (~, n) fq L P (]Rn) for  1 < q < 
n/ (n  - 1) and 1 < p < oo (L ~176 should be understood as Co), then (5.17) is also true. 

Proof. We make use of Corollary 3 and Lemma 5 with k = n - 1 and dm(y")  = dot(1)(yl). The 
required statements then follow by the usual machinery of the approximation to the identity [25]. 
[] 

6. k-Plane Transforms 

6.1 Basic Definitions and Auxiliary Facts 

Let Gk,n be the manifold of all non-oriented k-planes in W'. For sufficiently nice function f 
on R n, the k-plane transform is defined by 

= L f ( x ) d m r ( x ) ,  r ~ Gk,n , (6.1) ( P f ) ( r )  

m~ being the euclidean measure on r.  In order to parameterize Gk,n we introduce the Grassmann 
manifold Gk,n of non-oriented k-dimensional subspaces of R n. Under the identification Gk,n = 
0 ( n ) / 0  (k) x 0 (n - k), the set Gk.n can be regarded as the k(n - k)-dimensional compact manifold 
on which the group O(n) acts transitively. We denote by d (  the invariant measure on Gk,n with the 
total mass 1. Another parameterization of ~k,n which is similar to that in Section 5 and employs the 
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Stiefel manifold of  orthonormal frames is also possible (see, [15]). We will not use it in this article. 
Given a fixed ( ~ Gk,n, each vector x 6 R n can be written as x --- (x', x") = x~+x '' where x '  ~ ( a n d  
x" ~ (•  ( • is the orthogonal complement  to ( in R n. Each k-plane ~ 6 ~k,n can be parameterized 
by the pair ((,  x") where ~" 6 Gk,n and x" ~ (•  The correspondence r ~ (( ,  x ' )  is one-to-one in 
contrast to that in Section 5 (k = n - 1) where we had a double covering. The manifold ~k,n will be 
endowed with the product measure d(dx",  where dx" denotes the usual euclidean measure on ( •  

Under this parameterization the k-plane transform (6.1) reads 

( P f ) ( ( , x " ) ~ ( P ( f ) ( x " ) =  f f ( x ' W x " ) d x ' ,  ( EGk,. ,  x" E (  "1" . (6.2) 

Let (el . . . . .  en) be the natural orthonormal basis in IR n, and denote by R k and R n-k, 1 < k < n - 1, 
the subspaces of  R n, generated by the sets (el . . . . .  ek) and (ek+l . . . . .  en), respectively. For y ~ R n 
we write y = y~ + y" where y~ ~ ]R k, y" ~ R n-k. Every ( ~ Gk.n can be written in the form 

= ?,R k for some )/ 6 SO(n). Given y ~ SO(n) and f on R n, we denote f(• = f ( y x ) .  Then 

(P f )  (( ,x")  = (Pf(v)) ( IRk; Y") where ( = VR k. x " =  y y " .  (6.3) 

We denote by S(~k,~) the Schwartz type space of infinitely differentiable functions r x")  
on ~k,n rapidly decreasing in the x"-variable. The k-plane transform is a linear continuous map from 
S(R n) into Sk,n (concerning this fact and the precise definition of the space S(Gk.n) see, [6]). 

Clearly, if f 6 LI(Rn) ,  then f r  = fR~ f ( x )dx  for each ( 6 Gk,n, and 

therefore II Pf II L l(~k, . ) --< II f II L~(Rn). 

Theorem 13. [24] 
Let f be a nonnegative measurable function on ]R n. Then (P f ) ( ( ,  x") is defined almost 

everywhere on ~k.~ if and only if 

f f ( x ) d x  
(1 § Ixl) n-k < c~. 

R n 

For each 8 > 0 and a measurable function f ,  

f~ d(dx"  f I f (x) ldx 
I (e f )  x")l + ix . i )n_k+ a -< c . ( 6 . 4 )  

k.. (1 § lxl) n-k 
R n 

Corollary 4. 
For l < p < n /k  and S > O, 

Lk., I(Pf) (L  x") l  
d(dx"  

(1 + [x"l) n-k+8 <- cllfllp �9 (6.5) 

By using (6.3) and the obvious formula 

(6.6) 

one can write (6.5) in the form 

d€ f [(Pf<r')(Rk'y') 
R n - k  

dy" 
< cllfl lp,  (1 + ly"[) n-k+8 - 

8 > 0 .  (6.7) 
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The relation (6.5) shows that for 1 < p < n/k ,  the function f ~ LP(~, n) is integrable over 
almost every translate of almost every subspace ~ 6 Gk.n. For p > n /k  this is not true as is shown 
by the function f ( x )  = (2 + Ixl)-n/P(log(2 + lxl)) -1  (see, [22]). 

The k-plane transforms of Borel measures on R n can be defined as in Section 5 by using the 
orthogonal projection Er177 : ]R n --+ ~• along the "direction" ~. Given a measure/z on R n, we define 

its k-plane transform P~/z as a measure on ~-.t. such that 

( . , . )  ( . ,  = . = fo dlz(y), f2 C ~ -1" . 
xr 

Clearly, i f /z  is finite on R n, then P~/z is finite on ~• for each ~ 6 Gk,n. 

L e m m a  6. ( c f  [11L p. 16) 
Let lz be a Borel measure on ~n and let g be a Borel function on if• Then 

/, (x,')e 
R n 

As in Section 5 (put r =-_ ~o(~, x ' )  and integrate over ( ~ Gk,n), one can arrive at the duality 
relation involving the dual k-plane transform 

and having the form 

( P # ~ ~  fGk g~177 (6.8) 

(Pf,~o)~ = ( f ,  P#~o) , (6.9) 

where 

(PU, ~o)~ = ]_ (P f )  (~, x") ~o ((, x " ) d ( d x " .  
k,n 

The following statement is analogous to Lemma 3. 

L e m m a  7. 
l f  ~o is a locally integrable tempered function on Gk,n, then 

P" L oc n s' (R ~ 

Remark  1. 
The reader may be disappointed by not finding an analogue of the Oberlin-Stein theorem for 

k-plane transforms in this section. Such an analogue would be very helpful, but unfortunately (as far 
as I know) it represents an open problem. Concerning this problem the reader is referred to [2, 4, 27]. 
We shall see that one can also use Corollary 4 for  our purposes, which covers the whole range of 
k ( l  < k < n -  1) a n d p ( 1  < p  < n / k ) .  [] 

6.2 I n v e r s i o n  o f  k - P l a n e  T r a n s f o r m s  

In order to obtain inversion formulae involving continuous wavelet transforms, we use the 
same method as in Section 5. Put v(y) = Z:(y t) x 8(y n) where s  is the Lebesgue measure on 
R k and 8(y")  is the delta function on R n-k. 

L e m m a  8. 
Let f ~ LP(Nn), 1 < p < n / k. Then for the arbitrary finite measure ot on ]R n and t > O, 

f s  ( f  * * ot~,.t) d F = t -kP#M~, t f  (6.10) Vy,t 
O(n) 
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w h e r e  

(M~,tf)((,x")= fs (P#f*(P#~)a,t)(x")da, (6.11) 
O~ (n-k) 

S0r (n -- k) being the subgroup of SO(n) consisting of rotations in the (• 
P r o o f .  The passage from the left-hand side of  (6.10) to the right-hand side is based on the appli- 
cation of the Fubini theorem. In order to justify this application, we first show that for nonnegative 
f and or, 

IlM~"tfllL'(~k. (~+tx"l)-') -< cll~ll Ilfllp, s > n - k ,  (6 .12)  

with c independent of  t. This would imply that for complex-valued f and t~, 

(P#Mlal,t[fl, w ) = [(Mlal,t f, Pw)~[ < c(w)llal[ [l f l ip  (6.13) 

uniformly in t for each w E S(Rn).  In particular, the latter means that (P#MIaI.t I f l ) ( x )  is finite for 
almost all x and the application of the Fubini theorem below is possible. 

In order to prove (6.12) we note that 

Pcctc: = (Pr . (6.14) 

Indeed, for any Borel set A C ( •  we have (PCt~a)(A) = taa (E~-x t A) = ot(E'~a-lA) = (Pr -l A) = 
(Pr (A). Then 

(Mct,tf) ((,x") d(dx" 
k,. (1 -t-[x"[) s 

dx" (x" (r 
= <,zr;",)" (":) -trf')d 

(put x " =  yyn, ( = y~k, cr = yr, f ( •  f(yx)) 
dy" 

= fSO(n) dY f (1-~ly--"l)" fSO(n-k) dr fR "(PRkf)(Yyn-tEO'Rk)L17)d~ 
Rn-k 

= f dct(rl) fs dr fs dy f ( P R k f ( , ) ) ( y " - - t r r f ' )  dy" (6.7) Ofn-k) 0(.) (1 + ly"[) s - 
R n Rn-k  

<_ c f II:,,> ( . -  tro")l[p = cllc~ll I l f l lp .  
O(n-k) 

R n 

Once (6.12) is established, we can prove (6.10). Given y ~ SO(n), we write x = x '  + x",  where 
x '  6 y N  k and x"  6 (yRk) • Clearly, 

(f*v• [ f(x--tyy')dy'=t -k(PR/cf) (x.). 
Rn-k 

It follows that 

A = fSO(o,"  f 
R n 
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Let us replace ), by 
preserving R k. The 

yr,  assuming r ~ SO(n - k) where SO(n - k) is the subgroup of all rotations 
integration over SO(n - k) yields 

1 
A-"=t'k fso(n dY fso(n_k,(PyRkf*(PyRkoeYr)t) dr" (6.15) 

Given ?' ~ SO(n), there is a family of rotations which maps R k o n t o  ( -= yR k. We fix a rule 
according to which one can construct a certain concrete rotation yr : N k --+ ( (for example, if 
y is parameterized by the associated Euler angles, one may set the Euler angles, corresponding to 
the factor SO(n - k) equal to zero). Once such a rule is fixed, for each y : R k ~ ( the rotation 
y( : R k ---> ( depends on ( = gR k ~ Gk,n only. Put ), = g F l y r  E S O ( n  - k) in (6.15). Then 
oeyr = oeyCL, and by (6.6) we get 

1 

This coincides with (6.10). [] 

Corollary 5. 
Assume that f E Lp(•n), 1 < p < n/k, and oe is a finite Borel measure on 1R n. Then for 

8 > 0 ,  

t l+k , O~(n-k) 
(6.16) 

where 
Ck,n I ,  (]xlX- ]y'ix)k/zd~ (y"),  e l '=  PRice, (6.17) 

h(x) = I - ~  "l<lxl 

ck,~ = In Ik) l/lI;=-11, n I k) being the unit ball in R k. 

Proof.  The argument is similar to that in the proof of Corollary 3. We put tx = ct * v, v(y) = 
/2(y') x 3(y"). The/z(y) =/2(y ' )  x oe'(y"). By (6.10) and (6.13), 

f oo fs  { ~ (  ) d t  tat o(n) (Ifl*llxlv.t) d g =  P#Mlal.tlfl ~ ~L}oc(Rn) C lS ' (~ f ) .  (6.18) 

Thus, we can employ the representation (2.12) according to which 
/ 

f P # dt "- P Mc~,tf t--i-- ~ = h e * f - h p * f ,  0 < e < p < e < ~ ,  (6.19) 

where 

fly [ x i - n l y  dot'(y') f dy' Ixl-n dlz(y) = [En-l---'--~ "l<lxl h ( x ) -  IX._-----~ I<lxl 
l Y ' l < ~ " [  2 

tBlk'I ]xl-n Iy"l<lxl ( Ix ]2-  ]Y"12)k/2doe' (y') " 
lY~-ll 

The relations (6.19) and (6.18) imply (6.16). Here one can use the same argument as in the 
proof of Corollary 3. [ ]  

Now we state the main result of this section. 
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Theorem 14. 
Let f e Lp(Rn) ,  

following conditions: 
1 < p < n /k .  Let ct be an arbitrary "wavelet measure" satisfying the 

f ly"l dloll(y) < ~ some fl > k ,  for 

R n 

f ( y " ) J d o t ( y )  = [J[ = 0 , 2  . . . . .  2 [k/2] . 0 for 

R n 

l f  ~a(r x ' )  = ( P f ) ( ~ ,  x")  and 

(Aa,t~o) (~ ,x" )  = f 

S O F (n -k )  

( x " ) d o  , 

ho = 

(LP) f oo dt 
l im P#Aa.t~o = h o f  
s---*o 

lr l+k/2(--l)(k+l)[2 
2r(l+k/2) f [y"ik d~(y) if k is odd, 

R n 

then 

where 

rtk/2(--l)l+k/2 ly" 
(k/2)! f [y"[ klog led(y) if k is even. 

R n 

(6.20) 

(6.21) 

The limit in (6.22) can be understood also in the a.e.-sense. 

(6.22) 

(6.23) 

l f  f E Lq(]R n) A LP(]Rn) for  some q E [1 ,n /k ) ,  and 1 < p < oo (here L ~176 = Co), then 
(6.23) is also true. 

The proof  is s imilar  to that of  Theorem 12 from Section 5, and is based on Corol la ry  5, L e m m a  
5, and L e m m a  6. 
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